heur_twoopt.c
Go to the documentation of this file.
32/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
68#define DEFAULT_WAITINGNODES 0 /**< default number of nodes to wait after current best solution before calling heuristic */
69#define DEFAULT_MATCHINGRATE 0.5 /**< default percentage by which two variables have to match in their LP-row set to be
83 SCIP_Real matchingrate; /**< percentage by which two variables have have to match in their LP-row
85 SCIP_VAR** binvars; /**< Array of binary variables which are sorted with respect to their occurrence
88 int waitingnodes; /**< user parameter to determine number of nodes to wait after last best solution
104 SCIP_Bool execute; /**< has presolveTwoOpt detected necessary structure for execution of heuristic? */
122 int intnexchanges; /**< number of executed changes of Integer solution values leading to improvement in
132};
141};
148/** Tries to switch the values of two binary or integer variables and checks feasibility with respect to the LP.
181 assert(SCIPisFeasGE(scip, mastersolval + (int)masterdir * shiftval, SCIPvarGetLbGlobal(master)));
182 assert(SCIPisFeasLE(scip, mastersolval + (int)masterdir * shiftval, SCIPvarGetUbGlobal(master)));
239 assert(SCIPisFeasGE(scip, activities[SCIProwGetLPPos(masterrows[i])], SCIProwGetLhs(masterrows[i])));
240 assert(SCIPisFeasLE(scip, activities[SCIProwGetLPPos(masterrows[i])], SCIProwGetRhs(masterrows[i])));
251 * Columns are treated as {0,1} vector, where every nonzero entry is treated as '1', and compared to each other
252 * lexicographically. I.e. var1 is < var2 if the corresponding column of var2 has the smaller single nonzero index of
292 * one can easily check that the difference of these two numbers always has the desired sign for comparison. */
311 SCIP_Real matchingrate /**< determines the ratio of shared LP rows compared to the total number of
356 /* if the numbers of nonzero rows differs too much, w.r.t.matching ratio, the more expensive check over the rows
357 * doesn't have to be applied anymore because the counters for not shared rows can only increase.
390 /* now apply the ratio based comparison, that is if the ratio of shared rows is greater or equal the matching rate
392 /* nnonzeros1 = 0 or nnonzeros2 = 0 iff matching rate is 0, but in this case, we return TRUE at the beginning */
394 return ( SCIPisFeasLE(scip, matchingrate, (nnonzeros1 - nrows1not2) / (SCIP_Real)(nnonzeros1)) ||
395 SCIPisFeasLE(scip, matchingrate, (nnonzeros2 - nrows2not1) / (SCIP_Real)(nnonzeros2)) ); /*lint !e795 */
398/** Determines a bound by which the absolute solution value of two integer variables can be shifted at most.
401 * The first implementation only considers shifting proportion 1:1, i.e. if master value is shifted by a certain
448 masterbound = SCIPisFeasLE(scip, mastersolval + ceil(masterbound), bound) ? ceil(masterbound) : floor(masterbound);
454 masterbound = SCIPisFeasGE(scip, mastersolval - ceil(masterbound), bound) ? ceil(masterbound) : floor(masterbound);
461 slavebound = SCIPisFeasLE(scip, slavesolval + ceil(slavebound), bound) ? ceil(slavebound) : floor(slavebound);
467 slavebound = SCIPisFeasGE(scip, slavesolval - ceil(slavebound), bound) ? ceil(slavebound) : floor(slavebound);
490 SCIPdebugMsg(scip, " Master: %s with direction %d and %d rows, Slave: %s with direction %d and %d rows \n", SCIPvarGetName(master),
510 SCIPdebugMsg(scip, " Slaverow %s is not in LP (i=%d, j=%d)\n", SCIProwGetName(slaverows[i]), i, j);
516 SCIPdebugMsg(scip, " Masterrow %s is not in LP (i=%d, j=%d) \n", SCIProwGetName(masterrows[j]), i, j);
563 /* effect is the effect on the row activity by shifting the variables by 1 in the respective directions */
581 assert( SCIPisFeasGE(scip, activities[rowpos], SCIProwGetLhs(row)) && SCIPisFeasLE(scip, activities[rowpos], SCIProwGetRhs(row)) );
584 SCIPdebugMsg(scip, " %g <= %g <= %g, bound = %g, effect = %g (%g * %d + %g * %d) (i=%d,j=%d)\n",
599 if( ( left && SCIPisFeasGE(scip, activity, side) ) || ( !left && SCIPisFeasLE(scip, activity, side) ) )
604 /* due to numerical reasons, bound can be negative. A variable shift by a negative bound is not desired by
610 assert( SCIPisFeasGE(scip, activities[rowpos] + effect * bound, SCIProwGetLhs(row)) && SCIPisFeasLE(scip, activities[rowpos] + effect * bound, SCIProwGetRhs(row)) );
615 SCIPdebugMsg(scip, " No influence of row %s, effect %g, master coeff: %g slave coeff: %g (i=%d, j=%d)\n",
633 return SCIPisInfinity(scip, bound + MAX((int)masterdirection * mastersolval, (int)slavedirection * slavesolval)) ? 0.0 : bound;
637/** Disposes variable with no heuristic relevancy, e.g., due to a fixed solution value, from its neighborhood block.
690 /* start determining blocks, i.e. a set of at least two variables which share most of their row set.
704 if( !checkConstraintMatching(scip, (*varspointer)[startindex], (*varspointer)[v], heurdata->matchingrate) )
706 /* current block has its last variable at position v-1. If v differs from startindex by at least 2,
730 /* reallocate memory with respect to the number of found blocks; if there were none, free the memory */
750 * If objective coefficient functions are not all equal, each Binary and Integer variables are sorted
775 /* ensure that method is not executed if presolving was already applied once in current branch and bound process */
787 /* if number of binary problem variables exceeds 2, they are subject to 2-optimization algorithm, hence heuristic
791 SCIP_CALL( innerPresolve(scip, vars, &(heurdata->binvars), nbinvars, &(heurdata->nbinblocks), &maxbinblocksize,
800 SCIPstatisticMessage(" Twoopt BINARY presolving finished with <%d> blocks, <%d> block variables \n",
810 SCIP_CALL( innerPresolve(scip, &(vars[nbinvars]), &(heurdata->intvars), nintvars, &(heurdata->nintblocks), &maxintblocksize,
822 SCIPstatisticMessage(" Twoopt Integer presolving finished with <%d> blocks, <%d> block variables \n",
1003 if( SCIPisFeasGT(scip, mastersolval, SCIPvarGetUbGlobal(master)) || SCIPisFeasLT(scip, mastersolval, SCIPvarGetLbGlobal(master)) )
1023 assert(opttype == OPTTYPE_INTEGER || (SCIPisFeasLE(scip, mastersolval, 1.0) || SCIPisFeasGE(scip, mastersolval, 0.0)));
1033 /* in blocks with more than heurdata->maxnslaves variables, a slave candidate region is chosen */
1059 if( (blocklen <= heurdata->maxnslaves || heurdata->maxnslaves == -1) && slaveindex < blockstart[b] + m )
1073 assert(opttype == OPTTYPE_INTEGER || (SCIPisFeasLE(scip, mastersolval, 1.0) || SCIPisFeasGE(scip, mastersolval, 0.0)));
1076 if( SCIPisFeasGT(scip, slavesolval, SCIPvarGetUbGlobal(slave)) || SCIPisFeasLT(scip, slavesolval, SCIPvarGetLbGlobal(slave)) )
1084 /* if solution value of the variable is fixed, delete it from the remaining candidates in the block */
1104 diffdirbound = determineBound(scip, worksol, master, DIRECTION_UP, slave, DIRECTION_DOWN, activities, nrows);
1111 diffdirbound = determineBound(scip, worksol, master, DIRECTION_DOWN, slave, DIRECTION_UP, activities, nrows);
1118 equaldirbound = determineBound(scip, worksol, master, DIRECTION_UP, slave, DIRECTION_UP, activities, nrows);
1127 equaldirbound = determineBound(scip, worksol, master, DIRECTION_DOWN, slave, DIRECTION_DOWN, activities, nrows);
1183 objchanges[npairs] = ((int)bestslavedir * SCIPvarGetObj(bestslaves[npairs]) + (int)bestmasterdir * masterobj) * bestbound;
1188 SCIPdebugMsg(scip, " Saved candidate pair {%s=%g, %s=%g} with objectives <%g>, <%g> to be set to {%g, %g} %d\n",
1189 SCIPvarGetName(master), mastersolval, SCIPvarGetName(bestslaves[npairs]), SCIPgetSolVal(scip, worksol, bestslaves[npairs]) ,
1190 masterobj, SCIPvarGetObj(bestslaves[npairs]), mastersolval + (int)bestmasterdir * bestbound, SCIPgetSolVal(scip, worksol, bestslaves[npairs])
1201 SCIPsortRealPtrPtrInt(objchanges, (void**)bestmasters, (void**)bestslaves, bestdirections, npairs);
1243 SCIPdebugMsg(scip, " Promising candidates {%s=%g, %s=%g} with objectives <%g>, <%g> to be set to {%g, %g}\n",
1245 masterobj, slaveobj, mastersolval + (int)masterdir * bound, slavesolval + (int)slavedir * bound);
1253 assert(SCIPvarGetStatus(master) == SCIP_VARSTATUS_COLUMN && SCIPvarGetStatus(slave) == SCIP_VARSTATUS_COLUMN);
1256 SCIP_CALL( shiftValues(scip, master, slave, mastersolval, masterdir, slavesolval, slavedir, bound,
1268 SCIPvarGetName(master), SCIPvarGetLbGlobal(master), SCIPvarGetUbGlobal(master), masterobj, mastersolval, SCIPgetSolVal(scip, worksol, master));
1270 SCIPvarGetName(slave), SCIPvarGetLbGlobal(slave), SCIPvarGetUbGlobal(slave), slaveobj, slavesolval, SCIPgetSolVal(scip, worksol, slave));
1309 "%6.2g %6.2g %4.2g %4.0g %6d (blocks/run, variables/run, varpercentage, avg. block size, max block size) \n",
1312 heurdata->ntotalbinvars == 0 ? 0.0 : (SCIP_Real)heurdata->binnblockvars/(heurdata->ntotalbinvars) * 100.0,
1318 "%6.2g %6.2g %4.2g %4.0g %6d (blocks/run, variables/run, varpercentage, avg block size, max block size) \n",
1321 heurdata->ntotalintvars == 0 ? 0.0 : (SCIP_Real)heurdata->intnblockvars/(heurdata->ntotalintvars) * 100.0,
1390/** solving process initialization method of primal heuristic (called when branch and bound process is about to begin) */
1423/** solving process deinitialization method of primal heuristic (called before branch and bound process data is freed) */
1536 /* ensure that the user defined number of nodes after last best solution has been reached, return otherwise */
1560 /* ensure that presolve has detected structures in the problem to which the 2-optimization can be applied.
1572 if( SCIPgetNVars(scip) > ndiscvars && ( !SCIPhasCurrentNodeLP(scip) || SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL ) )
1575 /* problem satisfies all necessary conditions for 2-optimization heuristic, execute heuristic! */
1619 SCIP_CALL( optimize(scip, worksol, heurdata->binvars, heurdata->binblockstart, heurdata->binblockend, heurdata->nbinblocks,
1634 SCIP_CALL( optimize(scip, worksol, heurdata->intvars, heurdata->intblockstart, heurdata->intblockend, heurdata->nintblocks,
1667 /* fix the integer variables and start diving to optimize continuous variables with respect to reduced domain */
1676 SCIPdebugMsg(scip, "shifted solution should be feasible -> solve LP to fix continuous variables to best values\n");
1683 SCIPdebugMsg(scip, " Cont. variable <%s>, status %d with bounds [%g <= %g <= x <= %g <= %g]\n",
1684 SCIPvarGetName(allvars[i]), SCIPvarGetStatus(allvars[i]), SCIPvarGetLbGlobal(allvars[i]), SCIPvarGetLbLocal(allvars[i]), SCIPvarGetUbLocal(allvars[i]),
1711 assert(SCIPvarGetType(allvars[i]) != SCIP_VARTYPE_CONTINUOUS && SCIPisFeasIntegral(scip, solval));
1719 assert( SCIPisFeasEQ(scip, SCIPgetVarLbDive(scip, allvars[i]), SCIPgetVarUbDive(scip, allvars[i])) );
1722 SCIPdebugMsg(scip, " -> old LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip));
1724 /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
1725 * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */
1730 SCIPwarningMessage(scip, "Error while solving LP in Twoopt heuristic; LP solve terminated with code <%d>\n",retstat);
1736 SCIPdebugMsg(scip, " -> new LP iterations: %" SCIP_LONGINT_FORMAT "\n", SCIPgetNLPIterations(scip));
1811 SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/twoopt/intopt", " Should Integer-2-Optimization be applied or not?",
1815 SCIP_CALL( SCIPaddIntParam(scip, "heuristics/twoopt/waitingnodes", "user parameter to determine number of "
1820 SCIP_CALL( SCIPaddIntParam(scip, "heuristics/twoopt/maxnslaves", "maximum number of slaves for one master variable",
1825 "parameter to determine the percentage of rows two variables have to share before they are considered equal",
SCIP_RETCODE SCIPgetVarsData(SCIP *scip, SCIP_VAR ***vars, int *nvars, int *nbinvars, int *nintvars, int *nimplvars, int *ncontvars)
Definition: scip_prob.c:1866
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:120
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPsetHeurExitsol(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEUREXITSOL((*heurexitsol)))
Definition: scip_heur.c:242
SCIP_RETCODE SCIPsetHeurCopy(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURCOPY((*heurcopy)))
Definition: scip_heur.c:162
SCIP_RETCODE SCIPincludeHeurBasic(SCIP *scip, SCIP_HEUR **heur, const char *name, const char *desc, char dispchar, int priority, int freq, int freqofs, int maxdepth, SCIP_HEURTIMING timingmask, SCIP_Bool usessubscip, SCIP_DECL_HEUREXEC((*heurexec)), SCIP_HEURDATA *heurdata)
Definition: scip_heur.c:117
SCIP_RETCODE SCIPsetHeurFree(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURFREE((*heurfree)))
Definition: scip_heur.c:178
SCIP_RETCODE SCIPsetHeurExit(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEUREXIT((*heurexit)))
Definition: scip_heur.c:210
SCIP_RETCODE SCIPsetHeurInitsol(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURINITSOL((*heurinitsol)))
Definition: scip_heur.c:226
SCIP_RETCODE SCIPsetHeurInit(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURINIT((*heurinit)))
Definition: scip_heur.c:194
void SCIPheurSetData(SCIP_HEUR *heur, SCIP_HEURDATA *heurdata)
Definition: heur.c:1374
SCIP_RETCODE SCIPchgVarLbDive(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_lp.c:2419
SCIP_RETCODE SCIPchgVarUbDive(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_lp.c:2451
SCIP_RETCODE SCIPsolveDiveLP(SCIP *scip, int itlim, SCIP_Bool *lperror, SCIP_Bool *cutoff)
Definition: scip_lp.c:2678
SCIP_RETCODE SCIPgetLPColsData(SCIP *scip, SCIP_COL ***cols, int *ncols)
Definition: scip_lp.c:471
SCIP_RETCODE SCIPgetLPRowsData(SCIP *scip, SCIP_ROW ***rows, int *nrows)
Definition: scip_lp.c:570
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:99
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:105
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2212
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2144
SCIP_RETCODE SCIPcreateSolCopy(SCIP *scip, SCIP_SOL **sol, SCIP_SOL *sourcesol)
Definition: scip_sol.c:470
SCIP_RETCODE SCIPprintSol(SCIP *scip, SCIP_SOL *sol, FILE *file, SCIP_Bool printzeros)
Definition: scip_sol.c:1627
SCIP_RETCODE SCIPtrySol(SCIP *scip, SCIP_SOL *sol, SCIP_Bool printreason, SCIP_Bool completely, SCIP_Bool checkbounds, SCIP_Bool checkintegrality, SCIP_Bool checklprows, SCIP_Bool *stored)
Definition: scip_sol.c:2950
SCIP_RETCODE SCIPsetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var, SCIP_Real val)
Definition: scip_sol.c:1073
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1213
SCIP_Longint SCIPgetNLPIterations(SCIP *scip)
Definition: scip_solvingstats.c:446
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:832
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:780
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:793
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:806
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:881
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:819
void SCIPfreeRandom(SCIP *scip, SCIP_RANDNUMGEN **randnumgen)
Definition: scip_randnumgen.c:79
int SCIPrandomGetInt(SCIP_RANDNUMGEN *randnumgen, int minrandval, int maxrandval)
Definition: misc.c:10111
SCIP_RETCODE SCIPcreateRandom(SCIP *scip, SCIP_RANDNUMGEN **randnumgen, unsigned int initialseed, SCIP_Bool useglobalseed)
Definition: scip_randnumgen.c:56
void SCIPsortPtr(void **ptrarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
void SCIPsortRealPtrPtrInt(SCIP_Real *realarray, void **ptrarray1, void **ptrarray2, int *intarray, int len)
static SCIP_Real determineBound(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *master, DIRECTION masterdirection, SCIP_VAR *slave, DIRECTION slavedirection, SCIP_Real *activities, int nrows)
Definition: heur_twoopt.c:405
static void disposeVariable(SCIP_VAR **vars, int *blockend, int varindex)
Definition: heur_twoopt.c:642
static SCIP_Bool checkConstraintMatching(SCIP *scip, SCIP_VAR *var1, SCIP_VAR *var2, SCIP_Real matchingrate)
Definition: heur_twoopt.c:307
static SCIP_RETCODE shiftValues(SCIP *scip, SCIP_VAR *master, SCIP_VAR *slave, SCIP_Real mastersolval, DIRECTION masterdir, SCIP_Real slavesolval, DIRECTION slavedir, SCIP_Real shiftval, SCIP_Real *activities, int nrows, SCIP_Bool *feasible)
Definition: heur_twoopt.c:153
static SCIP_RETCODE innerPresolve(SCIP *scip, SCIP_VAR **vars, SCIP_VAR ***varspointer, int nvars, int *nblocks, int *maxblocksize, int *nblockvars, int **blockstart, int **blockend, SCIP_HEUR *heur, SCIP_HEURDATA *heurdata)
Definition: heur_twoopt.c:657
static SCIP_RETCODE optimize(SCIP *scip, SCIP_SOL *worksol, SCIP_VAR **vars, int *blockstart, int *blockend, int nblocks, OPTTYPE opttype, SCIP_Real *activities, int nrows, SCIP_Bool *improvement, SCIP_Bool *varboundserr, SCIP_HEURDATA *heurdata)
Definition: heur_twoopt.c:936
static SCIP_RETCODE presolveTwoOpt(SCIP *scip, SCIP_HEUR *heur, SCIP_HEURDATA *heurdata)
Definition: heur_twoopt.c:757
Primal heuristic to improve incumbent solution by flipping pairs of variables.
memory allocation routines
Definition: objbenders.h:44
public methods for primal heuristics
public methods for LP management
public methods for message output
public data structures and miscellaneous methods
methods for sorting joint arrays of various types
public methods for primal CIP solutions
public methods for problem variables
public methods for primal heuristic plugins and divesets
public methods for the LP relaxation, rows and columns
public methods for memory management
public methods for message handling
public methods for numerical tolerances
public methods for SCIP parameter handling
public methods for global and local (sub)problems
public methods for random numbers
public methods for solutions
public methods for querying solving statistics
Definition: struct_lp.h:136
Definition: struct_heur.h:98
Definition: struct_misc.h:269
Definition: struct_lp.h:202
Definition: struct_sol.h:74
Definition: struct_var.h:208
Definition: struct_scip.h:70