cons_nonlinear.c
Go to the documentation of this file.
34/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
85#define CONSHDLR_ENFOPRIORITY 50 /**< priority of the constraint handler for constraint enforcing */
86#define CONSHDLR_CHECKPRIORITY -4000010 /**< priority of the constraint handler for checking feasibility */
87#define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
89#define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
93#define CONSHDLR_SEPAFREQ 1 /**< frequency for separating cuts; zero means to separate only in the root node */
94#define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
96#define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
97#define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
98#define CONSHDLR_PROP_TIMING SCIP_PROPTIMING_BEFORELP /**< propagation timing mask of the constraint handler*/
100#define CONSHDLR_PRESOLTIMING SCIP_PRESOLTIMING_ALWAYS /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
101#define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
107#define TABLE_EARLIEST_STAGE_NONLINEAR SCIP_STAGE_TRANSFORMED /**< output of the statistics table is only printed from this stage onwards */
113#define TABLE_EARLIEST_STAGE_NLHDLR SCIP_STAGE_PRESOLVING /**< output of the statistics table is only printed from this stage onwards */
121#define VERTEXPOLY_RANDNUMINITSEED 20181029 /**< seed for random number generator, which is used to move points away from the boundary */
122#define VERTEXPOLY_ADJUSTFACETFACTOR 1e1 /**< adjust resulting facets in checkRikun() up to a violation of this value times lpfeastol */
124#define BRANCH_RANDNUMINITSEED 20191229 /**< seed for random number generator, which is used to select from several similar good branching candidates */
138#define ENFOLOG(x) if( SCIPgetSubscipDepth(scip) == 0 && SCIPgetVerbLevel(scip) >= SCIP_VERBLEVEL_NORMAL ) { x }
168 SCIP_MONOTONE* monotonicity; /**< array containing monotonicity of expression w.r.t. each child */
173 unsigned int propboundstag; /**< tag to indicate whether propbounds are valid for the current propagation rounds */
179 unsigned int lastenforced; /**< last enforcement round where expression was enforced successfully */
180 unsigned int nactivityusesprop; /**< number of nonlinear handlers whose activity computation (or domain propagation) depends on the activity of the expression */
181 unsigned int nactivityusessepa; /**< number of nonlinear handlers whose separation (estimate or enfo) depends on the activity of the expression */
182 unsigned int nauxvaruses; /**< number of nonlinear handlers whose separation uses an auxvar in the expression */
186 SCIP_Real violscoresum; /**< sum of violation scores for branching stored for this expression */
187 SCIP_Real violscoremax; /**< max of violation scores for branching stored for this expression */
189 unsigned int violscoretag; /**< tag to decide whether a violation score of an expression needs to be initialized */
216 SCIP_Real gradnorm; /**< norm of gradient of constraint function in current solution (if evaluated) */
228 SCIP_VAR* linvardecr; /**< variable that may be decreased without making any other constraint infeasible, or NULL if none */
229 SCIP_VAR* linvarincr; /**< variable that may be increased without making any other constraint infeasible, or NULL if none */
236 int consindex; /**< an index of the constraint that is unique among all expr-constraints in this SCIP instance and is constant */
242 SCIP_DECL_NONLINCONSUPGD((*consupgd)); /**< method to call for upgrading nonlinear constraint */
255 SCIP_Bool registerusesactivitysepabelow; /**< a flag that is used only during \ref @detectNlhdlr() */
256 SCIP_Bool registerusesactivitysepaabove; /**< a flag that is used only during \ref @detectNlhdlr() */
259 CONSUPGRADE** consupgrades; /**< constraint upgrade methods for specializing nonlinear constraints */
272 SCIP_Longint lastvaractivitymethodchange; /**< tag when method used to evaluate activity of variables changed last */
277 SCIP_DECL_EXPR_INTEVALVAR((*intevalvar)); /**< method currently used for activity calculation of variable expressions */
278 SCIP_Bool globalbounds; /**< whether global variable bounds should be used for activity calculation */
279 SCIP_QUEUE* reversepropqueue; /**< expression queue to be used in reverse propagation, filled by SCIPtightenExprIntervalNonlinear */
280 SCIP_Bool forceboundtightening; /**< whether bound change passed to SCIPtightenExprIntervalNonlinear should be forced */
281 unsigned int curpropboundstag; /**< tag indicating current propagation rounds, to match with expr->propboundstag */
284 int maxproprounds; /**< limit on number of propagation rounds for a set of constraints within one round of SCIP propagation */
285 SCIP_Bool propauxvars; /**< whether to check bounds of all auxiliary variable to seed reverse propagation */
287 SCIP_Real varboundrelaxamount; /**< by how much to relax variable bounds during bound tightening */
288 SCIP_Real conssiderelaxamount; /**< by how much to relax constraint sides during bound tightening */
290 SCIP_Real vp_adjfacetthreshold; /**< adjust computed facet up to a violation of this value times lpfeastol */
291 SCIP_Bool vp_dualsimplex; /**< whether to use dual simplex instead of primal simplex for facet computing LP */
292 SCIP_Bool reformbinprods; /**< whether to reformulate products of binary variables during presolving */
293 SCIP_Bool reformbinprodsand; /**< whether to use the AND constraint handler for reformulating binary products */
294 int reformbinprodsfac; /**< minimum number of terms to reformulate bilinear binary products by factorizing variables (<= 1: disabled) */
295 SCIP_Bool forbidmultaggrnlvar; /**< whether to forbid multiaggregation of variables that appear in a nonlinear term of a constraint */
296 SCIP_Bool tightenlpfeastol; /**< whether to tighten LP feasibility tolerance during enforcement, if it seems useful */
298 SCIP_Real weakcutthreshold; /**< threshold for when to regard a cut from an estimator as weak */
299 SCIP_Real strongcutmaxcoef; /**< "strong" cuts will be scaled to have their maximal coef in [1/strongcutmaxcoef,strongcutmaxcoef] */
300 SCIP_Bool strongcutefficacy; /**< consider efficacy requirement when deciding whether a cut is "strong" */
302 SCIP_Real enfoauxviolfactor; /**< an expression will be enforced if the "auxiliary" violation is at least enfoauxviolfactor times the "original" violation */
303 SCIP_Real weakcutminviolfactor; /**< retry with weak cuts for constraints with violation at least this factor of maximal violated constraints */
304 char rownotremovable; /**< whether to make rows to be non-removable in the node where they are added (can prevent some cycling): 'o'ff, in 'e'nforcement only, 'a'lways */
305 char violscale; /**< method how to scale violations to make them comparable (not used for feasibility check) */
306 char checkvarlocks; /**< whether variables contained in a single constraint should be forced to be at their lower or upper bounds ('d'isable, change 't'ype, add 'b'ound disjunction) */
309 SCIP_Real branchhighviolfactor; /**< consider a constraint highly violated if its violation is >= this factor * maximal violation among all constraints */
310 SCIP_Real branchhighscorefactor; /**< consider a variable branching score high if its branching score >= this factor * maximal branching score among all variables */
311 SCIP_Real branchviolweight; /**< weight by how much to consider the violation assigned to a variable for its branching score */
312 SCIP_Real branchfracweight; /**< weight by how much to consider fractionality of integer variables in branching score for spatial branching */
313 SCIP_Real branchdualweight; /**< weight by how much to consider the dual values of rows that contain a variable for its branching score */
314 SCIP_Real branchpscostweight; /**< weight by how much to consider the pseudo cost of a variable for its branching score */
315 SCIP_Real branchdomainweight; /**< weight by how much to consider the domain width in branching score */
316 SCIP_Real branchvartypeweight;/**< weight by how much to consider variable type in branching score */
317 char branchscoreagg; /**< how to aggregate several branching scores given for the same expression ('a'verage, 'm'aximum, or 's'um) */
318 char branchviolsplit; /**< method used to split violation in expression onto variables ('u'niform, 'm'idness of solution, 'd'omain width, 'l'ogarithmic domain width) */
319 SCIP_Real branchpscostreliable; /**< minimum pseudo-cost update count required to consider pseudo-costs reliable */
320 SCIP_Real branchmixfractional; /**< minimal average pseudo cost count for discrete variables at which to start considering spatial branching before branching on fractional integer variables */
321 char linearizeheursol; /**< whether tight linearizations of nonlinear constraints should be added to cutpool when some heuristics finds a new solution ('o'ff, on new 'i'ncumbents, on 'e'very solution) */
326 SCIP_Longint ntightenlp; /**< number of times we requested solving the LP with a smaller feasibility tolerance when enforcing */
327 SCIP_Longint ndesperatetightenlp; /**< number of times we requested solving the LP with a smaller feasibility tolerance when enforcing because we didn't know anything better */
328 SCIP_Longint ndesperatebranch; /**< number of times we branched on some variable because normal enforcement was not successful */
329 SCIP_Longint ndesperatecutoff; /**< number of times we cut off a node in enforcement because no branching candidate could be found */
330 SCIP_Longint nforcelp; /**< number of times we forced solving the LP when enforcing a pseudo solution */
336 SCIP_LPI* vp_lp[SCIP_MAXVERTEXPOLYDIM+1]; /**< LPs used to compute facets for functions of different dimension */
346 SCIP_RANDNUMGEN* branchrandnumgen; /**< random number generated used in branching variable selection */
350 SCIP_Bool checkedvarlocks; /**< whether variables contained in a single constraint have been already considered */
358 SCIP_EXPR* expr; /**< expression that holds branching candidate, NULL if candidate is due to fractionality of integer variable */
380 SCIP_Bool* infeasible, /**< buffer to store whether the problem is infeasible (NULL if not needed) */
381 int* ntightenings /**< buffer to store the number of auxiliary variable tightenings (NULL if not needed) */
402 SCIPdebugMsg(scip, "remove auxiliary variable <%s> for expression %p\n", SCIPvarGetName(mydata->auxvar), (void*)expr);
405 * as this is a relaxation-only variable, no other plugin should use it for deducing any type of reductions or cutting planes
425 SCIP_Bool freeauxvar /**< whether aux var should be released and activity usage counts be reset */
522 * (if no variable-expression stored for var hashmap, then the var hasn't been used in any constraint, so do nothing
566 SCIPinfoMessage(scip, file, " (<%s> in [%g, %g])", SCIPvarGetName(ownerdata->auxvar), SCIPvarGetLbLocal(ownerdata->auxvar), SCIPvarGetUbLocal(ownerdata->auxvar));
575 * Reevaluate activity if currently stored is not up to date (some bound was changed since last evaluation).
639 /* just so that we can use filterpos to recognize whether an expr is a varexpr if not having a SCIP pointer around */
672 assert(SCIPhashmapGetImage(SCIPconshdlrGetData(conshdlr)->var2expr, (void*)var) == (void*)*expr);
759 /* if simplified, then we should have removed inactive variables and replaced common subexpressions,
772 SCIP_CALL( SCIPgetExprVarExprs(scip, consdata->expr, consdata->varexprs, &(consdata->nvarexprs)) );
778 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->varexprs, varexprssize, consdata->nvarexprs) );
786 * when removing duplicate subexpressions it can happen that a var->varexpr map was removed from the hashmap
792 SCIP_CALL( SCIPhashmapInsert(conshdlrdata->var2expr, SCIPgetVarExprVar(consdata->varexprs[i]), consdata->varexprs[i]) );
883 /* do not look at integer variables, they already have integral bounds, so wouldn't be relaxed */
906 /* do not look at integer variables, they already have integral bounds, so wouldn't be relaxed */
921 /* do not look at integer variables, they already have integral bounds, so wouldn't be relaxed */
925 /* relax bounds by epsilon*max(1,|bnd|), instead of just epsilon as in case 'a', thus we trust the first log(epsilon) digits
926 * however, when domains get small, relaxing can excessively weaken bound tightening, thus do only fraction of |ub-lb| if that is smaller
932 lb = MAX(bnd, lb - MIN(conshdlrdata->varboundrelaxamount * MAX(1.0, REALABS(lb)), 0.001 * REALABS(ub-lb)));
938 ub = MIN(bnd, ub + MIN(conshdlrdata->varboundrelaxamount * MAX(1.0, REALABS(ub)), 0.001 * REALABS(ub-lb)));
946 SCIPerrorMessage("Unsupported value '%c' for varboundrelax option.\n", conshdlrdata->varboundrelax);
988 assert(eventtype & (SCIP_EVENTTYPE_BOUNDCHANGED | SCIP_EVENTTYPE_VARFIXED | SCIP_EVENTTYPE_TYPECHANGED));
994 SCIPdebugMsg(scip, " exec event %" SCIP_EVENTTYPE_FORMAT " for variable <%s> (local [%g,%g], global [%g,%g])\n", eventtype,
1008 /* usually, if fixing a variable results in a boundchange, we should have seen a boundtightened-event as well
1010 * but we still want to make sure the activity of the var-expr is reevaluated (mainly to avoid a failing assert) in this case
1011 * since we cannot easily see whether a variable bound was actually changed in a varfixed event, we treat any varfixed event
1017 /* if a variable is changed to implicit-integer and has a fractional bound, then the behavior of intEvalVarBoundTightening is changing,
1019 * we will mark corresponding constraints as not-propagated in this case to get the tightened bounds on the var-expr
1021 * usually, a change to implicit-integer would result in a boundchange on the variable as well, but not if the bound was already almost integral
1023 if( (eventtype & SCIP_EVENTTYPE_TYPECHANGED) && (SCIPeventGetNewtype(event) == SCIP_VARTYPE_IMPLINT) &&
1024 (!EPSISINT(SCIPvarGetLbGlobal(SCIPeventGetVar(event)), 0.0) || !EPSISINT(SCIPvarGetUbGlobal(SCIPeventGetVar(event)), 0.0)) ) /*lint !e835*/
1027 /* notify constraints that use this variable expression (expr) to repropagate and possibly resimplify
1043 * TODO we could try be more selective here and only trigger a propagation if a relevant bound has changed,
1044 * that is, we don't need to repropagate x + ... <= rhs if only the upper bound of x has been tightened
1077 * (we could call expr->activity = intevalvar(var, consdhlr) directly, but then the exprhdlr statistics are not updated)
1079 SCIP_CALL( SCIPcallExprInteval(scip, expr, &activity, conshdlrdata->intevalvar, conshdlrdata) );
1123 SCIP_CALL( SCIPensureBlockMemoryArray(scip, &ownerdata->conss, &ownerdata->consssize, ownerdata->nconss + 1) );
1131 ownerdata->consssorted = compIndexConsNonlinear(ownerdata->conss[ownerdata->nconss-2], ownerdata->conss[ownerdata->nconss-1]) > 0;
1140 eventtype = SCIP_EVENTTYPE_BOUNDCHANGED | SCIP_EVENTTYPE_VARFIXED | SCIP_EVENTTYPE_TYPECHANGED;
1142 SCIP_CALL( SCIPcatchVarEvent(scip, SCIPgetVarExprVar(expr), eventtype, eventhdlr, (SCIP_EVENTDATA*)expr, &ownerdata->filterpos) );
1176#ifndef CR_API /* this assert may not work in unittests due to having this code compiled twice, #3543 */
1191 /* from now on, activity of var-expr will usually be updated in processVarEvent if variable bound is changing
1192 * since we just registered this eventhdlr, we should make sure that the activity is also up to date now
1197 SCIP_CALL( SCIPcallExprInteval(scip, expr, &activity, intEvalVarBoundTightening, conshdlrdata) );
1201 SCIPdebugMsg(scip, "var-exprhdlr::inteval for var <%s> = [%.20g, %.20g]\n", SCIPvarGetName(SCIPgetVarExprVar(expr)), activity.inf, activity.sup);
1213 * The given constraint is removed from the constraints array in the ownerdata of the variable-expression.
1248 if( !SCIPsortedvecFindPtr((void**)ownerdata->conss, compIndexConsNonlinear, cons, ownerdata->nconss, &pos) )
1250 SCIPerrorMessage("Constraint <%s> not in constraint array of expression for variable <%s>\n", SCIPconsGetName(cons), SCIPvarGetName(SCIPgetVarExprVar(expr)));
1272 eventtype = SCIP_EVENTTYPE_BOUNDCHANGED | SCIP_EVENTTYPE_VARFIXED | SCIP_EVENTTYPE_TYPECHANGED;
1274 SCIP_CALL( SCIPdropVarEvent(scip, SCIPgetVarExprVar(expr), eventtype, eventhdlr, (SCIP_EVENTDATA*)expr, ownerdata->filterpos) );
1321 * @attention Use copyexpr=FALSE only if expr is already "owned" by conshdlr, that is, if expressions were created with exprownerCreate() and ownerdata passed in the last two arguments
1332 SCIP_Bool copyexpr, /**< whether to copy the expression or reuse the given expr (capture it) */
1382 /* copy expression, thereby map variables expressions to already existing variables expressions in var2expr map, or augment var2expr map */
1383 SCIP_CALL( SCIPduplicateExpr(scip, expr, &consdata->expr, mapexprvar, conshdlr, exprownerCreate, (void*)conshdlr) );
1396 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
1407 * If there are negative locks, then return the violation of z ≤ f(x) and sets `violover` to TRUE.
1408 * If there are positive locks, then return the violation of z ≥ f(x) and sets `violunder` to TRUE.
1410 * If f could not be evaluated, then return SCIPinfinity() and set both `violover` and `violunder` to TRUE.
1412 * @note This does not reevaluate the violation, but assumes that the expression has been evaluated
1470 * Assume the expression is f(w), where w are auxiliary variables that were introduced by some nlhdlr.
1473 * If there are negative locks, then return the violation of z ≤ f(w) and sets `violover` to TRUE.
1474 * If there are positive locks, then return the violation of z ≥ f(w) and sets `violunder` to TRUE.
1476 * If f could not be evaluated, then return SCIPinfinity() and set both `violover` and `violunder` to TRUE.
1478 * @note This does not reevaluate the violation, but assumes that f(w) is passed in with auxvalue.
1566 consdata->lhsviol = SCIPisInfinity(scip, -consdata->lhs) ? -SCIPinfinity(scip) : consdata->lhs - activity;
1567 consdata->rhsviol = SCIPisInfinity(scip, consdata->rhs) ? -SCIPinfinity(scip) : activity - consdata->rhs;
1574 * @note This does not reevaluate the violation, but assumes that computeViolation() has been called before.
1593 * @note This does not reevaluate the violation, but assumes that computeViolation() has been called before.
1693 * @note This does not reevaluate the violation, but assumes that computeViolation() has been called before.
1704/** checks for a linear variable that can be increased or decreased without harming feasibility */
1753 SCIPdebugMsg(scip, "child <%s> locks: %d %d\n", SCIPvarGetName(var), SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL), SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL));
1758 * if we have already one candidate, then take the one where the loss in the objective function is less
1771 * if we have already one candidate, then take the one where the loss in the objective function is less
1788 SCIPdebugMsg(scip, "may increase <%s> to become feasible\n", SCIPvarGetName(consdata->linvarincr));
1792 SCIPdebugMsg(scip, "may decrease <%s> to become feasible\n", SCIPvarGetName(consdata->linvardecr));
1796/** Given a solution where every nonlinear constraint is either feasible or can be made feasible by
1797 * moving a linear variable, construct the corresponding feasible solution and pass it to the trysol heuristic.
1799 * The method assumes that this is always possible and that not all constraints are feasible already.
1808 SCIP_Bool* success /**< buffer to store whether we succeeded to construct a solution that satisfies all provided constraints */
1838 SCIPdebugMsg(scip, "attempt to make solution from <%s> feasible by shifting linear variable\n",
1839 sol != NULL ? (SCIPsolGetHeur(sol) != NULL ? SCIPheurGetName(SCIPsolGetHeur(sol)) : "tree") : "LP");
1859 ((viol > 0.0 && consdata->linvarincrcoef > 0.0) || (viol < 0.0 && consdata->linvarincrcoef < 0.0)) )
1881 SCIPvarGetName(var), delta, SCIPgetSolVal(scip, newsol, var), viol, SCIPconsGetName(conss[c])); /*lint !e613*/
1892 ((viol > 0.0 && consdata->linvardecrcoef < 0.0) || (viol < 0.0 && consdata->linvardecrcoef > 0.0)) )
1914 SCIPvarGetName(var), delta, SCIPgetSolVal(scip, newsol, var), viol, SCIPconsGetName(conss[c]));
1923 /* still here... so probably we could not make constraint feasible due to variable bounds, thus give up */
1927 /* if we have a solution that should satisfy all quadratic constraints and has a better objective than the current upper bound,
1930 if( c == nconss && (SCIPisInfinity(scip, SCIPgetUpperbound(scip)) || SCIPisSumLT(scip, SCIPgetSolTransObj(scip, newsol), SCIPgetUpperbound(scip))) )
1932 SCIPdebugMsg(scip, "pass solution with objective val %g to trysol heuristic\n", SCIPgetSolTransObj(scip, newsol));
1947 * The idea is that nonlinear handlers add globally valid tight estimators in a given solution as cuts to the cutpool.
1949 * Essentially we want to ensure that the LP relaxation is tight in the new solution, if possible.
1950 * As the nonlinear handlers define the extended formulation, they should know whether it is possible to generate a
1955 * Since linearization may happen in auxiliary variables, we ensure that auxiliary variables are set
1956 * to the eval-value of its expression, i.e., we change sol so it is also feasible in the extended formulation.
1978 ENFOLOG( SCIPinfoMessage(scip, enfologfile, "call nlhdlr sollinearize in new solution from <%s>\n", SCIPheurGetName(SCIPsolGetHeur(sol))); )
1992 if( !SCIPconsIsEnabled(conss[c]) || SCIPconsIsDeleted(conss[c]) || !SCIPconsIsSeparationEnabled(conss[c]) )
2017 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
2024 /* set value for auxvar in sol to value of expr, in case it is used to compute estimators higher up of this expression */
2074 /* we are only interested in solution coming from some heuristic other than trysol, but not from the tree
2075 * the reason for ignoring trysol solutions is that they may come ~~from an NLP solve in sepalp, where we already added linearizations, or are~~
2081 SCIPdebugMsg(scip, "caught new sol event %" SCIP_EVENTTYPE_FORMAT " from heur <%s>\n", SCIPeventGetType(event), SCIPheurGetName(SCIPsolGetHeur(sol)));
2083 SCIP_CALL( notifyNlhdlrNewsol(scip, conshdlr, SCIPconshdlrGetConss(conshdlr), SCIPconshdlrGetNConss(conshdlr), sol, (SCIPeventGetType(event) & SCIP_EVENTTYPE_BESTSOLFOUND) != 0) );
2088/** tightens the bounds of the auxiliary variable associated with an expression (or original variable if being a variable-expression) according to given bounds
2090 * The given bounds may very well be the exprs activity (when called from forwardPropExpr()), but can also be some
2115 /* the given bounds must not be empty (we could cope, but we shouldn't be called in this situation) */
2125 force = SCIPconshdlrGetData(conshdlr)->forceboundtightening || SCIPisEQ(scip, bounds.inf, bounds.sup);
2133 SCIPdebugMsg(scip, "tightened lb on auxvar <%s> to %.15g (forced:%u)\n", SCIPvarGetName(var), SCIPvarGetLbLocal(var), force);
2137 SCIPdebugMsg(scip, "cutoff when tightening lb on auxvar <%s> to %.15g\n", SCIPvarGetName(var), bounds.inf);
2147 SCIPdebugMsg(scip, "tightened ub on auxvar <%s> to %.15g (forced:%u)\n", SCIPvarGetName(var), SCIPvarGetUbLocal(var), force);
2151 SCIPdebugMsg(scip, "cutoff when tightening ub on auxvar <%s> to %.15g\n", SCIPvarGetName(var), bounds.sup);
2155 /* TODO expr->activity should have been reevaluated now due to boundchange-events, but it used to relax bounds
2163/** propagate bounds of the expressions in a given expression tree (that is, updates activity intervals)
2172 SCIP_Bool* infeasible, /**< buffer to store whether the problem is infeasible (NULL if not needed) */
2173 int* ntightenings /**< buffer to store the number of auxiliary variable tightenings (NULL if not needed) */
2193 if( SCIPexprGetActivityTag(rootexpr) >= conshdlrdata->lastboundrelax && SCIPintervalIsEmpty(SCIP_INTERVAL_INFINITY, SCIPexprGetActivity(rootexpr)) )
2195 SCIPdebugMsg(scip, "stored activity of root expr is empty and valid (activitytag >= lastboundrelax (%" SCIP_LONGINT_FORMAT ")), skip forwardPropExpr -> cutoff\n", conshdlrdata->lastboundrelax);
2209 SCIPdebugMsg(scip, "activitytag of root expr equals curboundstag (%" SCIP_LONGINT_FORMAT "), skip forwardPropExpr\n", conshdlrdata->curboundstag);
2211 assert(!SCIPintervalIsEmpty(SCIP_INTERVAL_INFINITY, SCIPexprGetActivity(rootexpr))); /* handled in previous if() */
2219 /* if activity of rootexpr is not used, but expr participated in detect (nenfos >= 0), then we do nothing
2220 * it seems wrong to be called for such an expression (unless we are in detect at the moment), so I add a SCIPABORT()
2224 if( ownerdata->nenfos >= 0 && ownerdata->nactivityusesprop == 0 && ownerdata->nactivityusessepa == 0 && !conshdlrdata->indetect)
2249 if( SCIPintervalIsEmpty(SCIP_INTERVAL_INFINITY, SCIPexprGetActivity(child)) && infeasible != NULL )
2269 /* for var exprs where varevents are catched, activity is updated immediately when the varbound has been changed
2275 SCIPexprGetActivityTag(expr) >= conshdlrdata->lastvaractivitymethodchange && !conshdlrdata->globalbounds )
2280 SCIP_CALL( SCIPcallExprInteval(scip, expr, &exprhdlrinterval, conshdlrdata->intevalvar, conshdlrdata) );
2285 SCIPdebugMsg(scip, "skip interval evaluation of expr for var <%s> [%g,%g]\n", SCIPvarGetName(SCIPgetVarExprVar(expr)), SCIPexprGetActivity(expr).inf, SCIPexprGetActivity(expr).sup);
2321 /* if activity of expr is not used, but expr participated in detect (nenfos >= 0), then do nothing */
2322 if( ownerdata->nenfos >= 0 && ownerdata->nactivityusesprop == 0 && ownerdata->nactivityusessepa == 0 && !conshdlrdata->indetect )
2325 SCIPdebugMsg(scip, "expr %p activity is not used but enfo initialized, skip inteval\n", (void*)expr);
2333 SCIPdebugMsgPrint(scip, ", current activity = [%.20g, %.20g]\n", SCIPexprGetActivity(expr).inf, SCIPexprGetActivity(expr).sup);
2344 for( e = 0; e < ownerdata->nenfos && !SCIPintervalIsEmpty(SCIP_INTERVAL_INFINITY, activity); ++e )
2353 /* skip nlhdlr if it does not provide interval evaluation (so it may only provide reverse propagation) */
2362 SCIPdebugMsg(scip, " nlhdlr <%s>::inteval = [%.20g, %.20g]", SCIPnlhdlrGetName(nlhdlr), nlhdlrinterval.inf, nlhdlrinterval.sup);
2374 /* for node without enforcement (before or during detect), call the callback of the exprhdlr directly */
2376 SCIP_CALL( SCIPcallExprInteval(scip, expr, &exprhdlrinterval, conshdlrdata->intevalvar, conshdlrdata) );
2378 SCIPdebugMsg(scip, " exprhdlr <%s>::inteval = [%.20g, %.20g]", SCIPexprhdlrGetName(SCIPexprGetHdlr(expr)), exprhdlrinterval.inf, exprhdlrinterval.sup);
2389 * this should undo the addition of some unnecessary safety added by use of nextafter() in interval arithmetics, e.g., when doing pow()
2390 * it would be ok to use ceil() and floor(), but for safety we use SCIPceil and SCIPfloor for now
2391 * do this only if using boundtightening-inteval and not in redundancy check (there we really want to relax all variables)
2392 * boundtightening-inteval does not relax integer variables, so can omit expressions without children
2395 if( SCIPexprIsIntegral(expr) && conshdlrdata->intevalvar == intEvalVarBoundTightening && SCIPexprGetNChildren(expr) > 0 )
2406 /* mark the current node to be infeasible if either the lower/upper bound is above/below +/- SCIPinfinity()
2411 SCIPdebugMsg(scip, "cut off due to activity [%g,%g] beyond infinity\n", activity.inf, activity.sup);
2427 SCIP_CALL( tightenAuxVarBounds(scip, conshdlr, expr, activity, &tighteninfeasible, ntightenings) );
2455/** returns whether intersecting `oldinterval` with `newinterval` would provide a properly smaller interval
2457 * If `subsetsufficient` is TRUE, then the intersection being smaller than oldinterval is sufficient.
2467 SCIP_Bool subsetsufficient, /**< whether the intersection being a proper subset of oldinterval is sufficient */
2489 if( !SCIPisEQ(scip, oldinterval.inf, oldinterval.sup) && SCIPisEQ(scip, MAX(oldinterval.inf, newinterval.inf), MIN(oldinterval.sup, newinterval.sup)) )
2492 /* check whether lower bound on interval will be better by SCIP's quality measures for boundchanges */
2496 /* check whether upper bound on interval will be better by SCIP's quality measures for boundchanges */
2503/** propagates bounds for each sub-expression in the `reversepropqueue` by starting from the root expressions
2507 * @note Calling this function requires feasible intervals for each sub-expression; this is guaranteed by calling
2516 SCIP_Bool* infeasible, /**< buffer to update whether an expression's bounds were propagated to an empty interval */
2533 * when reverseprop finds a tightening for an expression, then that expression is added to the queue (within the reverseprop call)
2550 /* since the expr was in the propagation queue, the propbounds should belong to current propagation and should not be empty
2551 * (propbounds being entire doesn't make much sense, so assert this for now, too, but that could be removed)
2558 * I doubt this would be much helpful, since propbounds are already subset of activity and we also propagate
2591 SCIPdebugMsgPrint(scip, " in [%g,%g] using nlhdlr <%s>\n", propbounds.inf, propbounds.sup, SCIPnlhdlrGetName(nlhdlr));
2595 SCIP_CALL( SCIPnlhdlrReverseprop(scip, conshdlr, nlhdlr, expr, ownerdata->enfos[e]->nlhdlrexprdata, propbounds, infeasible, &nreds) );
2602 /* if expr without enforcement (before detect), call reverse propagation callback of exprhdlr directly */
2609 SCIPdebugMsgPrint(scip, " in [%g,%g] using exprhdlr <%s>\n", SCIPexprGetActivity(expr).inf, SCIPexprGetActivity(expr).sup, SCIPexprhdlrGetName(SCIPexprGetHdlr(expr)));
2612 /* if someone added an expr without nlhdlr into the reversepropqueue, then this must be because its enfo hasn't
2627 SCIP_CALL( SCIPtightenExprIntervalNonlinear(scip, SCIPexprGetChildren(expr)[c], childrenbounds[c], infeasible, ntightenings) );
2634 /* reset inpropqueue for all remaining expr's in queue (can happen in case of early stop due to infeasibility) */
2654 * Reverse propagation tries to derive tighter variable bounds by reversing the activity computation, using the constraints
2658 * 1. apply forward propagation (update activities) for all constraints not marked as propagated
2659 * 2. if presolve or propauxvars is disabled: collect expressions for which the constraint sides provide tighter bounds
2660 * if solve and propauxvars is enabled: collect expressions for which auxvars (including those in root exprs)
2666 * @note After calling forward propagation for a constraint, we mark this constraint as propagated. This flag might be
2667 * reset during the reverse propagation when we find a bound tightening of a variable expression contained in the
2670 * TODO should we distinguish between expressions where activity information is used for separation and those where not,
2711#ifndef CR_API /* this assert may not work in unittests due to having this code compiled twice, #3543 */
2747 if( SCIPconsIsDeleted(conss[i]) || !SCIPconsIsActive(conss[i]) || !SCIPconsIsPropagationEnabled(conss[i]) )
2750 /* skip already propagated constraints, i.e., constraints where no (original) variable has changed and thus
2757 SCIPdebugMsg(scip, "call forwardPropExpr() for constraint <%s> (round %d): ", SCIPconsGetName(conss[i]), roundnr);
2762 assert(cutoff || !SCIPintervalIsEmpty(SCIP_INTERVAL_INFINITY, SCIPexprGetActivity(consdata->expr)));
2766 SCIPdebugMsg(scip, " -> cutoff in forwardPropExpr (due to domain error or auxvar tightening) of constraint <%s>\n", SCIPconsGetName(conss[i]));
2773 /* TODO for a constraint that only has an auxvar for consdata->expr (e.g., convex quadratic), we could also just do the if(TRUE)-branch */
2777 * (if we have auxvar (not in presolve), then bounds of the auxvar are initially set to constraint sides,
2783 SCIP_Real lhs = SCIPisInfinity(scip, -consdata->lhs) ? -SCIP_INTERVAL_INFINITY : consdata->lhs - conshdlrdata->conssiderelaxamount;
2784 SCIP_Real rhs = SCIPisInfinity(scip, consdata->rhs) ? SCIP_INTERVAL_INFINITY : consdata->rhs + conshdlrdata->conssiderelaxamount;
2791 SCIP_CALL( SCIPtightenExprIntervalNonlinear(scip, consdata->expr, conssides, &cutoff, &ntightenings) );
2803 for( expr = SCIPexpriterGetCurrent(revpropcollectit); !SCIPexpriterIsEnd(revpropcollectit) && !cutoff; expr = SCIPexpriterGetNext(revpropcollectit) )
2821 SCIPdebugMsg(scip, " -> cutoff after intersect with conssides of constraint <%s>\n", SCIPconsGetName(conss[i]));
2833 /* mark constraint as propagated; this will be reset via the event system when we find a variable tightening */
2870/** calls the reverseprop callbacks of all nlhdlrs in all expressions in all constraints using activity as bounds
2872 * This is meant to propagate any domain restrictions on functions onto variable bounds, if possible.
2875 * Therefore, a good place to call this function is immediately after propConss() or after forwardPropExpr() if outside propagation.
2904#ifndef CR_API /* this assert may not work in unittests due to having this code compiled twice, #3543 */
2918 if( SCIPconsIsDeleted(conss[c]) || !SCIPconsIsActive(conss[c]) || !SCIPconsIsPropagationEnabled(conss[c]) )
2924 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it) && !cutoff; expr = SCIPexpriterGetNext(it) )
2942 SCIPdebugMsg(scip, "propExprDomains calling reverseprop for expression %p [%g,%g]\n", (void*)expr,
2945 SCIP_CALL( SCIPnlhdlrReverseprop(scip, conshdlr, nlhdlr, expr, ownerdata->enfos[e]->nlhdlrexprdata,
2951 SCIPdebugMsg(scip, "detect infeasibility for constraint <%s> during reverseprop()\n", SCIPconsGetName(conss[c]));
3010 SCIPexpriterSetStagesDFS(it, SCIP_EXPRITER_ENTEREXPR | SCIP_EXPRITER_VISITINGCHILD | SCIP_EXPRITER_LEAVEEXPR);
3042 if( ownerdata->nlockspos == nlockspos && ownerdata->nlocksneg == nlocksneg && SCIPexprGetNChildren(expr) > 0
3050 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &ownerdata->monotonicity, SCIPexprGetNChildren(expr)) );
3065 if( ownerdata->nlockspos == 0 && ownerdata->nlocksneg == 0 && ownerdata->monotonicity != NULL )
3068 /* keep this assert for checking whether someone changed an expression without updating locks properly */
3082 /* NOTE: the monotonicity stored in an expression might be different from the result obtained by
3085 monotonicity = ownerdata->monotonicity != NULL ? ownerdata->monotonicity[SCIPexpriterGetChildIdxDFS(it)] : SCIP_MONOTONE_UNKNOWN;
3129 * Locks for a nonlinear constraint are used to update locks for all sub-expressions and variables.
3131 * consider the constraint \f$x^2 \leq 1\f$ with \f$x \in [-2,-1]\f$ implies an up-lock for the root
3132 * expression (pow) and a down-lock for its child \f$x\f$ because \f$x^2\f$ is decreasing on [-2,-1].
3133 * Since the monotonicity (and thus the locks) might also depend on variable bounds, the function remembers
3134 * the computed monotonicity information of each expression until all locks of an expression have been removed,
3135 * which implies that updating the monotonicity information during the next locking of this expression does not
3138 * @note When modifying the structure of an expression, e.g., during simplification, it is necessary to remove all
3139 * locks from an expression and repropagating them after the structural changes have been applied.
3140 * Because of existing common sub-expressions, it might be necessary to remove the locks of all constraints
3175 SCIP_CALL( propagateLocks(scip, consdata->expr, nlockspos + nlocksneg, nlockspos + nlocksneg));
3190/** create a nonlinear row representation of a nonlinear constraint and stores them in consdata */
3226 SCIP_CALL( SCIPchgNlRowConstant(scip, consdata->nlrow, SCIPgetConstantExprSum(consdata->expr)) );
3228 /* a sum-expression that will hold the nonlinear terms and be passed to the nlrow eventually */
3229 SCIP_CALL( SCIPcreateExprSum(scip, &nonlinpart, 0, NULL, NULL, 0.0, exprownerCreate, (void*)SCIPconsGetHdlr(cons)) );
3237 SCIP_CALL( SCIPaddLinearCoefToNlRow(scip, consdata->nlrow, SCIPgetVarExprVar(child), coefs[i]) );
3263 * If handlers have same enforcement priority, then compare by detection priority, then by name.
3322 /* check which enforcement methods are required by setting flags in enforcemethods for those that are NOT required
3324 * - if auxiliary variable is used, but nobody positively (up) locks expr -> only need to enforce expr >= auxvar -> no need for underestimation
3325 * - if auxiliary variable is used, but nobody negatively (down) locks expr -> only need to enforce expr <= auxvar -> no need for overestimation
3341 /* it doesn't make sense to have been called on detectNlhdlr, if the expr isn't used for anything */
3344 /* all methods that have not been flagged above are the ones that we want to be handled by nlhdlrs */
3373 conshdlrdata->registerusesactivitysepabelow = FALSE; /* SCIPregisterExprUsageNonlinear() as called by detect may set this to TRUE */
3374 conshdlrdata->registerusesactivitysepaabove = FALSE; /* SCIPregisterExprUsageNonlinear() as called by detect may set this to TRUE */
3376 SCIP_CALL( SCIPnlhdlrDetect(scip, ownerdata->conshdlr, nlhdlr, expr, cons, &enforcemethodsnew, &nlhdlrparticipating, &nlhdlrexprdata) );
3381 /* detection is only allowed to augment to nlhdlrenforcemethods, so previous enforcemethods must still be set */
3384 /* Because of the previous assert, nlhdlrenforcenew ^ enforcemethods are the methods enforced by this nlhdlr.
3402 /* nlhdlr cannot have added an enforcement method if it doesn't participate (actually redundant due to previous asserts) */
3410 SCIPdebugMsg(scip, "nlhdlr <%s> detect successful; sepabelow: %s, sepaabove: %s, activity: %s\n",
3412 ((nlhdlrenforcemethods & SCIP_NLHDLR_METHOD_SEPABELOW) != 0) ? "enforcing" : ((nlhdlrparticipating & SCIP_NLHDLR_METHOD_SEPABELOW) != 0) ? "participating" : "no",
3413 ((nlhdlrenforcemethods & SCIP_NLHDLR_METHOD_SEPAABOVE) != 0) ? "enforcing" : ((nlhdlrparticipating & SCIP_NLHDLR_METHOD_SEPAABOVE) != 0) ? "participating" : "no",
3414 ((nlhdlrenforcemethods & SCIP_NLHDLR_METHOD_ACTIVITY) != 0) ? "enforcing" : ((nlhdlrparticipating & SCIP_NLHDLR_METHOD_ACTIVITY) != 0) ? "participating" : "no");
3417 SCIP_CALL( SCIPensureBlockMemoryArray(scip, &ownerdata->enfos, &enfossize, ownerdata->nenfos+1) );
3423 ownerdata->enfos[ownerdata->nenfos]->sepabelowusesactivity = conshdlrdata->registerusesactivitysepabelow;
3424 ownerdata->enfos[ownerdata->nenfos]->sepaaboveusesactivity = conshdlrdata->registerusesactivitysepaabove;
3434 * (as long as the expression provides its callbacks, the default nlhdlr should have provided all enforcement methods)
3449 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &ownerdata->enfos, enfossize, ownerdata->nenfos) );
3472 assert(SCIPgetStage(scip) == SCIP_STAGE_PRESOLVING || SCIPgetStage(scip) == SCIP_STAGE_INITSOLVE || SCIPgetStage(scip) == SCIP_STAGE_SOLVING); /* should only be called in presolve or initsolve or consactive */
3482 /* ensure that activities are recomputed w.r.t. the global variable bounds if CONSACTIVE is called in a local node;
3483 * for example, this happens if globally valid nonlinear constraints are added during the tree search
3500 * TODO we may relax this with a little more programming effort when required, see also TODO in INITLP
3502 assert((!SCIPconsIsSeparated(conss[i]) && !SCIPconsIsEnforced(conss[i])) || SCIPconsIsInitial(conss[i]));
3507 /* because of common sub-expressions it might happen that we already detected a nonlinear handler and added it to the expr
3509 * HOWEVER: most likely we have been running DETECT with cons == NULL, which may interest less nlhdlrs
3518 /* if constraint will be enforced, and we are in solve, then ensure auxiliary variable for root expression
3519 * this way we can treat the root expression like any other expression when enforcing via separation
3525 SCIPgetStage(scip) >= SCIP_STAGE_INITSOLVE && (SCIPconsIsSeparated(conss[i]) || SCIPconsIsEnforced(conss[i])),
3534 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
3544 * auxvar == expr (or auxvar >= expr or auxvar <= expr) or we are at the root expression (expr==consdata->expr)
3547 * activity of this expression is updated; this someone would also benefit from better bounds on the activity of this expression
3550 if( ownerdata->nauxvaruses > 0 || ownerdata->nactivityusesprop > 0 || ownerdata->nactivityusessepa > 0 )
3559 * even though we have not actually run detectNlhdlr, because no nlhdlr showed interest in this expr,
3560 * in some situations (forwardPropExpr, to be specific) we will have to distinguish between exprs for which
3561 * we have not initialized enforcement yet (nenfos < 0) and expressions which are just not used in enforcement (nenfos == 0)
3567 /* include this constraint into the next propagation round because the added nlhdlr may do find tighter bounds now */
3583 /* ensure that all activities (except for var-exprs) are reevaluated since better methods may be available now */
3594 * This initializes data in a constraint that is used for separation, propagation, etc, and assumes that expressions will
3602 * This function can be called in presolve and solve and can be called several times with different sets of constraints,
3617 /* check for a linear variable that can be increase or decreased without harming feasibility */
3638 SCIP_CALL( SCIPhasExprCurvature(scip, consdata->expr, SCIP_EXPRCURV_CONCAVE, &success, NULL) );
3653 SCIPwarningMessage(scip, "Nonlinear constraint <%s> has finite left- and right-hand side, but constraints/nonlinear/assumeconvex is enabled.\n", SCIPconsGetName(conss[c]));
3658 consdata->curv = !SCIPisInfinity(scip, consdata->rhs) ? SCIP_EXPRCURV_CONVEX : SCIP_EXPRCURV_CONCAVE;
3661 SCIPdebugMsg(scip, "root curvature of constraint %s = %d\n", SCIPconsGetName(conss[c]), consdata->curv);
3726 rootactivityvalid = SCIPexprGetActivityTag(consdata->expr) >= SCIPconshdlrGetData(conshdlr)->lastboundrelax;
3728 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
3730 SCIPdebugMsg(scip, "exitsepa and free nonlinear handler data for expression %p\n", (void*)expr);
3732 /* remove nonlinear handlers in expression and their data and auxiliary variables; reset activityusage count */
3741 * this is mainly to ensure that we do not leave invalid activities in parts of the expression tree where activity was not used,
3742 * e.g., an expr's activity was kept up to date by a nlhdlr, but without using some childs activity
3762 /* forget about linear variables that can be increased or decreased without harming feasibility */
3775/** helper method to decide whether a given expression is product of at least two binary variables */
3828 int* childidxs, /**< array to store the index of the child of each stored bilinear binary product */
3899 /* TODO could compute minact and maxact for facvar=0 and facvar=1 separately, taking implied bounds into account, allowing for possibly tighter big-M's below */
3909 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "binreform_%s_%s", SCIPconsGetName(cons), SCIPvarGetName(facvar));
3910 SCIP_CALL( SCIPcreateVarBasic(scip, &auxvar, name, minact, maxact, 0.0, integral ? SCIP_VARTYPE_IMPLINT : SCIP_VARTYPE_CONTINUOUS) );
3940 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "binreform_%s_%s_1", SCIPconsGetName(cons), SCIPvarGetName(facvar));
3941 SCIP_CALL( SCIPcreateConsBasicVarbound(scip, &newcons, name, auxvar, facvar, -maxact, -SCIPinfinity(scip), 0.0) );
3951 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "binreform_%s_%s_2", SCIPconsGetName(cons), SCIPvarGetName(facvar));
3952 SCIP_CALL( SCIPcreateConsBasicVarbound(scip, &newcons, name, auxvar, facvar, -minact, 0.0, SCIPinfinity(scip)) );
3960 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "binreform_%s_%s_3", SCIPconsGetName(cons), SCIPvarGetName(facvar));
3961 SCIP_CALL( SCIPcreateConsBasicLinear(scip, &newcons, name, nvars, vars, coefs, minact, SCIPinfinity(scip)) );
3973 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "binreform_%s_%s_4", SCIPconsGetName(cons), SCIPvarGetName(facvar));
3974 SCIP_CALL( SCIPcreateConsBasicLinear(scip, &newcons, name, nvars, vars, coefs, -SCIPinfinity(scip), maxact) );
3994/** helper method to generate an expression for a sum of products of binary variables; note that the method captures the generated expression */
4002 SCIP_EXPR** newexpr, /**< pointer to store the expression that represents the binary quadratic */
4104 SCIPdebugMsg(scip, "consider facvar = %s with count = %d\n", SCIPvarGetName(facvar), count[SCIPvarGetIndex(vars[i])]);
4142 assert(count[SCIPvarGetIndex(facvar)] == 0); /* facvar should not appear in any other bilinear term */
4145 SCIP_CALL( reformulateFactorizedBinaryQuadratic(scip, conshdlr, cons, facvar, tmpvars, tmpcoefs, ntmpvars, &exprs[nexprs], naddconss) );
4167 SCIP_CALL( SCIPcreateExprSum(scip, newexpr, nexprs, exprs, exprcoefs, SCIPgetConstantExprSum(sumexpr), exprownerCreate, (void*)conshdlr) );
4169 /* release all expressions that have been generated by reformulateFactorizedBinaryQuadratic() */
4192/** helper method to create an AND constraint or varbound constraints for a given binary product expression */
4199 int* naddconss, /**< pointer to update the total number of added constraints (might be NULL) */
4260 /* use variable bound constraints if it is a bilinear product and there is no empathy for an AND constraint */
4271 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "binreform_%s_%s_1", SCIPvarGetName(x), SCIPvarGetName(y));
4272 SCIP_CALL( SCIPcreateConsBasicVarbound(scip, &cons, name, x, w, -1.0, 0.0, SCIPinfinity(scip)) );
4277 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "binreform_%s_%s_2", SCIPvarGetName(x), SCIPvarGetName(y));
4278 SCIP_CALL( SCIPcreateConsBasicVarbound(scip, &cons, name, y, w, -1.0, 0.0, SCIPinfinity(scip)) );
4285 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "binreform_%s_%s_3", SCIPvarGetName(x), SCIPvarGetName(y));
4286 SCIP_CALL( SCIPcreateConsBasicLinear(scip, &cons, name, 3, vars, coefs, -SCIPinfinity(scip), 1.0) );
4321/** helper method to generate an expression for the product of binary variables; note that the method captures the generated expression */
4326 SCIP_HASHMAP* exprmap, /**< map to remember generated variables for visited product expressions */
4329 int* naddconss, /**< pointer to update the total number of added constraints (might be NULL) */
4330 int* nchgcoefs /**< pointer to update the total number of changed coefficients (might be NULL) */
4361 SCIPdebugMsg(scip, " product expression %p has been considered for the first time\n", (void*)prodexpr);
4437 SCIP_CALL( SCIPcreateExprSum(scip, newexpr, 2, sum_children, sum_coefs, -1.0, exprownerCreate, (void*)conshdlr) );
4454 SCIP_CALL( getBinaryProductExprDo(scip, conshdlr, prodexpr, newexpr, naddconss, conshdlrdata->reformbinprodsand) );
4460 SCIP_CALL( getBinaryProductExprDo(scip, conshdlr, prodexpr, newexpr, naddconss, conshdlrdata->reformbinprodsand) );
4476 SCIP_HASHMAP* exprmap, /**< map to remember generated variables for visited product expressions */
4478 int* naddconss, /**< pointer to update the total number of added constraints (might be NULL) */
4479 int* nchgcoefs /**< pointer to update the total number of changed coefficients (might be NULL) */
4500 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
4511 /* try to factorize variables in a sum expression that contains several products of binary variables */
4514 SCIP_CALL( getFactorizedBinaryQuadraticExpr(scip, conshdlr, cons, childexpr, conshdlrdata->reformbinprodsfac, &newexpr, naddconss) );
4520 SCIP_CALL( getBinaryProductExpr(scip, conshdlr, exprmap, childexpr, &newexpr, naddconss, nchgcoefs) );
4530 /* note that the expression has been captured by getBinaryProductExpr and SCIPreplaceExprChild */
4544 * Each term \f$x_i x_j\f$ is reformulated with the help of an extra (implicit integer) variable \f$z_{ij}\f$ in {0,1}:
4549 * Before reformulating \f$x_i x_j\f$ in this way, it is checked whether there is a clique that contains \f$x_i\f$ and \f$x_j\f$.
4557 * The reformulation using \f$z_{ij}\f$ or the cliques is implemented in getBinaryProductExpr().
4559 * Introducing too many extra variables and constraints can have a negative impact on the performance (e.g., due to
4560 * slow probing). For this reason, it is checked in getFactorizedBinaryQuadraticExpr() whether \f$\sum_{i,j} Q_{ij} x_i x_j\f$
4561 * contains large (≥ `reformbinprodsfac` parameter) lower sums of the form \f$x_i \sum_j Q_{ij} x_j\f$.
4571 * We mark \f$w_i\f$ to be implicit integer if all \f$Q_{ij}\f$ are integer. After each replacement of a lower sum, it
4572 * is checked whether there are enough terms left to factorize other binary variables. Lower sums with a larger number
4582 int* nchgcoefs /**< pointer to store the total number of changed coefficients (might be NULL) */
4623 SCIP_CALL( getFactorizedBinaryQuadraticExpr(scip, conshdlr, conss[c], consdata->expr, conshdlrdata->reformbinprodsfac, &newexpr, naddconss) );
4637 SCIP_CALL( replaceBinaryProducts(scip, conshdlr, conss[c], exprmap, it, naddconss, nchgcoefs) );
4649 * Let \f$n_+\f$ the number of positive coefficients \f$c_i\f$ and \f$n_-\f$ be the number of negative coefficients.
4681 /* handle special case when constraint is l <= -f(x) <= r and f(x) not a sum: simplfy ensures f is not a sum */
4717 SCIP_CALL( SCIPcreateExprSum(scip, &expr, nchildren, SCIPexprGetChildren(consdata->expr), newcoefs, -constant, exprownerCreate, (void*)conshdlr) );
4764 /* if root expression is sum, then forbid multiaggregation only for variables that are not in linear terms of sum,
4779 for( expr = SCIPexpriterRestartDFS(it, child); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
4788 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
4810 SCIP_PRESOLTIMING presoltiming, /**< presolve timing (SCIP_PRESOLTIMING_ALWAYS if not in presolving) */
4840 /* set havechange to TRUE in the first call of canonicalize; otherwise we might not replace common subexpressions */
4843 /* free nonlinear handlers information from expressions */ /* TODO can skip this in first presolve round */
4898 /* call this function before simplification because expressions might not be simplified after reformulating
4899 * binary products; the detection of some nonlinear handlers might assume that expressions are simplified
4901 SCIP_CALL( presolveBinaryProducts(scip, conshdlr, conss, nconss, &tmpnaddconss, &tmpnchgcoefs) );
4926 SCIP_CALL( SCIPsimplifyExpr(scip, consdata->expr, &simplified, &changed, infeasible, exprownerCreate, (void*)conshdlr) );
4932 /* If root expression changed, then we need to take care updating the locks as well (the consdata is the one holding consdata->expr "as a child").
4933 * If root expression did not change, some subexpression may still have changed, but the locks were taking care of in the corresponding SCIPreplaceExprChild() call.
4962 /* handle constant root expression; either the problem is infeasible or the constraint is redundant */
4966 if( (!SCIPisInfinity(scip, -consdata->lhs) && SCIPisFeasNegative(scip, value - consdata->lhs)) ||
4969 SCIPdebugMsg(scip, "<%s> with constant expression found infeasible\n", SCIPconsGetName(conss[i]));
5008 /* TODO this is a possibly expensive way to update the variable expressions stored inside an expression which might have
5009 * been changed after simplification; now we completely recollect all variable expression and variable events
5012 /* Each variable stores the constraints for which it catched varbound events sorted by the constraint index.
5013 * Thus, for performance reasons, it is better to call dropVarEvents in descending order of constraint index.
5039 * a multiaggregation of a nonlinear variable can yield to a large increase in expressions due to
5132 SCIPconsGetName(conss[c]), consdata->rhs, imgconsdata->lhs, SCIPconsGetName(conss[idx]), imgconsdata->rhs);
5135 if( !updatelocks[idx] && ((SCIPisInfinity(scip, -imgconsdata->lhs) && !SCIPisInfinity(scip, -consdata->lhs))
5206 * (actually some assert complains if trying SCIPisRelEQ if both bounds are at different infinity)
5229 * Checks whether the activity of constraint functions is a subset of the constraint sides (relaxed by feastol).
5230 * To compute the activity, we use forwardPropExpr(), but relax variable bounds by feastol, because solutions to be checked
5232 * This is the main reason why the redundancy check is not done in propConss(), which relaxes variable bounds by epsilon only.
5236 * @todo it would be sufficient to check constraints for which we know that they are not currently violated by a valid solution
5238 * @note This could should not run during solving, because the forwardProp takes the bounds of auxiliary variables into account.
5239 * For the root expression, these bounds are already set to the constraint sides, so that the activity of every expression
5275 * we do this here to trigger a reevaluation of all variable bounds, since we will relax variable bounds
5296 /* handle constant expressions separately: either the problem is infeasible or the constraint is redundant */
5304 SCIPdebugMsg(scip, "constant constraint <%s> is infeasible: %g in [%g,%g] ", SCIPconsGetName(conss[i]), value, consdata->lhs, consdata->rhs);
5310 SCIPdebugMsg(scip, "constant constraint <%s> is redundant: %g in [%g,%g] ", SCIPconsGetName(conss[i]), value, consdata->lhs, consdata->rhs);
5318 /* handle variable expressions separately: tighten variable bounds to constraint sides, then remove constraint (now redundant) */
5327 SCIPdebugMsg(scip, "variable constraint <%s> can be made redundant: <%s>[%g,%g] in [%g,%g]\n", SCIPconsGetName(conss[i]), SCIPvarGetName(var), SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), consdata->lhs, consdata->rhs);
5360 * we relax variable bounds by feastol here, as solutions that are checked later can also violate
5362 * (relaxing fixed variables seems to be too much, but they would be removed by presolve soon anyway)
5368 assert(*cutoff || !SCIPintervalIsEmpty(SCIP_INTERVAL_INFINITY, SCIPexprGetActivity(consdata->expr)));
5381 * we could accept every solution that violates constraints up to feastol as redundant, so this is the most permissive we can be
5384 SCIPisInfinity(scip, -consdata->lhs) ? -SCIP_INTERVAL_INFINITY : consdata->lhs - SCIPfeastol(scip),
5385 SCIPisInfinity(scip, consdata->rhs) ? SCIP_INTERVAL_INFINITY : consdata->rhs + SCIPfeastol(scip));
5389 SCIPdebugMsg(scip, " -> redundant: activity [%g,%g] within sides [%g,%g]\n", activity.inf, activity.sup, consdata->lhs, consdata->rhs);
5397 SCIPdebugMsg(scip, " -> not redundant: activity [%g,%g] not within sides [%g,%g]\n", activity.inf, activity.sup, consdata->lhs, consdata->rhs);
5401 /* make sure all activities are reevaluated again, since we relaxed bounds in a different way */
5410/** tries to automatically convert a nonlinear constraint into a more specific and more specialized constraint */
5418 int* naddconss /**< buffer to increase with number of additional constraints created during upgrade */
5451 SCIPdebugMsg(scip, "upgrading nonlinear constraint <%s> (up to %d upgrade methods): ", SCIPconsGetName(cons), conshdlrdata->nconsupgrades);
5465 SCIP_CALL( conshdlrdata->consupgrades[i]->consupgd(scip, cons, consdata->nvarexprs, &nupgdconss_, upgdconss, upgdconsssize) );
5474 SCIP_CALL( conshdlrdata->consupgrades[i]->consupgd(scip, cons, consdata->nvarexprs, &nupgdconss_, upgdconss, upgdconsssize) );
5496 /* count the first upgrade constraint as constraint upgrade and the remaining ones as added constraints */
5514/** returns whether the variable of a given variable expression is a candidate for presolveSingleLockedVars(), i.e.,
5515 * the variable is only contained in a single nonlinear constraint, has no objective coefficient, has finite
5538 && !SCIPisInfinity(scip, -SCIPvarGetLbGlobal(var)) && !SCIPisInfinity(scip, SCIPvarGetUbGlobal(var))
5543/** removes all variable expressions that are contained in a given expression from a hash map */
5554 for( e = SCIPexpriterRestartDFS(it, expr); !SCIPexpriterIsEnd(it); e = SCIPexpriterGetNext(it) )
5565/** presolving method to fix a variable \f$x_i\f$ to one of its bounds if the variable is only contained in a single
5571 * @todo the same reduction can be applied if g(x) is not concave, but monotone in \f$x_i\f$ for g(x) ≤ rhs
5572 * @todo extend this to cases where a variable can appear in a monomial with an exponent, essentially relax
5573 * g(x) to \f$\sum_i [a_i,b_i] x^{p_i}\f$ for a single variable \f$x\f$ and try to conclude montonicity or convexity/concavity
5574 * on this (probably have one or two flags per variable and update this whenever another \f$x^{p_i}\f$ is found)
5638 SCIPdebugMsg(scip, "found %d single locked variables for constraint %s\n", nsinglelocked, SCIPconsGetName(cons));
5667 /* consider products prod_j f_j(x); ignore f_j(x) if it is a single variable, otherwise iterate through the
5685 /* fixing a variable x to one of its bounds is only valid for ... +x^p >= lhs or ... -x^p <= rhs if p = 2k
5697 if( !valid || !SCIPisExprVar(scip, grandchild) || (hasrhs && coef > 0.0) || (haslhs && coef < 0.0) )
5718 /* fix variable to one of its bounds by either changing its variable type or adding a disjunction constraint */
5733 SCIPdebugMsg(scip, "found single locked variable %s in [%g,%g] that can be fixed to one of its bounds\n",
5737 if( conshdlrdata->checkvarlocks == 't' && SCIPisEQ(scip, SCIPvarGetLbGlobal(var), 0.0) && SCIPisEQ(scip, SCIPvarGetUbGlobal(var), 1.0) )
5745 SCIPdebugMsg(scip, "detect infeasibility after changing variable type of <%s>\n", SCIPvarGetName(var));
5750 else if( hasbounddisj && !SCIPisInfinity(scip, -SCIPvarGetLbGlobal(var)) && !SCIPisInfinity(scip, SCIPvarGetUbGlobal(var)) )
5763 SCIP_CALL( SCIPcreateConsBounddisjunction(scip, &newcons, name, 2, vars, boundtypes, bounds, TRUE, TRUE,
5779/** presolving method to check if there is a single linear continuous variable that can be made implicit integer */
5854 if( SCIPisIntegral(scip, (consdata->lhs - SCIPgetConstantExprSum(consdata->expr)) / candcoef) )
5864 /* check whether all other coefficients are integral when diving by candcoef and all other children are integral */
5897 /* mark expression as being integral (as would be done by expr_var.c in the next round of updating integrality info) */
5938 SCIPerrorMessage("it is not possible to create auxiliary variables during stage=%d\n", SCIPgetStage(scip));
5946 /* it doesn't harm much to have an auxvar for a constant, as this can be handled well by the default hdlr,
5948 * if we find situations where we need to have an auxvar for a constant, then remove this assert
5953 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "auxvar_%s_%d", SCIPexprhdlrGetName(SCIPexprGetHdlr(expr)), conshdlrdata->auxvarid);
5959 /* get activity of expression to initialize variable bounds, if something valid is available (evalActivity was called in initSepa) */
5963 /* we cannot handle a domain error here at the moment, but it seems unlikely that it could occur
5964 * if it appear, then we could change code to handle this properly, but for now we just ensure that we continue correctly
5976 /* if root node, then activity is globally valid, so use it to initialize the global bounds of the auxvar
5977 * otherwise, we create var without bounds here and use activity to set local bounds below (needs to be after adding var)
5981 SCIP_CALL( SCIPcreateVarBasic(scip, &ownerdata->auxvar, name, MAX(-SCIPinfinity(scip), activity.inf), MIN(SCIPinfinity(scip), activity.sup), 0.0, vartype) );
5985 SCIP_CALL( SCIPcreateVarBasic(scip, &ownerdata->auxvar, name, -SCIPinfinity(scip), SCIPinfinity(scip), 0.0, vartype) );
5989 * this prevents SCIP to create linear constraints from cuts or conflicts that contain auxiliary variables,
5996 SCIPdebugMsg(scip, "added auxiliary variable <%s> [%g,%g] for expression %p\n", SCIPvarGetName(ownerdata->auxvar), SCIPvarGetLbGlobal(ownerdata->auxvar), SCIPvarGetUbGlobal(ownerdata->auxvar), (void*)expr);
6083 if( debugsol != NULL ) /* it can be compiled WITH_DEBUG_SOLUTION, but still no solution given */
6085 /* evaluate expression in debug solution, so we can set the solution value of created auxiliary variables
6096 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
6113 SCIPdebugMsg(scip, "infeasibility detected while tightening auxvar lb (%g) using lhs of constraint (%g)\n", SCIPvarGetLbLocal(auxvar), consdata->lhs);
6120 SCIPdebugMsg(scip, "infeasibility detected while tightening auxvar ub (%g) using rhs of constraint (%g)\n", SCIPvarGetUbLocal(auxvar), consdata->rhs);
6126 /* now run a special version of reverseprop to ensure that important bound information (like function domains) is stored in bounds of auxvars,
6127 * since sometimes they cannot be recovered from activity evaluation even after some rounds of domain propagation
6129 * log(w) implies w >= 0, but we may not be able to derive bounds on x and y such that w >= 0 is ensured)
6137 * but at the moment, initSepa() is called from INITLP anyway, so we have SCIPconsIsInitial(conss[c]) anyway
6149 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it) && !*infeasible; expr = SCIPexpriterGetNext(it) )
6166 /* skip if initsepa was already called, e.g., because this expression is also part of a constraint
6188 SCIPdebugMsg(scip, "initsepa under=%u over=%u for expression %p\n", underestimate, overestimate, (void*)expr);
6198 SCIPdebugMsg(scip, "detect infeasibility for constraint %s during initsepa()\n", SCIPconsGetName(conss[c]));
6212 * Currently returns whether depth of node in B&B tree is at least value of constraints/nonlinear/branching/aux parameter.
6230/** gets weight of variable when splitting violation score onto several variables in an expression */
6249 case 'm' : /* midness of solution: 0.5 if in middle of domain, 0.05 if close to lower or upper bound */
6252 weight = MIN(SCIPgetSolVal(scip, sol, var) - SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var) - SCIPgetSolVal(scip, sol, var)) / (SCIPvarGetUbLocal(var) - SCIPvarGetLbLocal(var));
6259 case 'l' : /* logarithmic domain width: log-scale if width is below 0.1 or above 10, otherwise actual width */
6282 * If no unbounded variables, then parameter constraints/nonlinear/branching/violsplit decides weight for each var.
6309 SCIPvarGetName(SCIPgetExprAuxVarNonlinear(exprs[0])), SCIPvarGetLbLocal(SCIPgetExprAuxVarNonlinear(exprs[0])), SCIPvarGetUbLocal(SCIPgetExprAuxVarNonlinear(exprs[0])));
6321 if( SCIPisInfinity(scip, -SCIPvarGetLbLocal(var)) || SCIPisInfinity(scip, SCIPvarGetUbLocal(var)) )
6335 if( SCIPisInfinity(scip, -SCIPvarGetLbLocal(var)) || SCIPisInfinity(scip, SCIPvarGetUbLocal(var)) )
6350 SCIPdebugMsg(scip, "add score %g (%g%% of %g) to <%s>[%g,%g]\n", violscore * weight / weightsum,
6365 * Iterates over the successors of `expr` to find expressions that are associated with one of the given auxiliary variables.
6366 * Adds violation-branching scores to all found exprs by means of SCIPaddExprsViolScoreNonlinear().
6412 SCIPdebugMsg(scip, "adding branchingscore for expr %p with auxvar <%s>\n", (void*)expr, SCIPvarGetName(auxvar));
6484/** registers all variables in violated constraints with branching scores as external branching candidates */
6526 /* if not branching on auxvars, then violation-branching scores will have been added to original variables
6551 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " add variable <%s>[%g,%g] as extern branching candidate with score %g\n", SCIPvarGetName(var), lb, ub, violscore); )
6557 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " skip fixed variable <%s>[%.15g,%.15g]\n", SCIPvarGetName(var), lb, ub); )
6560 /* invalidate violscore-tag, so that we do not register variables that appear in multiple constraints
6574 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
6580 /* if some nlhdlr added a branching score for this expression, then it considered this expression as a
6581 * variable, so this expression should either be an original variable or have an auxiliary variable
6592 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " add variable <%s>[%g,%g] as extern branching candidate with score %g\n", SCIPvarGetName(var), lb, ub, violscore); )
6599 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " skip fixed variable <%s>[%.15g,%.15g]\n", SCIPvarGetName(var), lb, ub); )
6614 * Collects those expressions that have a branching score assigned and stores the score in the auxviol field of the
6617 * If branching on aux-variables is allowed, then iterate through expressions of violated constraints, otherwise iterate
6629 BRANCHCAND* cands, /**< array where to store candidates, must be at least SCIPgetNVars() long */
6686 /* if not branching on auxvars, then violation-branching scores will be available for original variables
6688 * unfortunately, we don't know anymore which constraint contributed the violation-branching score to the
6709 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " skip fixed variable <%s>[%.15g,%.15g]\n", SCIPvarGetName(var), lb, ub); )
6719 /* invalidate violscore-tag, so that we do not register variables that appear in multiple constraints
6730 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
6735 /* if some nlhdlr added a branching score for this expression, then it considered this expression as
6736 * variables, so this expression should either be an original variable or have an auxiliary variable
6747 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " skip fixed variable <%s>[%.15g,%.15g]\n", SCIPvarGetName(var), lb, ub); )
6771/** computes a branching score for a variable that reflects how important branching on this variable would be for
6779 * Assume that a_i'x + b_i <= z_i was derived from some nonlinear constraint f(x) <= z and drop index i.
6781 * have contributed lambda*(f(x) - z) to the Lagrangian function (though the value of z would be different).
6784 * is a value that can be used to quantity how much improving the estimator a'x + b <= z could change the dual bound.
6788 * To score a variable, we then sum the values lambda_i * (f(x) - a_i'x + b_i) for all rows in which the variable appears.
6791 * TODO if we branch only on original variables, we neglect here estimators that are build on auxiliary variables;
6792 * these are affected by the bounds on original variables indirectly (through forward-propagation)
6794 * TODO if we branch also on auxiliary variables, then separating z from the x-variables in the row a'x+b <= z should happen;
6795 * in effect, we should go from the row to the expression for which it was generated and consider only variables that
6829 nrows = SCIPcolGetNLPNonz(col); /* TODO there is a big warning on when not to use this method; is the check for SCIPcolIsInLP sufficient? */
6844 /* rows from cuts that may be replaced by tighter ones after branching are the interesting ones
6846 * so not check for local now, but trust that estimators that do not improve after branching will have an estimategap of 0
6863 /* SCIPinfoMessage(scip, enfologfile, " row <%s> contributes %g*|%g|: ", SCIProwGetName(rows[r]), estimategap, SCIProwGetDualsol(rows[r]));
6877 * For each candidate in the array, compute and store the various branching scores (violation, pseudo-costs, vartype, domainwidth).
6878 * For pseudo-costs, it's possible that the score is not available, in which case cands[c].pscost will be set to SCIP_INVALID.
6882 * Then compute for each candidate a "weighted" score using the weights as specified by parameters
6883 * and the scores as previously computed, but scale each score to be in [0,1], i.e., divide each score by the maximum
6885 * Further divide by the sum of all weights where a score was available (even if the score was 0).
6889 * - Let variable y have violation-score 12.0 but no pseudo-cost-score (because it hasn't yet been branched on sufficiently often).
6891 * - Then the weighted scores for x will be (2.0 * 10.0/12.0 + 3.0 * 5.0/5.0) / (2.0 + 3.0) = 0.9333.
6900 SCIP_Bool considerfracnl, /**< whether to consider fractionality for spatial branching candidates */
6927 if( conshdlrdata->branchfracweight > 0.0 && SCIPvarGetType(cands[c].var) <= SCIP_VARTYPE_INTEGER )
6929 /* when collecting for branching on fractionality (cands[c].expr == NULL), only fractional integer variables
6930 * should appear as candidates here and their fractionality should have been recorded in branchingIntegralOrNonlinear
6936 /* for an integer variable that is subject to spatial branching, we also record the fractionality (but separately from auxviol)
6937 * if considerfracnl is TRUE; this way, we can give preference to fractional integer nonlinear variables
7000 if( SCIPisInfinity(scip, -SCIPvarGetLbLocal(var)) || SCIPisInfinity(scip, SCIPvarGetUbLocal(var)) )
7010 * this should be consistent with the way how pseudo-costs are updated in the core, which is decided by
7011 * branching/lpgainnormalize for continuous variables and move in LP-value for non-continuous variables
7020 /* branch_relpscost deems pscosts as reliable, if the pseudo-count is at least something between 1 and 4
7025 if( SCIPgetVarPseudocostCountCurrentRun(scip, var, SCIP_BRANCHDIR_DOWNWARDS) >= conshdlrdata->branchpscostreliable )
7030 pscostdown = SCIPgetVarPseudocostVal(scip, var, -(SCIPvarGetUbLocal(var) - SCIPadjustedVarLb(scip, var, brpoint)));
7033 pscostdown = SCIPgetVarPseudocostVal(scip, var, -(SCIPadjustedVarUb(scip, var, brpoint) - SCIPvarGetLbLocal(var)));
7041 pscostdown = SCIPgetVarPseudocostVal(scip, var, -(SCIPgetSolVal(scip, sol, var) - SCIPadjustedVarUb(scip, var, brpoint)));
7051 if( SCIPgetVarPseudocostCountCurrentRun(scip, var, SCIP_BRANCHDIR_UPWARDS) >= conshdlrdata->branchpscostreliable )
7056 pscostup = SCIPgetVarPseudocostVal(scip, var, SCIPadjustedVarUb(scip, var, brpoint) - SCIPvarGetLbLocal(var));
7059 pscostup = SCIPgetVarPseudocostVal(scip, var, SCIPvarGetUbLocal(var) - SCIPadjustedVarLb(scip, var, brpoint));
7067 pscostup = SCIPgetVarPseudocostVal(scip, var, SCIPadjustedVarLb(scip, var, brpoint) - SCIPgetSolVal(scip, sol, var) );
7077 /* TODO if both are valid, we get pscostdown*pscostup, but does this compare well with vars were only pscostdown or pscostup is used?
7087 cands[c].pscost = SCIPgetBranchScore(scip, NULL, pscostdown, pscostup); /* pass NULL for var to avoid multiplication with branch-factor */
7099 * i.e., set solvaldelta to the (negated) difference between variable value and rounded down value for pscostdown
7102 if( SCIPgetVarPseudocostCountCurrentRun(scip, var, SCIP_BRANCHDIR_DOWNWARDS) >= conshdlrdata->branchpscostreliable )
7107 if( SCIPgetVarPseudocostCountCurrentRun(scip, var, SCIP_BRANCHDIR_UPWARDS) >= conshdlrdata->branchpscostreliable )
7120 cands[c].pscost = SCIPgetBranchScore(scip, NULL, pscostdown, pscostup); /* pass NULL for var to avoid multiplication with branch-factor */
7157 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " scoring <%8s>[%7.1g,%7.1g]:(", SCIPvarGetName(cands[c].var), SCIPvarGetLbLocal(cands[c].var), SCIPvarGetUbLocal(cands[c].var)); )
7167 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " %+g*%7.2g(viol)", conshdlrdata->branchviolweight, cands[c].auxviol / maxscore.auxviol); )
7172 cands[c].fractionality += conshdlrdata->branchfracweight * cands[c].fractionality / maxscore.fractionality;
7175 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " %+g*%6.2g(frac)", conshdlrdata->branchfracweight, cands[c].fractionality / maxscore.fractionality); )
7183 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " %+g*%7.2g(domain)", conshdlrdata->branchdomainweight, cands[c].domain / maxscore.domain); )
7191 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " %+g*%7.2g(dual)", conshdlrdata->branchdualweight, cands[c].dual / maxscore.dual); )
7202 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " %+g*%7.2g(pscost)", conshdlrdata->branchpscostweight, cands[c].pscost / maxscore.pscost); )
7216 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " %+g*%6.2g(vartype)", conshdlrdata->branchvartypeweight, cands[c].vartype / maxscore.vartype); )
7229 * if variables are the same, then use whether variable was added due to nonlinearity or fractionality
7252 SCIP_Bool considerfracnl, /**< whether to consider fractionality for spatial branching candidates */
7286 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " %d branching candidates <%s>(%g)...<%s>(%g)\n", ncands,
7290 /* binary search to find first low-scored (score below branchhighscorefactor * maximal-score) candidate */
7319 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " %d branching candidates <%s>(%g)...<%s>(%g) after removing low scores\n", ncands,
7328 SCIP_CALL( SCIPcreateRandom(scip, &conshdlrdata->branchrandnumgen, BRANCH_RANDNUMINITSEED, TRUE) );
7384 SCIP_CALL( collectBranchingCandidates(scip, conshdlr, conss, nconss, maxrelconsviol, sol, soltag, cands, &ncands) );
7386 /* if no unfixed branching candidate in all violated constraint, then it's probably numerics that prevented us to separate or decide a cutoff
7393 * but if we know there will be no fractional integer variables, then we can shortcut and turn this off
7395 SCIP_CALL( selectBranchingCandidate(scip, conshdlr, cands, ncands, sol == NULL && SCIPgetNLPBranchCands(scip) > 0, sol, &selected) );
7399 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " branching on variable <%s>[%g,%g]\n", SCIPvarGetName(selected->var),
7402 SCIP_CALL( SCIPbranchVarVal(scip, selected->var, SCIPgetBranchingPoint(scip, selected->var, SCIP_INVALID), &downchild, &eqchild,
7419 * Otherwise, calls the estimate callback, if available, and constructs a cut from the estimator.
7432 SCIP_Real auxvalue, /**< current value of expression w.r.t. auxiliary variables as obtained from EVALAUX */
7434 SCIP_Bool separated, /**< whether another nonlinear handler already added a cut for this expression */
7437 SCIP_Bool branchcandonly, /**< only collect branching candidates, do not separate or propagate */
7444 SCIP_CALL( SCIPnlhdlrEnfo(scip, conshdlr, cons, nlhdlr, expr, nlhdlrexprdata, sol, auxvalue, overestimate,
7447 /* if it was not running (e.g., because it was not available) or did not find anything, then try with estimator callback */
7456 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " enfo of nlhdlr <%s> did not succeed with result %d\n", SCIPnlhdlrGetName(nlhdlr), *result); )
7478 SCIP_CALL( SCIPnlhdlrEstimate(scip, conshdlr, nlhdlr, expr, nlhdlrexprdata, sol, auxvalue, overestimate,
7479 SCIPgetSolVal(scip, sol, auxvar), inenforcement, rowpreps, &sepasuccess, &branchscoresuccess) );
7497 assert(SCIProwprepGetSidetype(rowprep) == (overestimate ? SCIP_SIDETYPE_LEFT : SCIP_SIDETYPE_RIGHT));
7505 * (branching scores that could be added here are to deal with bad numerics of cuts; we skip these if branchcandonly)
7507 SCIP_CALL( SCIPprocessRowprepNonlinear(scip, nlhdlr, cons, expr, rowprep, overestimate, auxvar,
7516 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " estimate of nlhdlr %s added branching candidates\n", SCIPnlhdlrGetName(nlhdlr)); )
7526/** tries to enforce violation in an expression by separation, bound tightening, or finding a branching candidate
7540 SCIP_Bool branchcandonly, /**< only collect branching candidates, do not separate or propagate */
7561 assert(ownerdata->auxvar != NULL); /* there must be a variable attached to the expression in order to construct a cut here */
7580 /* check aux-violation w.r.t. each nonlinear handlers and try to enforce when there is a decent violation */
7589 /* if looking for branching candidates only, then skip nlhdlr that wouldn't created branching candidates */
7590 if( branchcandonly && !ownerdata->enfos[e]->sepaaboveusesactivity && !ownerdata->enfos[e]->sepabelowusesactivity )
7597 SCIP_CALL( SCIPnlhdlrEvalaux(scip, nlhdlr, expr, ownerdata->enfos[e]->nlhdlrexprdata, &ownerdata->enfos[e]->auxvalue, sol) );
7601 SCIPinfoMessage(scip, enfologfile, " (%p): evalvalue %.15g auxvarvalue %.15g [%.15g,%.15g], nlhdlr <%s> " \
7602 "auxvalue: %.15g\n", (void*)expr, SCIPexprGetEvalValue(expr), SCIPgetSolVal(scip, sol, ownerdata->auxvar),
7603 SCIPexprGetActivity(expr).inf, SCIPexprGetActivity(expr).sup, SCIPnlhdlrGetName(nlhdlr), ownerdata->enfos[e]->auxvalue);
7607 * then compare auxvalue with constraint sides instead of auxvarvalue, as the former is what actually matters
7608 * that is, if auxvalue is good enough for the constraint to be satisfied, but when looking at evalvalue we see
7609 * the the constraint is violated, then some of the auxvars that nlhdlr uses is not having a good enough value,
7614 auxviol = getExprAbsAuxViolation(scip, expr, ownerdata->enfos[e]->auxvalue, sol, &auxunderestimate, &auxoverestimate);
7617 /* if aux-violation is much smaller than orig-violation, then better enforce further down in the expression first */
7620 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " skip enforce using nlhdlr <%s> for expr %p (%s) with " \
7621 "auxviolation %g << origviolation %g under:%d over:%d\n", SCIPnlhdlrGetName(nlhdlr), (void*)expr,
7624 /* TODO should we do expr->lastenforced = conshdlrdata->enforound even though we haven't enforced, but only decided not to enforce? */
7628 /* if aux-violation is small (below feastol) and we look only for strong cuts, then it's unlikely to give a strong cut, so skip it */
7631 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " skip enforce using nlhdlr <%s> for expr %p (%s) with tiny " \
7632 "auxviolation %g under:%d over:%d\n", SCIPnlhdlrGetName(nlhdlr), (void*)expr, SCIPexprhdlrGetName(SCIPexprGetHdlr(expr)), auxviol,
7635 /* TODO should we do expr->lastenforced = conshdlrdata->enforound even though we haven't enforced, but only decided not to enforce? */
7639 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " enforce using nlhdlr <%s> for expr %p (%s) with auxviolation " \
7640 "%g origviolation %g under:%d over:%d weak:%d\n", SCIPnlhdlrGetName(nlhdlr), (void*)expr, SCIPexprhdlrGetName(SCIPexprGetHdlr(expr)),
7643 /* if we want to overestimate and violation w.r.t. auxiliary variables is also present on this side and nlhdlr
7646 if( overestimate && auxoverestimate && (ownerdata->enfos[e]->nlhdlrparticipation & SCIP_NLHDLR_METHOD_SEPAABOVE) != 0 && (!branchcandonly || ownerdata->enfos[e]->sepaaboveusesactivity) )
7650 SCIP_CALL( enforceExprNlhdlr(scip, conshdlr, cons, nlhdlr, expr, ownerdata->enfos[e]->nlhdlrexprdata, sol,
7651 ownerdata->enfos[e]->auxvalue, TRUE, *result == SCIP_SEPARATED, allowweakcuts, inenforcement, branchcandonly, &hdlrresult) );
7663 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " nlhdlr <%s> separating the current solution by cut\n", SCIPnlhdlrGetName(nlhdlr)); )
7672 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " nlhdlr <%s> separating the current solution by boundchange\n", SCIPnlhdlrGetName(nlhdlr)); )
7680 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " nlhdlr <%s> added branching candidate\n", SCIPnlhdlrGetName(nlhdlr)); )
7684 assert(*result == SCIP_DIDNOTFIND || *result == SCIP_SEPARATED || *result == SCIP_REDUCEDDOM || *result == SCIP_BRANCHED);
7691 /* if we want to underestimate and violation w.r.t. auxiliary variables is also present on this side and nlhdlr
7694 if( underestimate && auxunderestimate && (ownerdata->enfos[e]->nlhdlrparticipation & SCIP_NLHDLR_METHOD_SEPABELOW) != 0 && (!branchcandonly || ownerdata->enfos[e]->sepabelowusesactivity) )
7698 SCIP_CALL( enforceExprNlhdlr(scip, conshdlr, cons, nlhdlr, expr, ownerdata->enfos[e]->nlhdlrexprdata, sol,
7699 ownerdata->enfos[e]->auxvalue, FALSE, *result == SCIP_SEPARATED, allowweakcuts, inenforcement, branchcandonly, &hdlrresult) );
7711 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " nlhdlr <%s> separating the current solution by cut\n", SCIPnlhdlrGetName(nlhdlr)); )
7720 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " nlhdlr <%s> separating the current solution by boundchange\n", SCIPnlhdlrGetName(nlhdlr)); )
7728 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " nlhdlr <%s> added branching candidate\n", SCIPnlhdlrGetName(nlhdlr)); )
7732 assert(*result == SCIP_DIDNOTFIND || *result == SCIP_SEPARATED || *result == SCIP_REDUCEDDOM || *result == SCIP_BRANCHED);
7754 SCIP_Bool branchcandonly, /**< only collect branching candidates, do not separate or propagate */
7780 /* If there are boundchanges that haven't been propagated to activities yet, then do this now and update bounds of
7783 * For now, update bounds of auxiliary variables only if called from enforcement, since updating auxvar bounds in
7784 * separation doesn't seem to be right (it would be ok if the boundchange cuts off the current LP solution by a
7785 * nice amount, but if not, we may just add a boundchange that doesn't change the dual bound much and could
7791 SCIP_CALL( forwardPropExpr(scip, conshdlr, consdata->expr, inenforcement, &infeasible, &ntightenings) );
7802 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
7826 SCIP_CALL( enforceExpr(scip, conshdlr, cons, expr, sol, soltag, allowweakcuts, inenforcement, branchcandonly, &resultexpr) );
7828 /* if not enforced, then we must not have found a cutoff, cut, domain reduction, or branchscore */
7829 assert((ownerdata->lastenforced == conshdlrdata->enforound) == (resultexpr != SCIP_DIDNOTFIND));
7854 * If branchcandonly=TRUE, then do not separate or propagate, but register branching scores only.
7860 * - SCIP_REDUCEDDOM, if a domain reduction has been found or a variable got fixed (in an attempt to branch on it),
7861 * - SCIP_BRANCHED, if branching has been done (if branchcandonly=TRUE, then collected branching candidates only),
7873 SCIP_Bool branchcandonly, /**< only collect branching candidates, do not separate or propagate */
7874 SCIP_Real maxrelconsviol, /**< largest scaled violation among all violated expr-constraints, only used if in enforcement */
7926 SCIPinfoMessage(scip, enfologfile, "\n with viol %g and point\n", getConsAbsViolation(conss[c]));
7936 SCIP_CALL( enforceConstraint(scip, conshdlr, conss[c], sol, soltag, it, FALSE, inenforcement, branchcandonly, result, &consenforced) );
7948 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " constraint <%s> could not be enforced, try again with weak "\
7951 SCIP_CALL( enforceConstraint(scip, conshdlr, conss[c], sol, soltag, it, TRUE, inenforcement, branchcandonly, result, &consenforced) );
7954 ++conshdlrdata->nweaksepa; /* TODO maybe this should not be counted per constraint, but per enforcement round? */
7968 /* having result set to branched here means only that we have branching candidates, we still need to do the actual
7978 assert(*result == SCIP_BRANCHED || *result == SCIP_REDUCEDDOM || *result == SCIP_INFEASIBLE || *result == SCIP_DIDNOTFIND);
7988 * The routine collects spatial branching candidates by a call to enforceConstraints(branchcandonly=TRUE)
7989 * and collectBranchingCandidates(). Then it adds fractional integer variables to the candidate list.
7990 * Variables that are candidate for both spatial branching and fractionality are considered as two separate candidates.
7991 * selectBranchingCandidate() then selects a variable for branching from the joined candidate list.
7992 * If the selected variable is a fractional integer one, then branchintegral=TRUE is returned, otherwise FALSE.
8003 SCIP_Bool* branchintegral, /**< buffer to store whether to branch on fractional integer variables first */
8029 SCIP_CALL( enforceConstraints(scip, conshdlr, conss, nconss, NULL, (SCIP_Longint)0, TRUE, TRUE, maxrelconsviol, &result) );
8044 /* we asked enforceConstraints() to collect branching candidates only, it shouldn't have separated or propagated */
8045 SCIPerrorMessage("Unexpected separation or propagation from enforceConstraints(branchcandonly = TRUE)\n");
8049 /* actually meaning that branching candidates were registered (the result for which we have gone through all this effort) */
8053 /* should not happen (enforceConstraints() returns this if external branching candidates were registered in branching(),
8062 SCIP_CALL( SCIPallocBufferArray(scip, &cands, SCIPgetNVars(scip) + SCIPgetNLPBranchCands(scip)) );
8063 SCIP_CALL( collectBranchingCandidates(scip, conshdlr, conss, nconss, maxrelconsviol, NULL, soltag, cands, &ncands) );
8068 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " adding %d fractional integer variables to branching candidates\n", nlpcands); )
8082 * to keep things separate, do not include fractionality of integer variables into scores of spatial branching candidates
8083 * the same variables appear among the candidates for branching on integrality, where its fractionality is considered
8090 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " fractional variable <%s> selected for branching; fall back to cons_integral\n", SCIPvarGetName(selected->var)); )
8102 * This decides whether we are still at a phase where we always want to branch on fractional integer variables if any (return TRUE),
8105 * This essentially checks whether the average pseudo cost count exceeds the value of parameter branchmixfractional.
8167 * if we updated pseudocost after branching on continuous variables, wouldn't this be incorrect? (#3637)
8169 if( SCIPgetAvgPseudocostCount(scip, SCIP_BRANCHDIR_DOWNWARDS) < conshdlrdata->branchmixfractional )
8171 if( SCIPgetAvgPseudocostCount(scip, SCIP_BRANCHDIR_UPWARDS) < conshdlrdata->branchmixfractional )
8174 /* we may have decent pseudocosts, so go for rule that chooses between fractional and spatial branching based on candidates */
8192 SCIP_Real* maxauxviol, /**< buffer to store maximal violation of auxiliaries (violation in "extended formulation") */
8225 if( !SCIPconsIsEnabled(conss[c]) || SCIPconsIsDeleted(conss[c]) || !SCIPconsIsSeparationEnabled(conss[c]) )
8239 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
8276 SCIPinfoMessage(scip, enfologfile, "var <%s>[%.15g,%.15g] = %.15g", SCIPvarGetName(var), auxvarlb, auxvarub, auxvarvalue);
8305 SCIPinfoMessage(scip, enfologfile, " (%p)[%.15g,%.15g] = %.15g\n", (void*)expr, SCIPexprGetActivity(expr).inf, SCIPexprGetActivity(expr).sup, SCIPexprGetEvalValue(expr));
8307 SCIPinfoMessage(scip, enfologfile, " auxvar <%s>[%.15g,%.15g] = %.15g", SCIPvarGetName(ownerdata->auxvar), auxvarlb, auxvarub, auxvarvalue);
8309 SCIPinfoMessage(scip, enfologfile, " auxvar %s expr violated by %g", violunder ? ">=" : "<=", origviol);
8311 SCIPinfoMessage(scip, enfologfile, " auxvar >= auxvar's lb violated by %g", auxvarlb - auxvarvalue);
8313 SCIPinfoMessage(scip, enfologfile, " auxvar <= auxvar's ub violated by %g", auxvarvalue - auxvarub);
8327 /* eval in auxvars is only defined for nlhdrs that separate; there might not even be auxvars otherwise */
8335 SCIP_CALL( SCIPnlhdlrEvalaux(scip, nlhdlr, expr, ownerdata->enfos[e]->nlhdlrexprdata, &ownerdata->enfos[e]->auxvalue, sol) );
8337 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " nlhdlr <%s> = %.15g", SCIPnlhdlrGetName(nlhdlr), ownerdata->enfos[e]->auxvalue); )
8339 auxviol = getExprAbsAuxViolation(scip, expr, ownerdata->enfos[e]->auxvalue, sol, &violunder, &violover);
8343 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " auxvar %s nlhdlr-expr violated by %g", violover ? "<=" : ">=", auxviol); )
8402 ENFOLOG( SCIPinfoMessage(scip, enfologfile, "node %lld: all expr-constraints feasible, skip enforcing\n",
8407 SCIP_CALL( analyzeViolation(scip, conss, nconss, sol, soltag, &maxabsconsviol, &maxrelconsviol,
8410 ENFOLOG( SCIPinfoMessage(scip, enfologfile, "node %lld: enforcing constraints with max conssviol=%e (rel=%e), "\
8412 SCIPnodeGetNumber(SCIPgetCurrentNode(scip)), maxabsconsviol, maxrelconsviol, minauxviol, maxauxviol,
8417 /* look at fractional and nonlinear branching candidates and decide whether to branch on fractional vars, first */
8422 SCIP_CALL( branchingIntegralOrNonlinear(scip, conshdlr, conss, nconss, soltag, maxrelconsviol, &branchintegral, &cutoff) );
8451 /* tighten the LP tolerance if violation in variables bounds is larger than aux-violation (max |expr - auxvar| over
8454 if( conshdlrdata->tightenlpfeastol && maxvarboundviol > maxauxviol && SCIPisPositive(scip, SCIPgetLPFeastol(scip)) &&
8457 SCIPsetLPFeastol(scip, MAX(SCIPepsilon(scip), MIN(maxvarboundviol / 2.0, SCIPgetLPFeastol(scip) / 2.0)));
8462 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " variable bound violation %g larger than auxiliary violation %g, "\
8468 /* tighten the LP tolerance if violation in auxiliaries is below LP feastol, as we could have problems to find a cut
8469 * with violation above LP tolerance (especially when auxviolation is below 10*eps = ROWPREP_SCALEUP_VIOLNONZERO in misc_rowprep.c)
8471 if( conshdlrdata->tightenlpfeastol && maxauxviol < SCIPgetLPFeastol(scip) && SCIPisPositive(scip, SCIPgetLPFeastol(scip)) && sol == NULL )
8478 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " auxiliary violation %g below LP feastol, reducing LP feastol to %g\n", maxauxviol, SCIPgetLPFeastol(scip)); )
8483 SCIP_CALL( enforceConstraints(scip, conshdlr, conss, nconss, sol, soltag, TRUE, FALSE, maxrelconsviol, result) );
8485 if( *result == SCIP_CUTOFF || *result == SCIP_SEPARATED || *result == SCIP_REDUCEDDOM || *result == SCIP_BRANCHED ||
8491 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " could not enforce violation %g in regular ways, LP feastol=%g, "\
8501 if( conshdlrdata->tightenlpfeastol && SCIPisPositive(scip, maxvarboundviol) && SCIPisPositive(scip, SCIPgetLPFeastol(scip)) && sol == NULL )
8503 SCIPsetLPFeastol(scip, MAX(SCIPepsilon(scip), MIN(maxvarboundviol / 2.0, SCIPgetLPFeastol(scip) / 2.0)));
8508 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " variable bounds are violated by more than eps, reduced LP "\
8519 * in the next enforcement round, we would then also allow even weaker cuts, as we want a minimal cut violation of LP's feastol
8520 * unfortunately, we do not know the current LP solution primal infeasibility, so sometimes this just repeats without effect
8522 * (this is similar to the "tighten the LP tolerance if violation in auxiliaries is below LP feastol..." case above, but applies
8525 SCIPsetLPFeastol(scip, MAX(SCIPepsilon(scip), MIN(maxauxviol / 2.0, SCIPgetLPFeastol(scip) / 10.0)));
8530 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " reduced LP feasibility tolerance to %g and hope\n", SCIPgetLPFeastol(scip)); )
8550 /* could not find branching candidates even when looking at minimal violated (>eps) expressions
8557 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " registered %d unfixed variables as branching candidates\n", nnotify); )
8566 * - bound tightening with all vars fixed should prove cutoff, but interval arithmetic overestimates and so the
8568 * - if tightenlpfeastol=FALSE, then the LP solution that we try to enforce here may just not be within bounds
8570 * - but if the LP solution is really within bounds and since variables are fixed, cutting off the node is actually
8573 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " enforcement with max. violation %g failed; cutting off node\n", maxabsconsviol); )
8576 /* it's only "desperate" if the LP solution does not coincide with variable fixings (should we use something tighter than epsilon here?) */
8608 if( !SCIPconsIsEnabled(conss[c]) || SCIPconsIsDeleted(conss[c]) || !SCIPconsIsSeparationEnabled(conss[c]) )
8621 ENFOLOG( SCIPinfoMessage(scip, enfologfile, "node %lld: skip separation of non-violated constraints\n", SCIPnodeGetNumber(SCIPgetCurrentNode(scip))); )
8625 ENFOLOG( SCIPinfoMessage(scip, enfologfile, "node %lld: separation\n", SCIPnodeGetNumber(SCIPgetCurrentNode(scip))); )
8628 SCIP_CALL( enforceConstraints(scip, conshdlr, conss, nconss, sol, soltag, FALSE, FALSE, SCIP_INVALID, result) );
8693 compvars = SCIPvarCompare(auxexpr1->auxvar, auxexpr2->auxvar); /* TODO can one of these be NULL? */
8732 found = SCIPsortedvecFindPtr((void**)term->aux.exprs, auxexprComp, auxexpr, term->nauxexprs, &pos);
8740 SCIP_CALL( SCIPensureBlockMemoryArray(scip, &term->aux.exprs, &term->auxexprssize, term->nauxexprs + 1) );
8762/** iterates through all expressions of all nonlinear constraints and adds the corresponding bilinear terms to the hash table */
8803 for( expr = SCIPexpriterRestartDFS(it, consdata->expr); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
8825 SCIP_CALL( SCIPinsertBilinearTermExistingNonlinear(scip, conshdlr, x, y, SCIPgetExprAuxVarNonlinear(expr),
8886 SCIP_CALL( SCIPensureBlockMemoryArray(scip, &conshdlrdata->bilinterms, &conshdlrdata->bilintermssize, conshdlrdata->nbilinterms + 1) );
8911 SCIP_CALL( SCIPhashtableCreate(&conshdlrdata->bilinhashtable, SCIPblkmem(scip), conshdlrdata->nbilinterms,
8917 /* insert the index of the bilinear term into the hash table; note that the index of the i-th element is (i+1)
8920 SCIP_CALL( SCIPhashtableInsert(conshdlrdata->bilinhashtable, (void*)(size_t)(*idx + 1)) ); /*lint !e571 !e776*/
8969 SCIPfreeBlockMemoryArray(scip, &(conshdlrdata->bilinterms[i].aux.exprs), conshdlrdata->bilinterms[i].auxexprssize);
9025 SCIPdebugMsg(scip, "Building LP for computing facets of convex envelope of vertex-polyhedral function\n");
9028 SCIP_CALL( SCIPlpiCreate(lp, SCIPgetMessagehdlr(scip), "facet finding LP", SCIP_OBJSEN_MINIMIZE) );
9048 /* an upper bound of 1.0 is implied by the last row, but I presume that LP solvers prefer unbounded variables */
9108/** the given facet might not be a valid under(over)estimator, because of numerics and bad fixings; we compute \f$
9109 * \max_{v \in V} f(v) - (\alpha v + \beta) \f$ (\f$\max_{v \in V} \alpha v + \beta - f(v) \f$) where \f$ V \f$ is the
9116 SCIP_Real* funvals, /**< array containing the evaluation of the function at all corners, length: 2^nvars */
9147 /* compute largest/smallest possible value of function, depending on whether we are over/under-estimating */
9181 /* compute largest/smallest possible value of function, depending on whether we are over/under-estimating */
9199/** computes a facet of the convex or concave envelope of a vertex polyhedral function by solving an LP */ /*lint -e{715}*/
9204 SCIP_Bool overestimate, /**< whether to compute facet of concave (TRUE) or convex (FALSE) envelope */
9209 SCIP_Real* funvals, /**< values of function in all corner points (w.r.t. nonfixed variables) */
9211 SCIP_Real targetvalue, /**< target value: no need to compute facet if value in xstar would be worse than this value */
9213 SCIP_Real* facetcoefs, /**< buffer to store coefficients of facet defining inequality; must be an zero'ed array of length at least nallvars */
9247 SCIP_CALL( SCIPcreateRandom(scip, &conshdlrdata->vp_randnumgen, VERTEXPOLY_RANDNUMINITSEED, TRUE) );
9295 /* explicitly handle solution which violate bounds of variables (this can happen because of tolerances) */
9331 /* we can stop the LP solve if will not meet the target value anyway, but only if xstar hasn't been perturbed */
9338 /* since we work with the dual of the LP, primal feastol determines how much we want the computed facet to be the best possible one */
9341 * if some ub-lb is small, we need higher accuracy, since below we divide coefs by ub-lb (we moved and scaled the box)
9344 SCIP_CALL( SCIPlpiSetRealpar(lp, SCIP_LPPAR_DUALFEASTOL, MIN(SCIPfeastol(scip), MAX(SCIPepsilon(scip), mindomwidth * SCIPfeastol(scip)))) );
9368 /* any dual feasible solution should provide a valid estimator (and a dual optimal one a facet) */
9375 /* get dual solution (facet of convex envelope); again, we have to be careful since the LP can have more rows and
9437 SCIPdebugMsg(scip, "missed the target, facetvalue %g targetvalue %g, overestimate=%u\n", facetvalue, targetvalue, overestimate);
9452/** computes a facet of the convex or concave envelope of a univariate vertex polyhedral function
9486/** given three points, constructs coefficient of equation for hyperplane generated by these three points
9521 /* SCIPdebugMsg(scip, "alpha: %g beta: %g gamma: %g delta: %g\n", *alpha, *beta, *gamma_, *delta); */
9546 SCIPdebugMsg(scip, "a = (%g,%g,%g) hyperplane: %g rhs %g EQdelta: %d\n", a1, a2, a3, *alpha * a1 + *beta * a2 - *delta, -*gamma_ * a3, SCIPisRelEQ(scip, *alpha * a1 + *beta * a2 - *delta, -*gamma_ * a3));
9547 SCIPdebugMsg(scip, "b = (%g,%g,%g) hyperplane: %g rhs %g EQdelta: %d\n", b1, b2, b3, *alpha * b1 + *beta * b2 - *delta, -*gamma_ * b3, SCIPisRelEQ(scip, *alpha * b1 + *beta * b2 - *delta, -*gamma_ * b3));
9548 SCIPdebugMsg(scip, "c = (%g,%g,%g) hyperplane: %g rhs %g EQdelta: %d\n", c1, c2, c3, *alpha * c1 + *beta * c2 - *delta, -*gamma_ * c3, SCIPisRelEQ(scip, *alpha * c1 + *beta * c2 - *delta, -*gamma_ * c3));
9566 SCIPdebugMsg(scip, "numerical troubles - try to solve the linear system via an LU factorization\n");
9576 /* set all coefficients to zero if one of the points is not contained in the hyperplane; this ensures that we do
9602/** computes a facet of the convex or concave envelope of a bivariate vertex polyhedral function */
9606 SCIP_Bool overestimate, /**< whether to compute facet of concave (TRUE) or convex (FALSE) envelope */
9616 SCIP_Real targetvalue, /**< target value: no need to compute facet if value in xstar would be worse than this value */
9618 SCIP_Real* facetcoefs, /**< buffer to store coefficients of facet defining inequality; must be an array of length at least 2 */
9637 /* if we want an underestimator, flip f(x,y), i.e., do as if we compute an overestimator for -f(x,y) */
9656 * Since we assume that f is vertex-polyhedral, we then know that all points (x,y,f(x,y)) are below this hyperplane, i.e.,
9667 SCIP_CALL( computeHyperplaneThreePoints(scip, p2[0], p2[1], p2val, p3[0], p3[1], p3val, p4[0], p4[1], p4val,
9676 SCIP_CALL( computeHyperplaneThreePoints(scip, p1[0], p1[1], p1val, p3[0], p3[1], p3val, p4[0], p4[1], p4val,
9685 SCIP_CALL( computeHyperplaneThreePoints(scip, p1[0], p1[1], p1val, p2[0], p2[1], p2val, p4[0], p4[1], p4val,
9694 SCIP_CALL( computeHyperplaneThreePoints(scip, p1[0], p1[1], p1val, p2[0], p2[1], p2val, p3[0], p3[1], p3val,
9714 /* if coefficients become tiny because division by gamma makes them < SCIPepsilon(scip), then skip, too */
9719 SCIPdebugMsg(scip, "alpha = %g, beta = %g, gamma = %g, delta = %g\n", alpha, beta, gamma_, delta);
9743/** ensures that we can store information about open expressions (i.e., not fully encoded in the symmetry detection
9866 SCIP_CALL( ensureLocVarsArraySize(scip, consvars, consvals, SCIPexprGetNChildren(expr), maxnconsvars) );
9875 SCIP_CALL( SCIPgetSymActiveVariables(scip, SYM_SYMTYPE_SIGNPERM, consvars, consvals, &nlocvars,
10036 if( (SCIPisInfinity(scip, SCIPvarGetUbGlobal(var)) != SCIPisInfinity(scip, -SCIPvarGetLbGlobal(var))) )
10048/** tries to add gadget for finding signed permutation of even univariate operators with variable child */
10097 SCIP_CALL( SCIPgetSymActiveVariables(scip, SYM_SYMTYPE_SIGNPERM, consvars, consvals, &nlocvars, &constant,
10114 SCIP_CALL( SCIPgetSymOpNodeType(scip, SCIPexprhdlrGetName(SCIPexprGetHdlr(evenopexpr)), &optype) );
10117 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, parentidx, thisopidx, hasparentcoef, parentcoef) );
10119 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, thisopidx, SCIPgetSymgraphVarnodeidx(scip, graph, var),
10121 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, thisopidx, SCIPgetSymgraphNegatedVarnodeidx(scip, graph, var),
10133/** tries to add gadget for finding signed permutation of even univariate operators with sum child */
10177 /* check whether child variable is (multi-)aggregated and whether all children are variables */
10194 SCIP_CALL( SCIPgetSymActiveVariables(scip, SYM_SYMTYPE_SIGNPERM, consvars, consvals, &nlocvars, &constant,
10197 /* we can only handle the case without constant and two variables with domain centered at origin */
10213 /* add gadget to graph for even univariate expression that have a sum of at most two variables as child */
10217 SCIP_CALL( SCIPhashsetInsert(handledexprs, SCIPblkmem(scip), (void*) SCIPexprGetChildren(child)[i]) );
10220 SCIP_CALL( SCIPgetSymOpNodeType(scip, SCIPexprhdlrGetName(SCIPexprGetHdlr(evenopexpr)), &optype) );
10223 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, parentidx, thisopidx, hasparentcoef, parentcoef) );
10236 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, thisopidx, SCIPgetSymgraphVarnodeidx(scip, graph, var),
10238 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, thisopidx, SCIPgetSymgraphNegatedVarnodeidx(scip, graph, var),
10260 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, dummyidx1, SCIPgetSymgraphVarnodeidx(scip, graph, var),
10262 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, dummyidx2, SCIPgetSymgraphNegatedVarnodeidx(scip, graph, var),
10310 if( SCIPisExprVar(scip, expr) || SCIPisExprValue(scip, expr) || SCIPisExprVaridx(scip, expr) )
10326 SCIP_CALL( tryAddGadgetEvenOperatorVariable(scip, expr, child, cons, graph, parentidx, hasparentcoef, parentcoef,
10331 SCIP_CALL( tryAddGadgetEvenOperatorSum(scip, expr, child, cons, graph, parentidx, hasparentcoef, parentcoef,
10388/** tries to add gadget for finding signed permutations for squared differences in a sum expression */
10453 /* we scan for norm constraints, i.e., the number of powexpr needs to be twice the prodexpr */
10461 /* we require a coefficient of +/- 1 from the sum and all power expressions have the same coefficient */
10497 /* we require a coefficient of +/- 2 from the sum and all product expressions have the same coefficient */
10589 || (SCIPisInfinity(scip, SCIPvarGetUbGlobal(actvar)) != SCIPisInfinity(scip, -SCIPvarGetLbGlobal(actvar)))
10590 || (SCIPisInfinity(scip, SCIPvarGetUbGlobal(actvar2)) != SCIPisInfinity(scip, -SCIPvarGetLbGlobal(actvar2)))
10591 || (SCIPisInfinity(scip, SCIPvarGetUbGlobal(actvar)) != SCIPisInfinity(scip, SCIPvarGetLbGlobal(actvar2)))
10600 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, sumnodeidx, nodeidx, TRUE, (SCIP_Real) powcoef) );
10601 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, nodeidx, coefnodeidx1, TRUE, (SCIP_Real) powcoef) );
10602 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, nodeidx, coefnodeidx2, TRUE, (SCIP_Real) powcoef) );
10692 /* allocate arrays to store operators not completely handled yet (due to DFS) and variables in constraint */
10716 /* for finding special subexpressions, use hashset to store which expressions have been handled completely */
10724 for( expr = SCIPexpriterGetCurrent(it); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
10726 /* if an expression has already been handled by an ancestor, increase iterator until we leave it */
10741 /* due to DFS and expression has not been handled by ancestor, remove expression from list of open expressions */
10762 SCIP_CALL( SCIPgetCoefSymData(scip, expr, SCIPexpriterGetParentDFS(it), &parentcoef, &hasparentcoef) );
10779 SCIP_CALL( SCIPaddSymgraphOpnode(scip, graph, (int) SYM_CONSOPTYPE_COEF, &nodeidx) ); /*lint !e641*/
10781 SCIP_CALL( SCIPaddSymgraphEdge(scip, graph, parentidx, nodeidx, TRUE, parentcoef) ); /*lint !e644*/
10799 SCIP_CALL( SCIPaddSymgraphOpnode(scip, graph, (int) SYM_CONSOPTYPE_SUM, &thisidx) ); /*lint !e641*/
10842 SCIP_CALL( ensureLocVarsArraySize(scip, &consvars, &consvals, SCIPexprGetNChildren(expr), &maxnconsvars) );
10867 SCIP_CALL( SCIPaddSymgraphVarAggregation(scip, graph, sumidx, consvars, consvals, nlocvars, constant) );
10885 SCIP_CALL( tryAddGadgetBilinearProductSignedPerm(scip, expr, cons, graph, parentidx, hasparentcoef,
10899 SCIP_CALL( tryAddGadgetEvenOperator(scip, expr, cons, graph, parentidx, hasparentcoef, parentcoef,
10930 SCIP_CALL( SCIPaddSymgraphValnode(scip, graph, SCIPgetSymExprdataConstants(symdata)[i], &nodeidx) );
10985 SCIP_CALL( SCIPnlhdlrCopyhdlr(scip, targetconshdlr, conshdlr, sourceconshdlrdata->nlhdlrs[i]) );
10993/** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
11018 SCIPfreeBlockMemoryArrayNull(scip, &conshdlrdata->consupgrades, conshdlrdata->consupgradessize);
11058 /* make sure current activity tags in expressions are invalid, because we start catching variable events only now */
11079 /* reset statistics in nonlinear handlers (TODO only if misc/resetstat == TRUE) and call nlhdlrInit */
11103/** deinitialization method of constraint handler (called before transformed problem is freed) */
11164/** presolving initialization method of constraint handler (called when presolving is about to begin) */
11179/** presolving deinitialization method of constraint handler (called after presolving has been finished) */
11193 SCIP_CALL( canonicalizeConstraints(scip, conshdlr, conss, nconss, SCIP_PRESOLTIMING_ALWAYS, &infeasible, NULL, NULL, NULL) );
11196 * but at the moment this can only become true if canonicalizeConstraints called detectNlhdlrs (which it doesn't do in EXITPRESOLVE stage)
11209/** solving process initialization method of constraint handler (called when branch and bound process is about to begin) */
11217 * if infeasibility was found by our boundtightening, then curvature check may also fail as some exprhdlr (e.g., pow)
11239 /* check that branching/lpgainnormalize is set to a known value if pseudo-costs are used in branching */
11242 SCIP_CALL( SCIPgetCharParam(scip, "branching/lpgainnormalize", &(conshdlrdata->branchpscostupdatestrategy)) );
11245 SCIPerrorMessage("branching/lpgainnormalize strategy %c unknown\n", conshdlrdata->branchpscostupdatestrategy);
11255/** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
11280 SCIP_CALL( SCIPdropEvent(scip, conshdlrdata->linearizeheursol == 'i' ? SCIP_EVENTTYPE_BESTSOLFOUND : SCIP_EVENTTYPE_SOLFOUND, eventhdlr, (SCIP_EVENTDATA*)conshdlr, conshdlrdata->newsoleventfilterpos) );
11328 SCIP_CALL( SCIPduplicateExpr(scip, sourcedata->expr, &targetexpr, mapexprtransvar, conshdlr, exprownerCreate, (void*)conshdlr) );
11334 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
11346/** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
11352 /* create auxiliary variables and call separation initialization callbacks of the expression handlers
11353 * TODO if we ever want to allow constraints that are separated but not initial, then we need to call initSepa also
11370 SCIP_CALL( SCIPcatchEvent(scip, conshdlrdata->linearizeheursol == 'i' ? SCIP_EVENTTYPE_BESTSOLFOUND : SCIP_EVENTTYPE_SOLFOUND,
11375 * TODO this will only do something for the first call of initlp after initsol, because it cannot handle
11500 maypropfeasible = conshdlrdata->trysolheur != NULL && SCIPgetStage(scip) >= SCIP_STAGE_TRANSFORMED
11503 if( maypropfeasible && (sol == NULL || SCIPsolGetOrigin(sol) == SCIP_SOLORIGIN_LPSOL) && SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_UNBOUNDEDRAY )
11528 SCIPinfoMessage(scip, NULL, "violation: left hand side is violated by %.15g\n", consdata->lhsviol);
11532 SCIPinfoMessage(scip, NULL, "violation: right hand side is violated by %.15g\n", consdata->rhsviol);
11535 else if( (conshdlrdata->subnlpheur == NULL || sol == NULL) && !maypropfeasible && !completely )
11537 /* if we don't want to pass to subnlp heuristic and don't need to print reasons, then can stop checking here */
11541 /* do not try to shift linear variables if violation is at infinity (leads to setting variable to infinity in solution, which is not allowed) */
11581 if( *result == SCIP_INFEASIBLE && conshdlrdata->subnlpheur != NULL && sol != NULL && !SCIPisInfinity(scip, maxviol) )
11625 SCIP_CALL( canonicalizeConstraints(scip, conshdlr, conss, nconss, presoltiming, &infeasible, ndelconss, naddconss, nchgcoefs) );
11662 SCIP_CALL( presolveRedundantConss(scip, conshdlr, conss, nconss, &infeasible, ndelconss, nchgbds) );
11694 /* fix variables that are contained in only one nonlinear constraint to their upper or lower bounds, if possible */
11698 /* run this presolving technique only once because we don't want to generate identical bound disjunction
11708 SCIP_CALL( presolveSingleLockedVars(scip, conshdlr, conss[c], &tmpnchgvartypes, &tmpnaddconss, &infeasible) );
11709 SCIPdebugMsg(scip, "presolSingleLockedVars() for %s: nchgvartypes=%d naddconss=%d infeas=%u\n",
11724 if( *ndelconss > 0 || *nchgbds > 0 || *nupgdconss > 0 || *naddconss > 0 || *nchgvartypes > 0 )
11767 * - and locks appeared (going from zero to nonzero) or disappeared (going from nonzero to zero) now
11815 SCIP_CALL( SCIPsimplifyExpr(scip, consdata->expr, &simplified, &changed, &infeasible, exprownerCreate, (void*)conshdlr) );
11822 /* ensure each variable is represented by one variable expression only (need this for storeVarExprs() with simplified=TRUE below) */
11824 assert(!replacedroot); /* root expression cannot have been equal to one of its subexpressions */
11838 for( expr = SCIPexpriterGetCurrent(it); !SCIPexpriterIsEnd(it); expr = SCIPexpriterGetNext(it) )
11848 hashmapexpr = (SCIP_EXPR*)SCIPhashmapGetImage(conshdlrdata->var2expr, SCIPgetVarExprVar(child));
11849 /* if a varexpr exists already in the hashmap, but it is child, then replace child by the one in the hashmap */
11980 if( !SCIPisInfinity(scip, -consdata->lhs) && !SCIPisInfinity(scip, consdata->rhs) && !SCIPisEQ(scip, consdata->lhs, consdata->rhs) )
12018 SCIP_CALL( SCIPcopyExpr(sourcescip, scip, sourcedata->expr, &targetexpr, exprownerCreate, (void*)targetconshdlr, varmap, consmap, global, valid) );
12027 SCIP_CALL( createCons(scip, targetconshdlr, cons, name != NULL ? name : SCIPconsGetName(sourcecons),
12071 /* parse constraint to get lhs, rhs, and expression in between (from cons_linear.c::consparse, but parsing whole string first, then getting expression) */
12074 if( isdigit((unsigned char)str[0]) || ((str[0] == '-' || str[0] == '+') && isdigit((unsigned char)str[1])) )
12103 /* parse expression: so far we did not allocate memory, so can just return in case of readerror */
12207/** constraint method of constraint handler which returns the number of variables (if possible) */
12225/** constraint handler method to suggest dive bound changes during the generic diving algorithm */
12239/** constraint handler method which returns the permutation symmetry detection graph of a constraint (if possible) */
12248/** constraint handler method which returns the signed permutation symmetry detection graph of a constraint (if possible) */
12271 SCIPinfoMessage(scip, file, "Nonlinear Conshdlr : %10s %10s %10s %10s %10s %10s %10s\n", "WeakSepa", "TightenLP", "DespTghtLP", "DespBranch", "DespCutoff", "ForceLP", "CanonTime");
12281 SCIPinfoMessage(scip, file, " %10.2f", SCIPgetClockTime(scip, conshdlrdata->canonicalizetime));
12329 SCIPdialogMessage(scip, NULL, " nonlinear handler enabled detectprio enforceprio description\n");
12330 SCIPdialogMessage(scip, NULL, " ----------------- ------- ---------- ----------- -----------\n");
12384 consSepalpNonlinear, consSepasolNonlinear, consEnfolpNonlinear, consEnforelaxNonlinear, consEnfopsNonlinear, consCheckNonlinear,
12389 consGetVarsNonlinear, consGetNVarsNonlinear, consGetDiveBdChgsNonlinear, consGetPermsymGraphNonlinear,
12395 "limit on number of propagation rounds for a set of constraints within one round of SCIP propagation",
12403 "strategy on how to relax variable bounds during bound tightening: relax (n)ot, relax by (a)bsolute value, relax always by a(b)solute value, relax by (r)relative value",
12415 "maximal relative perturbation of reference point when computing facet of envelope of vertex-polyhedral function (dim>2)",
12419 "adjust computed facet of envelope of vertex-polyhedral function up to a violation of this value times LP feasibility tolerance",
12420 &conshdlrdata->vp_adjfacetthreshold, TRUE, VERTEXPOLY_ADJUSTFACETFACTOR, 0.0, SCIP_REAL_MAX, NULL, NULL) );
12423 "whether to use dual simplex instead of primal simplex for LP that computes facet of vertex-polyhedral function",
12439 "minimum number of terms to reformulate bilinear binary products by factorizing variables (<= 1: disabled)",
12455 "threshold for when to regard a cut from an estimator as weak (lower values allow more weak cuts)",
12459 "\"strong\" cuts will be scaled to have their maximal coef in [1/strongcutmaxcoef,strongcutmaxcoef]",
12471 "an expression will be enforced if the \"auxiliary\" violation is at least this factor times the \"original\" violation",
12475 "retry enfo of constraint with weak cuts if violation is least this factor of maximal violated constraints",
12479 "whether to make rows to be non-removable in the node where they are added (can prevent some cycling): 'o'ff, in 'e'nforcement only, 'a'lways",
12483 "method how to scale violations to make them comparable (not used for feasibility check): (n)one, (a)ctivity and side, norm of (g)radient",
12487 "whether variables contained in a single constraint should be forced to be at their lower or upper bounds ('d'isable, change 't'ype, add 'b'ound disjunction)",
12491 "from which depth on in the tree to allow branching on auxiliary variables (variables added for extended formulation)",
12499 "consider a constraint highly violated if its violation is >= this factor * maximal violation among all constraints",
12503 "consider a variable branching score high if its branching score >= this factor * maximal branching score among all variables",
12507 "weight by how much to consider the violation assigned to a variable for its branching score",
12511 "weight by how much to consider fractionality of integer variables in branching score for spatial branching",
12515 "weight by how much to consider the dual values of rows that contain a variable for its branching score",
12527 "weight by how much to consider variable type (continuous: 0, binary: 1, integer: 0.1, impl-integer: 0.01) in branching score",
12531 "how to aggregate several branching scores given for the same expression: 'a'verage, 'm'aximum, 's'um",
12535 "method used to split violation in expression onto variables: 'u'niform, 'm'idness of solution, 'd'omain width, 'l'ogarithmic domain width",
12543 "minimal average pseudo cost count for discrete variables at which to start considering spatial branching before branching on fractional integer variables",
12544 &conshdlrdata->branchmixfractional, FALSE, SCIPinfinity(scip), 0.0, SCIPinfinity(scip), NULL, NULL) );
12547 "whether tight linearizations of nonlinear constraints should be added to cutpool when some heuristics finds a new solution ('o'ff, on new 'i'ncumbents, on 'e'very solution)",
12555 SCIP_CALL( SCIPincludeEventhdlrBasic(scip, &conshdlrdata->eventhdlr, CONSHDLR_NAME "_boundchange",
12571 if( SCIPgetRootDialog(scip) != NULL && SCIPdialogFindEntry(SCIPgetRootDialog(scip), "display", &parentdialog) == 1 )
12585 SCIP_CALL( SCIPincludeEventhdlrBasic(scip, NULL, CONSHDLR_NAME "_newsolution", "handles the event that a new primal solution has been found",
12594 SCIP_DECL_NONLINCONSUPGD((*nlconsupgd)), /**< method to call for upgrading nonlinear constraint */
12627 SCIPwarningMessage(scip, "Try to add already known upgrade method for constraint handler <%s>.\n", conshdlrname);
12640 SCIP_CALL( SCIPensureBlockMemoryArray(scip, &conshdlrdata->consupgrades, &conshdlrdata->consupgradessize, conshdlrdata->nconsupgrades+1) );
12643 for( i = conshdlrdata->nconsupgrades; i > 0 && conshdlrdata->consupgrades[i-1]->priority < consupgrade->priority; --i )
12650 (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "constraints/" CONSHDLR_NAME "/upgrade/%s", conshdlrname);
12651 (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "enable nonlinear upgrading for constraint handler <%s>", conshdlrname);
12661 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
12688 SCIP_Bool removable /**< should the relaxation be removed from the LP due to aging or cleanup?
12692 /* TODO: (optional) modify the definition of the SCIPcreateConsNonlinear() call, if you don't need all the information */
12710/** creates and captures a nonlinear constraint with all its constraint flags set to their default values
12714 * @see SCIPcreateConsNonlinear() for information about the basic constraint flag configuration.
12716 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
12735 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
12768 SCIP_Bool removable /**< should the relaxation be removed from the LP due to aging or cleanup?
12787 SCIP_CALL( SCIPcreateExprQuadratic(scip, &expr, nlinvars, linvars, lincoefs, nquadterms, quadvars1, quadvars2, quadcoefs, exprownerCreate, (void*)conshdlr) );
12800/** creates and captures a quadratic nonlinear constraint with all its constraint flags set to their default values
12804 * @see SCIPcreateConsQuadraticNonlinear() for information about the basic constraint flag configuration.
12806 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
12823 SCIP_CALL( SCIPcreateConsQuadraticNonlinear(scip, cons, name, nlinvars, linvars, lincoefs, nquadterms, quadvars1, quadvars2, quadcoefs, lhs, rhs,
12829/** creates and captures a nonlinear constraint that is a second-order cone constraint with all its constraint flags set to their default values
12831 * \f$\sqrt{\gamma + \sum_{i=1}^{n} (\alpha_i\, (x_i + \beta_i))^2} \leq \alpha_{n+1}\, (x_{n+1}+\beta_{n+1})\f$
12833 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
12841 SCIP_Real* coefs, /**< array with coefficients of left hand side variables (alpha_i), or NULL if all 1.0 */
12857 SCIP_CALL( SCIPcreateExprSum(scip, &lhssum, 0, NULL, NULL, constant, NULL, NULL) ); /* gamma */
12867 SCIP_CALL( SCIPcreateExprSum(scip, &sum, 1, &varexpr, NULL, offsets[i], NULL, NULL) ); /* x_i + beta_i */
12876 SCIP_CALL( SCIPappendExprSumExpr(scip, lhssum, powexpr, coefs != NULL ? coefs[i]*coefs[i] : 1.0) ); /* + alpha_i^2 (x_i + beta_i)^2 */
12888 SCIP_CALL( SCIPcreateExprSum(scip, &expr, 2, terms, termcoefs, 0.0, NULL, NULL) ); /* sqrt(...) - alpha_{n+1}x_{n_1} */
12893 SCIP_CALL( SCIPcreateConsBasicNonlinear(scip, cons, name, expr, -SCIPinfinity(scip), rhscoeff * rhsoffset) );
12900/** creates and captures a signpower nonlinear constraint with all its constraint flags set to their default values
12904 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
12930 SCIP_CALL( SCIPcreateExprSum(scip, &sumexpr, 1, &xexpr, NULL, xoffset, NULL, NULL) ); /* x + xoffset */
12931 SCIP_CALL( SCIPcreateExprSignpower(scip, &terms[0], sumexpr, exponent, NULL, NULL) ); /* signpow(x + xoffset, exponent) */
12937 SCIP_CALL( SCIPcreateExprSignpower(scip, &terms[0], xexpr, exponent, NULL, NULL) ); /* signpow(x, exponent) */
12944 SCIP_CALL( SCIPcreateExprSum(scip, &sumexpr, 2, terms, coefs, 0.0, NULL, NULL) ); /* signpowexpr + zcoef * z */
12990 SCIP_Bool boundrelax /**< indicates whether a bound was relaxed, i.e., lastboundrelax should be set too */
13005/** returns the hashmap that is internally used to map variables to their corresponding variable expressions */
13024 SCIP_Real auxvalue, /**< current value of expression w.r.t. auxiliary variables as obtained from EVALAUX */
13025 SCIP_Bool allowweakcuts, /**< whether we should only look for "strong" cuts, or anything that separates is fine */
13026 SCIP_Bool branchscoresuccess, /**< whether the estimator generation generated branching scores */
13065 /* let the estimator be c'x-b, the auxvar is z (=auxvarvalue), and the expression is f(x) (=auxvalue)
13066 * then if we are underestimating and since the cut is violated, we should have z <= c'x-b <= f(x)
13068 * if the estimator value (c'x-b) is too close to z (auxvarvalue), when compared to f(x) (auxvalue),
13069 * then let's call this a weak cut that is, it's a weak cut if c'x-b <= z + weakcutthreshold * (f(x)-z)
13077 * when linearizing convex expressions, then we should have c'x-b = f(x), so they would never be weak
13079 if( (!overestimate && ( cutviol <= conshdlrdata->weakcutthreshold * (auxvalue - auxvarvalue))) ||
13082 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " estimate of nlhdlr %s succeeded, but cut is too "\
13090 /* save estimator value for later, see long comment above why this gives the value for c'x-b */
13096 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " estimate of nlhdlr %s succeeded, but cut does not "\
13103 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " estimate of nlhdlr %s succeeded: auxvarvalue %g "\
13113 SCIP_CALL( SCIPcleanupRowprep2(scip, rowprep, sol, conshdlrdata->strongcutmaxcoef, &sepasuccess) );
13122 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " cleanup succeeded, violation = %g and %sreliable, "\
13131 * auxvar z may now have a coefficient due to scaling (down) in cleanup - take this into account when
13137 /* get absolute value of coef of auxvar in row - this makes the whole check here more expensive than
13150 (!overestimate && ( cutviol / auxvarcoef <= conshdlrdata->weakcutthreshold * (auxvalue - auxvarvalue))) ||
13151 ( overestimate && (-cutviol / auxvarcoef >= conshdlrdata->weakcutthreshold * (auxvalue - auxvarvalue))) )
13153 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " cut is too weak after cleanup: auxvarvalue %g estimateval %g auxvalue %g (over %d)\n",
13154 auxvarvalue, auxvarvalue + (overestimate ? -cutviol : cutviol) / auxvarcoef, auxvalue, overestimate); )
13161 /* TODO if violations are really tiny, then maybe handle special (decrease LP feastol, for example) */
13163 /* if estimate didn't report branchscores explicitly, then consider branching on those children for
13173 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " cleanup failed, %d coefs modified, cutviol %g\n",
13177 /* if cleanup left us with a useless cut, then consider branching on variables for which coef were
13187 SCIP_CALL( SCIPgetExprRelAuxViolationNonlinear(scip, expr, auxvalue, sol, &violscore, NULL, NULL) );
13189 SCIP_CALL( addExprViolScoresAuxVars(scip, expr, violscore, SCIProwprepGetModifiedVars(rowprep), SCIProwprepGetNModifiedVars(rowprep), sol, &branchscoresuccess) );
13191 /* addConsExprExprBranchScoresAuxVars can fail if the only vars for which the coef was changed
13193 * - are this expr's auxvar (I don't think it makes sense to branch on that one (would it?)), or
13194 * - if a variable in the rowprep is not in expr (can happen with indicator added by perspective)
13198 /* assert(branchscoresuccess || (rowprep->nmodifiedvars == 1 && rowprep->modifiedvars[0] == auxvar) ||
13204 /* if cut looks good (numerics ok and cutting off solution), then turn into row and add to sepastore */
13211 /* store remaining gap |f(x)-estimateval| in row name, which could be used in getDualBranchscore
13227 if( !allowweakcuts && conshdlrdata->strongcutefficacy && !SCIPisCutEfficacious(scip, sol, row) )
13234 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " cut not applicable (e.g., cut is boundchange below eps)\n"); )
13243 /* I take !allowweakcuts as equivalent for having a strong cut (we usually have allowweakcuts=TRUE only
13246 SCIP_CALL( SCIPaddRow(scip, row, conshdlrdata->forcestrongcut && !allowweakcuts && inenforcement, &infeasible) );
13249 if( conshdlrdata->rownotremovable == 'a' || (conshdlrdata->rownotremovable == 'e' && inenforcement) )
13268 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " separation with estimate of nlhdlr %s failed, but "\
13271 /* well, not branched, but addConsExprExprViolScoresAuxVars() added scores to (aux)variables and that makes the
13278 ENFOLOG( SCIPinfoMessage(scip, enfologfile, " separation with estimate of nlhdlr %s failed and no "\
13303 * @attention This method should only be used for unit tests that depend on SCIPgetBilinTermsNonlinear(),
13323 * @note This method should only be used after auxiliary variables have been created, i.e., after CONSINITLP.
13341 * @note This method should only be used after auxiliary variables have been created, i.e., after CONSINITLP.
13342 * @note The value of the auxiliary variable of a bilinear term might be NULL, which indicates that the term does not have an auxiliary variable.
13360 * @note The method should only be used after auxiliary variables have been created, i.e., after CONSINITLP.
13405 * @note The method should only be used after auxiliary variables have been created, i.e., after CONSINITLP.
13451 auxexpr->coefs[1] * SCIPgetSolVal(scip, sol, x) + auxexpr->coefs[2] * SCIPgetSolVal(scip, sol, y);
13474 SCIP_CALL( bilinearTermsInsertEntry(scip, conshdlr, x, y, nlockspos, nlocksneg, &idx, TRUE) );
13479 assert(term->aux.var == NULL); /* there should not already be an auxvar, that is, existing terms should exist only once (common subexprs should have been eliminated) */
13502 SCIP_Bool overestimate /**< whether the auxiliary expression overestimates the bilinear product */
13521 SCIP_CALL( bilinearTermsInsertEntry(scip, conshdlr, x, y, nlockspos, nlocksneg, &idx, FALSE) );
13530 /* this is the case where we are adding an implicitly defined relation for a product that has already
13546 /* before we were working with term->aux.var; now aux.var has been saved and aux.exprs can be initialised to NULL */
13551 /* since there were no auxexprs before and we've already checked for bilinmaxnauxexprs, auxvarexpr should always be added */
13589/* replication of long comment on SCIPcomputeFacetVertexPolyhedralNonlinear() in cons_nonlinear.h omitted here */
13593 SCIP_Bool overestimate, /**< whether to compute facet of concave (TRUE) or convex (FALSE) envelope */
13599 SCIP_Real targetvalue, /**< target value: no need to compute facet if value in xstar would be worse than this value */
13601 SCIP_Real* facetcoefs, /**< buffer to store coefficients of facet defining inequality; must be an array of length at least nallvars */
13636 /* if all variables are fixed, then we could provide something trivial, but that wouldn't be the job of separation
13641 SCIPwarningMessage(scip, "SCIPcomputeFacetVertexPolyhedralNonlinear() called with %d nonfixed variables. Must be between [1,%d].\n", nvars, SCIP_MAXVERTEXPOLYDIM);
13661 /* if j'th bit of row index i is set, then take upper bound on var j, otherwise lower bound var j
13662 * we check this by shifting i for j positions to the right and checking whether the last bit is set
13678 SCIPdebugMsg(scip, "cannot compute underestimator; function value at corner is too large %g\n", funvals[i]);
13688 SCIP_CALL( computeVertexPolyhedralFacetUnivariate(scip, box[2 * nonfixedpos[0]], box[2 * nonfixedpos[0] + 1], funvals[0], funvals[1], success, &facetcoefs[nonfixedpos[0]], facetconstant) );
13691 if( *success && overestimate == (*facetconstant + facetcoefs[nonfixedpos[0]] * xstar[nonfixedpos[0]] > targetvalue) )
13693 SCIPdebugMsg(scip, "computed secant, but missed target %g (facetvalue=%g, overestimate=%u)\n", targetvalue, *facetconstant + facetcoefs[nonfixedpos[0]] * xstar[nonfixedpos[0]], overestimate);
13701 SCIP_Real p1[2] = { box[2*idx1], box[2*idx2] }; /* corner 0: 0>>0 & 0x1 = 0, 0>>1 & 0x1 = 0 */
13702 SCIP_Real p2[2] = { box[2*idx1+1], box[2*idx2] }; /* corner 1: 1>>0 & 0x1 = 1, 1>>1 & 0x1 = 0 */
13703 SCIP_Real p3[2] = { box[2*idx1], box[2*idx2+1] }; /* corner 2: 2>>0 & 0x1 = 0, 2>>1 & 0x1 = 1 */
13704 SCIP_Real p4[2] = { box[2*idx1+1], box[2*idx2+1] }; /* corner 3: 3>>0 & 0x1 = 1, 3>>1 & 0x1 = 1 */
13708 SCIP_CALL( computeVertexPolyhedralFacetBivariate(scip, overestimate, p1, p2, p3, p4, funvals[0], funvals[1], funvals[2], funvals[3], xstar2, targetvalue, success, coefs, facetconstant) );
13715 SCIP_CALL( computeVertexPolyhedralFacetLP(scip, conshdlr, overestimate, xstar, box, nallvars, nonfixedpos, funvals, nvars, targetvalue, success, facetcoefs, facetconstant) );
13727 maxfaceterror = computeVertexPolyhedralMaxFacetError(scip, overestimate, funvals, box, nallvars, nvars, nonfixedpos, facetcoefs, *facetconstant);
13729 /* adjust constant part of the facet by maxerror to make it a valid over/underestimator (not facet though) */
13736 feastol = SCIPgetStage(scip) == SCIP_STAGE_SOLVING ? SCIPgetLPFeastol(scip) : SCIPfeastol(scip);
13748 /* there seem to be numerical problems if the error is too large; in this case we reject the facet */
13751 SCIPdebugMsg(scip, "ignoring facet due to instability, it cuts off a vertex by %g (midval=%g).\n", maxfaceterror, midval);
13756 SCIPdebugMsg(scip, "maximum facet error %g (midval=%g), adjust constant to make cut valid!\n", maxfaceterror, midval);
13875 * Only sets `*isquadratic` to TRUE if the whole expression is quadratic (in the non-extended formulation) and non-linear.
13876 * That is, the expression in each \ref SCIP_QUADEXPR_QUADTERM will be a variable expressions and
14019 * if some of these asserts fail, we may have to remove it and add some code to keep information up to date
14027 /* copy expression, thereby map variables expressions to already existing variables expressions in var2expr map, or augment var2expr map */
14028 SCIP_CALL( SCIPduplicateExpr(scip, expr, &consdata->expr, mapexprvar, conshdlr, exprownerCreate, (void*)conshdlr) );
14077 * if some of these asserts fail, we may have to remove it and add some code to keep information up to date
14096 SCIP_CALL( SCIPcreateExprSum(scip, &consdata->expr, 2, children, coefs, 0.0, exprownerCreate, (void*)conshdlr) );
14157 /* copy expression, thereby map variables expressions to already existing variables expressions in var2expr map, or augment var2expr map */
14158 SCIP_CALL( SCIPduplicateExpr(scip, expr, &exprowned, mapexprvar, conshdlr, exprownerCreate, (void*)conshdlr) );
14171 SCIP_CALL( SCIPcreateExprSum(scip, &consdata->expr, 2, children, coefs, 0.0, exprownerCreate, (void*)conshdlr) );
14189 * In case of a domain error (function cannot be evaluated in sol), activity is set to SCIP_INVALID.
14257/** returns a variable that appears linearly that may be decreased without making any other constraint infeasible */
14271 /* check for a linear variable that can be increased or decreased without harming feasibility */
14281/** returns a variable that appears linearly that may be increased without making any other constraint infeasible */
14295 /* check for a linear variable that can be increased or decreased without harming feasibility */
14366 SCIP_NLHDLREXPRDATA** nlhdlrexprdata, /**< buffer to store nlhdlr data for expression, or NULL */
14367 SCIP_NLHDLR_METHOD* nlhdlrparticipation, /**< buffer to store methods where nonlinear handler participates, or NULL */
14368 SCIP_Bool* sepabelowusesactivity, /**< buffer to store whether sepabelow uses activity of some expression, or NULL */
14369 SCIP_Bool* sepaaboveusesactivity, /**< buffer to store whether sepaabove uses activity of some expression, or NULL */
14423/** number of nonlinear handlers whose activity computation and propagation methods depend on the activity of the expression
14425 * @note This method can only be used after the detection methods of the nonlinear handlers have been called.
14437/** number of nonlinear handlers whose separation methods (estimate or enforcement) depend on the activity of the expression
14439 * @note This method can only be used after the detection methods of the nonlinear handlers have been called.
14451/** number of nonlinear handlers whose separation methods (estimate or enforcement) use auxiliary variable of the expression
14453 * @note This method can only be used after the detection methods of the nonlinear handlers have been called.
14465/** method to be called by a nlhdlr during NLHDLRDETECT to notify an expression that it will be used
14467 * - if `useauxvar` is enabled, then ensures that an auxiliary variable will be created in INITLP
14468 * - if `useactivityforprop` or `useactivityforsepa{below,above}` is enabled, then ensured that activity will be updated for `expr`
14469 * - if `useactivityforprop` is enabled, then increments the count returned by SCIPgetExprNPropUsesActivityNonlinear()
14470 * - if `useactivityforsepa{below,above}` is enabled, then increments the count returned by SCIPgetExprNSepaUsesActivityNonlinear()
14473 * The distinction into `useactivityforprop` and `useactivityforsepa{below,above}` is to recognize variables which domain influences
14474 * under/overestimators. Domain propagation routines (like OBBT) may invest more work for these variables.
14475 * The distinction into `useactivityforsepabelow` and `useactivityforsepaabove` is to recognize whether a nlhdlr that called this method
14476 * will use activity of `expr` in enfomethod \ref SCIP_NLHDLR_METHOD_SEPABELOW or \ref SCIP_NLHDLR_METHOD_SEPAABOVE.
14481 SCIP_Bool useauxvar, /**< whether an auxiliary variable will be used for estimate or cut generation */
14482 SCIP_Bool useactivityforprop, /**< whether activity of expr will be used by domain propagation or activity calculation (inteval) */
14483 SCIP_Bool useactivityforsepabelow, /**< whether activity of expr will be used by underestimation */
14484 SCIP_Bool useactivityforsepaabove /**< whether activity of expr will be used by overestimation */
14499 ( (ownerdata->nactivityusesprop == 0 && ownerdata->nactivityusessepa == 0 && (useactivityforprop || useactivityforsepabelow || useactivityforsepaabove)) ||
14503 /* if we already have ran detect of nlhdlrs on expr (nenfos >= 0), then we need to rerun detection if
14520 /* remember that SCIPregisterExprUsageNonlinear() has been called with useactivityforsepa{below,above}=TRUE; this
14561 * If there are negative locks, then returns the violation of z ≤ f(x) and sets `violover` to TRUE.
14562 * If there are positive locks, then returns the violation of z ≥ f(x) and sets `violunder` to TRUE.
14563 * Of course, if there both negative and positive locks, then return the violation of z = f(x).
14591/** computes absolute violation for auxvar relation in an expression w.r.t. auxiliary variables
14593 * Assume the expression is f(w), where w are auxiliary variables that were introduced by some nlhdlr.
14596 * If there are negative locks, then returns the violation of z ≤ f(w) and sets `violover` to TRUE.
14597 * If there are positive locks, then returns the violation of z ≥ f(w) and sets `violunder` to TRUE.
14598 * Of course, if there both negative and positive locks, then return the violation of z = f(w).
14624/** computes relative violation for auxvar relation in an expression w.r.t. auxiliary variables
14626 * Assume the expression is f(w), where w are auxiliary variables that were introduced by some nlhdlr.
14629 * Taking the absolute violation from SCIPgetExprAbsAuxViolationNonlinear(), this function returns
14695 /* SCIPdebugMsgPrint(scip, " propbounds [%.15g,%.15g]", ownerdata->propbounds.inf, ownerdata->propbounds.sup); */
14702 /* apply propbounds to expr activity, but ensure it's not-empty if very close disjoint intervals */
14703 /* SCIPdebugMsgPrint(scip, " activity [%.15g,%.15g]", expr->activity.inf, expr->activity.sup); */
14722/** informs the expression about new bounds that can be used for reverse-propagation and to tighten bounds of
14752 assert(SCIPexprGetActivityTag(expr) >= conshdlrdata->lastboundrelax || SCIPintervalIsEntire(SCIP_INTERVAL_INFINITY, SCIPexprGetActivity(expr)));
14760 SCIPdebugMsgPrint(scip, " with activity [%.15g,%.15g] to [%.15g,%.15g] (force=%d)\n", SCIPexprGetActivity(expr).inf, SCIPexprGetActivity(expr).sup, newbounds.inf, newbounds.sup, conshdlrdata->forceboundtightening);
14766 * it should be ok to use normal ceil() and floor(), but for safety, we use SCIPceil and SCIPfloor for now
14785 /* treat the new bounds as empty if either the lower/upper bound is above/below +/- SCIPinfinity() */
14805 SCIPintervalIntersectEps(&newbounds, SCIPepsilon(scip), SCIPexprGetActivity(expr), newbounds);
14808 SCIPdebugMsg(scip, " applied %s: [%.20g,%.20g]\n", ownerdata->propboundstag == conshdlrdata->curpropboundstag ? "previous propbounds" : "activity", newbounds.inf, newbounds.sup);
14814 SCIPdebugMsg(scip, " cut off due to empty intersection with previous propbounds or activity\n");
14821 * - for constant, the intersection with activity should have been sufficient to determine infeasibilty
14822 * - for variable, the tightenAuxVarBounds call below should be suffient to have to new bounds acknowledged
14830 /* if updated propbounds do not allow a sufficient tightening, then do not consider adding to queue for reverse
14832 * TODO? if we first had a considerable tightening and then only get small tightenings under the same
14833 * curpropboundstag, then these will still be considered as isIntervalBetter, since we compare with activity here and
14834 * not with the propbounds as set in the beginning; I'm not sure, though, that comparing always with previous
14835 * propbounds would be better, since a number of small updates to propbounds could eventually lead to a considerable
14838 if( !isIntervalBetter(scip, conshdlrdata->forceboundtightening, newbounds, SCIPexprGetActivity(expr)) )
14841 SCIPdebugMsg(scip, " new bounds [%g,%g] for expr %p not sufficiently tighter than activity -- not adding to propqueue or tightening auxvar\n", newbounds.inf, newbounds.sup, (void*)expr);
14846 if( SCIPexprGetNChildren(expr) > 0 && !ownerdata->inpropqueue && (ownerdata->nactivityusesprop > 0 || ownerdata->nactivityusessepa > 0 || ownerdata->nenfos < 0) )
14849 * if it should have a nlhdlr with a reverseprop callback or nlhdlrs are not initialized yet (nenfos < 0)
14852 SCIPdebugMsg(scip, " insert expr <%p> (%s) into reversepropqueue\n", (void*)expr, SCIPexprhdlrGetName(SCIPexprGetHdlr(expr)));
14859 SCIP_CALL( tightenAuxVarBounds(scip, ownerdata->conshdlr, expr, newbounds, cutoff, ntightenings) );
14917 * Adds a score to the expression-specific violation-branching score, thereby marking it as branching candidate.
14920 * In case of doubt, use SCIPaddExprsViolScoreNonlinear(). Roughly, the difference between these functions is that the current
14921 * function adds `violscore` to the expression directly, while SCIPaddExprsViolScoreNonlinear() will split the
14922 * violation score among all the given expressions according to parameter constraints/nonlinear/branching/violsplit.
14948 assert(!branchAuxNonlinear(scip, ownerdata->conshdlr) || SCIPisExprVar(scip, expr) || ownerdata->auxvar != NULL);
14966/** adds violation-branching score to a set of expressions, distributing the score among all the expressions
14969 * If branching on aux-variables is disabled, then the violation branching score will be distributed among all
14997 /* if allowing to branch on auxiliary variables, then call internal addConsExprExprsViolScore immediately */
15004 /* if not allowing to branch on aux vars, then create new array containing var expressions that exprs depend on */
15014 for( e = SCIPexpriterRestartDFS(it, exprs[i]); !SCIPexpriterIsEnd(it); e = SCIPexpriterGetNext(it) )
15042/** gives violation-branching score stored in expression, or 0.0 if no valid score has been stored */
15079 SCIPerrorMessage("Invalid value %c for branchscoreagg parameter\n", conshdlrdata->branchscoreagg);
15085/** returns the partial derivative of an expression w.r.t. a variable (or SCIP_INVALID if there was an evaluation error)
15091 SCIP_EXPR* expr, /**< root expression of constraint used in the last SCIPevalExprGradient() call */
15128 return (SCIPexprGetDiffTag(expr) != SCIPexprGetDiffTag(varexpr)) ? 0.0 : SCIPexprGetDerivative(varexpr);
15131/** returns the var's coordinate of Hu partial derivative of an expression w.r.t. a variable (or SCIP_INVALID if there was an evaluation error)
15137 SCIP_EXPR* expr, /**< root expression of constraint used in the last SCIPevalExprHessianDir() call */
15174 return (SCIPexprGetDiffTag(expr) != SCIPexprGetDiffTag(varexpr)) ? 0.0 : SCIPexprGetBardot(varexpr);
15179 * \note This requires that for every expr used in the quadratic data, a variable or auxiliary variable is available.
15198 SCIPexprGetQuadraticData(expr, &auxvalue, &nlinexprs, &linexprs, &lincoefs, &nquadexprs, &nbilinexprs, NULL, NULL);
15234 auxvalue += coef * SCIPgetSolVal(scip, sol, SCIPgetExprAuxVarNonlinear(expr1)) * SCIPgetSolVal(scip, sol, SCIPgetExprAuxVarNonlinear(expr2));
15253 SCIP_DECL_NLHDLREVALAUX((*evalaux)), /**< auxiliary evaluation callback of nonlinear handler */
15273 SCIP_CALL( SCIPnlhdlrCreate(scip, nlhdlr, name, desc, detectpriority, enfopriority, detect, evalaux, nlhdlrdata) );
15279 SCIP_CALL( SCIPensureBlockMemoryArray(scip, &conshdlrdata->nlhdlrs, &conshdlrdata->nlhdlrssize, conshdlrdata->nnlhdlrs+1) );
SCIP_DECL_CONSDELVARS(ConshdlrSubtour::scip_delvars)
Definition: ConshdlrSubtour.cpp:564
Constraint handler for AND constraints, .
constraint handler for bound disjunction constraints
Constraint handler for linear constraints in their most general form, .
static SCIP_Bool isBinaryProduct(SCIP *scip, SCIP_EXPR *expr)
Definition: cons_nonlinear.c:3777
static SCIP_RETCODE createExprVar(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_EXPR **expr, SCIP_VAR *var)
Definition: cons_nonlinear.c:652
static SCIP_Real computeVertexPolyhedralMaxFacetError(SCIP *scip, SCIP_Bool overestimate, SCIP_Real *funvals, SCIP_Real *box, int nallvars, int nvars, int *nonfixedpos, SCIP_Real *facetcoefs, SCIP_Real facetconstant)
Definition: cons_nonlinear.c:9113
static SCIP_Bool isEvenOperator(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool *hasvalue, SCIP_Real *value)
Definition: cons_nonlinear.c:9951
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Longint soltag, SCIP_EXPRITER *it, SCIP_Bool allowweakcuts, SCIP_Bool inenforcement, SCIP_Bool branchcandonly, SCIP_RESULT *result, SCIP_Bool *success)
Definition: cons_nonlinear.c:7745
static SCIP_DECL_CONSGETPERMSYMGRAPH(consGetPermsymGraphNonlinear)
Definition: cons_nonlinear.c:12241
static SCIP_RETCODE tryAddGadgetEvenOperatorVariable(SCIP *scip, SCIP_EXPR *evenopexpr, SCIP_EXPR *child, SCIP_CONS *cons, SYM_GRAPH *graph, int parentidx, SCIP_Bool hasparentcoef, SCIP_Real parentcoef, SCIP_Bool hassymval, SCIP_Real symval, SCIP_VAR ***consvars, SCIP_Real **consvals, int *maxnconsvars, SCIP_Bool *success)
Definition: cons_nonlinear.c:10050
static SCIP_DECL_CONSDEACTIVE(consDeactiveNonlinear)
Definition: cons_nonlinear.c:11888
static SCIP_RETCODE analyzeViolation(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_SOL *sol, SCIP_Longint soltag, SCIP_Real *maxabsconsviol, SCIP_Real *maxrelconsviol, SCIP_Real *minauxviol, SCIP_Real *maxauxviol, SCIP_Real *maxvarboundviol)
Definition: cons_nonlinear.c:8183
static SCIP_RETCODE presolveRedundantConss(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *ndelconss, int *nchgbds)
Definition: cons_nonlinear.c:5243
static SCIP_RETCODE enforceExpr(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS *cons, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Longint soltag, SCIP_Bool allowweakcuts, SCIP_Bool inenforcement, SCIP_Bool branchcandonly, SCIP_RESULT *result)
Definition: cons_nonlinear.c:7531
static SCIP_DECL_EXPR_OWNERPRINT(exprownerPrint)
Definition: cons_nonlinear.c:537
static SCIP_RETCODE reversePropQueue(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_Bool *infeasible, int *ntightenings)
Definition: cons_nonlinear.c:2513
static SCIP_RETCODE dropVarEvent(SCIP *scip, SCIP_EVENTHDLR *eventhdlr, SCIP_EXPR *expr, SCIP_CONS *cons)
Definition: cons_nonlinear.c:1217
static SCIP_RETCODE forbidNonlinearVariablesMultiaggration(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_nonlinear.c:4738
static SCIP_RETCODE computeHyperplaneThreePoints(SCIP *scip, SCIP_Real a1, SCIP_Real a2, SCIP_Real a3, SCIP_Real b1, SCIP_Real b2, SCIP_Real b3, SCIP_Real c1, SCIP_Real c2, SCIP_Real c3, SCIP_Real *alpha, SCIP_Real *beta, SCIP_Real *gamma_, SCIP_Real *delta)
Definition: cons_nonlinear.c:9493
static SCIP_RETCODE propagateLocks(SCIP *scip, SCIP_EXPR *expr, int nlockspos, int nlocksneg)
Definition: cons_nonlinear.c:2991
static SCIP_RETCODE registerBranchingCandidates(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_Bool *success)
Definition: cons_nonlinear.c:6486
static SCIP_DECL_CONSENABLE(consEnableNonlinear)
Definition: cons_nonlinear.c:11921
static SCIP_RETCODE bilinTermAddAuxExpr(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONSNONLINEAR_BILINTERM *term, SCIP_CONSNONLINEAR_AUXEXPR *auxexpr, SCIP_Bool *added)
Definition: cons_nonlinear.c:8710
static SCIP_RETCODE freeVarExprs(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_nonlinear.c:801
static SCIP_RETCODE proposeFeasibleSolution(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_SOL *sol, SCIP_Bool *success)
Definition: cons_nonlinear.c:1802
static void scoreBranchingCandidates(SCIP *scip, SCIP_CONSHDLR *conshdlr, BRANCHCAND *cands, int ncands, SCIP_Bool considerfracnl, SCIP_SOL *sol)
Definition: cons_nonlinear.c:6895
static SCIP_DECL_HASHKEYEQ(bilinearTermsIsHashkeyEq)
Definition: cons_nonlinear.c:8651
static SCIP_RETCODE consSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_nonlinear.c:8585
static void addExprsViolScore(SCIP *scip, SCIP_EXPR **exprs, int nexprs, SCIP_Real violscore, SCIP_SOL *sol, SCIP_Bool *success)
Definition: cons_nonlinear.c:6285
static SCIP_RETCODE tightenAuxVarBounds(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_EXPR *expr, SCIP_INTERVAL bounds, SCIP_Bool *cutoff, int *ntightenings)
Definition: cons_nonlinear.c:2096
static SCIP_DECL_CONSPRESOL(consPresolNonlinear)
Definition: cons_nonlinear.c:11607
static SCIP_RETCODE replaceBinaryProducts(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS *cons, SCIP_HASHMAP *exprmap, SCIP_EXPRITER *it, int *naddconss, int *nchgcoefs)
Definition: cons_nonlinear.c:4472
static SCIP_RETCODE computeVertexPolyhedralFacetBivariate(SCIP *scip, SCIP_Bool overestimate, SCIP_Real p1[2], SCIP_Real p2[2], SCIP_Real p3[2], SCIP_Real p4[2], SCIP_Real p1val, SCIP_Real p2val, SCIP_Real p3val, SCIP_Real p4val, SCIP_Real xstar[2], SCIP_Real targetvalue, SCIP_Bool *success, SCIP_Real *facetcoefs, SCIP_Real *facetconstant)
Definition: cons_nonlinear.c:9604
static SCIP_RETCODE tryAddGadgetEvenOperator(SCIP *scip, SCIP_EXPR *expr, SCIP_CONS *cons, SYM_GRAPH *graph, int parentidx, SCIP_Bool hasparentcoef, SCIP_Real parentcoef, SCIP_VAR ***consvars, SCIP_Real **consvals, int *maxnconsvars, SCIP_HASHSET *handledexprs, SCIP_Bool *success)
Definition: cons_nonlinear.c:10277
static SCIP_RETCODE addExprViolScoresAuxVars(SCIP *scip, SCIP_EXPR *expr, SCIP_Real violscore, SCIP_VAR **auxvars, int nauxvars, SCIP_SOL *sol, SCIP_Bool *success)
Definition: cons_nonlinear.c:6371
static SCIP_RETCODE detectNlhdlr(SCIP *scip, SCIP_EXPR *expr, SCIP_CONS *cons)
Definition: cons_nonlinear.c:3291
static SCIP_RETCODE computeVertexPolyhedralFacetLP(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_Bool overestimate, SCIP_Real *xstar, SCIP_Real *box, int nallvars, int *nonfixedpos, SCIP_Real *funvals, int nvars, SCIP_Real targetvalue, SCIP_Bool *success, SCIP_Real *facetcoefs, SCIP_Real *facetconstant)
Definition: cons_nonlinear.c:9201
static SCIP_DECL_CONSENFORELAX(consEnforelaxNonlinear)
Definition: cons_nonlinear.c:11417
static SCIP_DECL_EXPR_OWNERFREE(exprownerFree)
Definition: cons_nonlinear.c:485
static SCIP_RETCODE getFactorizedBinaryQuadraticExpr(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS *cons, SCIP_EXPR *sumexpr, int minterms, SCIP_EXPR **newexpr, int *naddconss)
Definition: cons_nonlinear.c:3996
static SCIP_RETCODE reformulateFactorizedBinaryQuadratic(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS *cons, SCIP_VAR *facvar, SCIP_VAR **vars, SCIP_Real *coefs, int nvars, SCIP_EXPR **newexpr, int *naddconss)
Definition: cons_nonlinear.c:3873
static SCIP_RETCODE getConsRelViolation(SCIP *scip, SCIP_CONS *cons, SCIP_Real *viol, SCIP_SOL *sol, SCIP_Longint soltag)
Definition: cons_nonlinear.c:1596
static SCIP_Bool isConsViolated(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:1696
static SCIP_DECL_CONSGETSIGNEDPERMSYMGRAPH(consGetSignedPermsymGraphNonlinear)
Definition: cons_nonlinear.c:12250
static SCIP_RETCODE getBinaryProductExprDo(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_EXPR *prodexpr, SCIP_EXPR **newexpr, int *naddconss, SCIP_Bool empathy4and)
Definition: cons_nonlinear.c:4194
static SCIP_RETCODE registerBranchingCandidatesAllUnfixed(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int *nnotify)
Definition: cons_nonlinear.c:6436
static SCIP_Bool isIntervalBetter(SCIP *scip, SCIP_Bool subsetsufficient, SCIP_INTERVAL newinterval, SCIP_INTERVAL oldinterval)
Definition: cons_nonlinear.c:2465
static SCIP_RETCODE detectNlhdlrs(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_nonlinear.c:3456
#define TABLE_EARLIEST_STAGE_NONLINEAR
Definition: cons_nonlinear.c:107
static SCIP_RETCODE getBinaryProductExpr(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_HASHMAP *exprmap, SCIP_EXPR *prodexpr, SCIP_EXPR **newexpr, int *naddconss, int *nchgcoefs)
Definition: cons_nonlinear.c:4323
static SCIP_RETCODE catchVarEvents(SCIP *scip, SCIP_EVENTHDLR *eventhdlr, SCIP_CONS *cons)
Definition: cons_nonlinear.c:1151
static SCIP_RETCODE createAuxVar(SCIP *scip, SCIP_EXPR *expr)
Definition: cons_nonlinear.c:5910
static SCIP_Real getViolSplitWeight(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_VAR *var, SCIP_SOL *sol)
Definition: cons_nonlinear.c:6232
static SCIP_DECL_CONSSEPASOL(consSepasolNonlinear)
Definition: cons_nonlinear.c:11397
static SCIP_RETCODE freeEnfoData(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool freeauxvar)
Definition: cons_nonlinear.c:422
static SCIP_RETCODE getBilinearBinaryTerms(SCIP *scip, SCIP_EXPR *sumexpr, SCIP_VAR **xs, SCIP_VAR **ys, int *childidxs, int *nterms)
Definition: cons_nonlinear.c:3823
static SCIP_RETCODE storeVarExprs(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata)
Definition: cons_nonlinear.c:737
static SCIP_RETCODE buildVertexPolyhedralSeparationLP(SCIP *scip, int nvars, SCIP_LPI **lp)
Definition: cons_nonlinear.c:9002
static SCIP_RETCODE tryAddGadgetSquaredDifference(SCIP *scip, SCIP_EXPR *sumexpr, SCIP_CONS *cons, SYM_GRAPH *graph, int sumnodeidx, SCIP_VAR ***consvars, SCIP_Real **consvals, int *maxnconsvars, SCIP_HASHSET *handledexprs)
Definition: cons_nonlinear.c:10390
static SCIP_RETCODE tryAddGadgetBilinearProductSignedPerm(SCIP *scip, SCIP_EXPR *expr, SCIP_CONS *cons, SYM_GRAPH *graph, int parentidx, SCIP_Bool hasparentcoef, SCIP_Real parentcoef, SCIP_VAR ***consvars, SCIP_Real **consvals, int *maxnconsvars, SCIP_HASHSET *handledexprs, SCIP_Bool *success)
Definition: cons_nonlinear.c:9810
static SCIP_RETCODE addSymmetryInformation(SCIP *scip, SYM_SYMTYPE symtype, SCIP_CONS *cons, SYM_GRAPH *graph, SCIP_Bool *success)
Definition: cons_nonlinear.c:10651
static SCIP_RETCODE propConss(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_Bool force, SCIP_RESULT *result, int *nchgbds)
Definition: cons_nonlinear.c:2674
static SCIP_RETCODE presolveUpgrade(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS *cons, SCIP_Bool *upgraded, int *nupgdconss, int *naddconss)
Definition: cons_nonlinear.c:5412
static SCIP_RETCODE forwardPropExpr(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_EXPR *rootexpr, SCIP_Bool tightenauxvars, SCIP_Bool *infeasible, int *ntightenings)
Definition: cons_nonlinear.c:2167
static SCIP_RETCODE consEnfo(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_nonlinear.c:8359
static SCIP_Bool isSingleLockedCand(SCIP *scip, SCIP_EXPR *expr)
Definition: cons_nonlinear.c:5519
static SCIP_Bool branchAuxNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr)
Definition: cons_nonlinear.c:6215
static SCIP_RETCODE presolveImplint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int *nchgvartypes, SCIP_Bool *infeasible)
Definition: cons_nonlinear.c:5781
static SCIP_DECL_CONSEXITSOL(consExitsolNonlinear)
Definition: cons_nonlinear.c:11257
static SCIP_RETCODE tryAddGadgetEvenOperatorSum(SCIP *scip, SCIP_EXPR *evenopexpr, SCIP_EXPR *child, SCIP_CONS *cons, SYM_GRAPH *graph, int parentidx, SCIP_Bool hasparentcoef, SCIP_Real parentcoef, SCIP_Bool hassymval, SCIP_Real symval, SCIP_VAR ***consvars, SCIP_Real **consvals, int *maxnconsvars, SCIP_HASHSET *handledexprs, SCIP_Bool *success)
Definition: cons_nonlinear.c:10135
static SCIP_Real getDualBranchscore(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_VAR *var)
Definition: cons_nonlinear.c:6799
static SCIP_DECL_CONSINITLP(consInitlpNonlinear)
Definition: cons_nonlinear.c:11348
static SCIP_RETCODE deinitSolve(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_nonlinear.c:3695
static SCIP_RETCODE ensureLocVarsArraySize(SCIP *scip, SCIP_VAR ***vars, SCIP_Real **vals, int nelems, int *maxnelems)
Definition: cons_nonlinear.c:9775
static SCIP_RETCODE createNlRow(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:3192
static SCIP_DECL_CONSSEPALP(consSepalpNonlinear)
Definition: cons_nonlinear.c:11387
static SCIP_RETCODE enforceExprNlhdlr(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS *cons, SCIP_NLHDLR *nlhdlr, SCIP_EXPR *expr, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_SOL *sol, SCIP_Real auxvalue, SCIP_Bool overestimate, SCIP_Bool separated, SCIP_Bool allowweakcuts, SCIP_Bool inenforcement, SCIP_Bool branchcandonly, SCIP_RESULT *result)
Definition: cons_nonlinear.c:7424
static SCIP_RETCODE selectBranchingCandidate(SCIP *scip, SCIP_CONSHDLR *conshdlr, BRANCHCAND *cands, int ncands, SCIP_Bool considerfracnl, SCIP_SOL *sol, BRANCHCAND **selected)
Definition: cons_nonlinear.c:7247
static SCIP_DECL_CONSGETVARS(consGetVarsNonlinear)
Definition: cons_nonlinear.c:12178
static SCIP_RETCODE scaleConsSides(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS *cons, SCIP_Bool *changed)
Definition: cons_nonlinear.c:4655
static SCIP_DECL_CONSDISABLE(consDisableNonlinear)
Definition: cons_nonlinear.c:11939
static SCIP_RETCODE computeViolation(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Longint soltag)
Definition: cons_nonlinear.c:1538
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyNonlinear)
Definition: cons_nonlinear.c:10961
static SCIP_RETCODE presolveBinaryProducts(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int *naddconss, int *nchgcoefs)
Definition: cons_nonlinear.c:4576
static SCIP_DECL_DIALOGEXEC(dialogExecDisplayNlhdlrs)
Definition: cons_nonlinear.c:12312
static SCIP_RETCODE catchVarEvent(SCIP *scip, SCIP_EVENTHDLR *eventhdlr, SCIP_EXPR *expr, SCIP_CONS *cons)
Definition: cons_nonlinear.c:1096
static SCIP_RETCODE enforceConstraints(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_SOL *sol, SCIP_Longint soltag, SCIP_Bool inenforcement, SCIP_Bool branchcandonly, SCIP_Real maxrelconsviol, SCIP_RESULT *result)
Definition: cons_nonlinear.c:7865
static SCIP_DECL_CONSEXITPRE(consExitpreNonlinear)
Definition: cons_nonlinear.c:11181
static SCIP_DECL_HASHGETKEY(bilinearTermsGetHashkey)
Definition: cons_nonlinear.c:8635
static SCIP_RETCODE presolveSingleLockedVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS *cons, int *nchgvartypes, int *naddconss, SCIP_Bool *infeasible)
Definition: cons_nonlinear.c:5577
static SCIP_DECL_CONSDELETE(consDeleteNonlinear)
Definition: cons_nonlinear.c:11290
static SCIP_DECL_EXPR_INTEVALVAR(intEvalVarBoundTightening)
Definition: cons_nonlinear.c:840
static SCIP_Bool varIsCenteredAt0(SCIP *scip, SCIP_VAR *var)
Definition: cons_nonlinear.c:10028
static SCIP_RETCODE initSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_Bool *infeasible)
Definition: cons_nonlinear.c:6033
static SCIP_RETCODE computeVertexPolyhedralFacetUnivariate(SCIP *scip, SCIP_Real left, SCIP_Real right, SCIP_Real funleft, SCIP_Real funright, SCIP_Bool *success, SCIP_Real *facetcoef, SCIP_Real *facetconstant)
Definition: cons_nonlinear.c:9457
static SCIP_DECL_TABLEOUTPUT(tableOutputNonlinear)
Definition: cons_nonlinear.c:12259
static SCIP_RETCODE collectBranchingCandidates(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_Real maxrelconsviol, SCIP_SOL *sol, SCIP_Longint soltag, BRANCHCAND *cands, int *ncands)
Definition: cons_nonlinear.c:6621
static SCIP_RETCODE branching(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_Real maxrelconsviol, SCIP_SOL *sol, SCIP_Longint soltag, SCIP_RESULT *result)
Definition: cons_nonlinear.c:7343
static SCIP_RETCODE bilinearTermsInsertAll(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_nonlinear.c:8764
static SCIP_RETCODE initSolve(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_nonlinear.c:3606
static SCIP_DECL_EXPR_OWNEREVALACTIVITY(exprownerEvalactivity)
Definition: cons_nonlinear.c:578
static SCIP_RETCODE removeSingleLockedVars(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPRITER *it, SCIP_HASHMAP *exprcands)
Definition: cons_nonlinear.c:5545
static SCIP_RETCODE branchingIntegralOrNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_Longint soltag, SCIP_Real maxrelconsviol, SCIP_Bool *branchintegral, SCIP_Bool *cutoff)
Definition: cons_nonlinear.c:7996
static SCIP_DECL_CONSGETNVARS(consGetNVarsNonlinear)
Definition: cons_nonlinear.c:12209
static SCIP_DECL_HASHKEYVAL(bilinearTermsGetHashkeyVal)
Definition: cons_nonlinear.c:8669
static void findUnlockedLinearVar(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:1706
static SCIP_RETCODE addLocks(SCIP *scip, SCIP_CONS *cons, int nlockspos, int nlocksneg)
Definition: cons_nonlinear.c:3144
static SCIP_RETCODE propExprDomains(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_RESULT *result, int *nchgbds)
Definition: cons_nonlinear.c:2878
static SCIP_RETCODE freeAuxVar(SCIP *scip, SCIP_EXPR *expr)
Definition: cons_nonlinear.c:386
static SCIP_Real getConsAbsViolation(SCIP_CONS *cons)
Definition: cons_nonlinear.c:1577
static SCIP_RETCODE bilinearTermsFree(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_nonlinear.c:8932
static SCIP_DECL_CONSENFOLP(consEnfolpNonlinear)
Definition: cons_nonlinear.c:11407
static SCIP_DECL_CONSINITSOL(consInitsolNonlinear)
Definition: cons_nonlinear.c:11211
static SCIP_DECL_CONSACTIVE(consActiveNonlinear)
Definition: cons_nonlinear.c:11796
static SCIP_DECL_SORTINDCOMP(branchcandCompare)
Definition: cons_nonlinear.c:7232
static SCIP_Bool branchingIntegralFirst(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_SOL *sol)
Definition: cons_nonlinear.c:8108
static SCIP_RETCODE createCons(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **cons, const char *name, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool copyexpr, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable)
Definition: cons_nonlinear.c:1324
static SCIP_RETCODE bilinearTermsInsertEntry(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_VAR *x, SCIP_VAR *y, int nlockspos, int nlocksneg, int *idx, SCIP_Bool existing)
Definition: cons_nonlinear.c:8839
static SCIP_RETCODE notifyNlhdlrNewsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_SOL *sol, SCIP_Bool solisbest)
Definition: cons_nonlinear.c:1959
static SCIP_Real getExprAbsOrigViolation(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Bool *violunder, SCIP_Bool *violover)
Definition: cons_nonlinear.c:1415
static SCIP_RETCODE presolveMergeConss(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_Bool *success)
Definition: cons_nonlinear.c:5077
static SCIP_Real getDomainCenter(SCIP *scip, SCIP_VAR *var)
Definition: cons_nonlinear.c:10369
static SCIP_RETCODE ensureOpenArraySizeSymdetect(SCIP *scip, int **openidx, int nelems, int *maxnelems)
Definition: cons_nonlinear.c:9747
static SCIP_RETCODE canonicalizeConstraints(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, SCIP_PRESOLTIMING presoltiming, SCIP_Bool *infeasible, int *ndelconss, int *naddconss, int *nchgcoefs)
Definition: cons_nonlinear.c:4805
static SCIP_RETCODE dropVarEvents(SCIP *scip, SCIP_EVENTHDLR *eventhdlr, SCIP_CONS *cons)
Definition: cons_nonlinear.c:1283
static SCIP_DECL_SORTPTRCOMP(compIndexConsNonlinear)
Definition: cons_nonlinear.c:967
static SCIP_Real getExprAbsAuxViolation(SCIP *scip, SCIP_EXPR *expr, SCIP_Real auxvalue, SCIP_SOL *sol, SCIP_Bool *violunder, SCIP_Bool *violover)
Definition: cons_nonlinear.c:1481
static SCIP_DECL_CONSENFOPS(consEnfopsNonlinear)
Definition: cons_nonlinear.c:11427
static SCIP_DECL_EXPR_OWNERCREATE(exprownerCreate)
Definition: cons_nonlinear.c:602
constraint handler for nonlinear constraints specified by algebraic expressions
Constraint handler for variable bound constraints .
methods for debugging
default user interface dialog
absolute expression handler
power and signed power expression handlers
sum expression handler
handler for sin expressions
constant value expression handler
variable expression handler
handler for variable index expressions
SCIP_Real SCIPevalBilinAuxExprNonlinear(SCIP *scip, SCIP_VAR *x, SCIP_VAR *y, SCIP_CONSNONLINEAR_AUXEXPR *auxexpr, SCIP_SOL *sol)
Definition: cons_nonlinear.c:13436
SCIP_RETCODE SCIPcheckQuadraticNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *isquadratic)
Definition: cons_nonlinear.c:13879
SCIP_RETCODE SCIPaddLinearVarNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real coef)
Definition: cons_nonlinear.c:14042
SCIP_RETCODE SCIPmarkExprPropagateNonlinear(SCIP *scip, SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14873
SCIP_RETCODE SCIPcreateConsBasicSignpowerNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_VAR *x, SCIP_VAR *z, SCIP_Real exponent, SCIP_Real xoffset, SCIP_Real zcoef, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_nonlinear.c:12906
SCIP_Real SCIPgetExprViolScoreNonlinear(SCIP_EXPR *expr)
Definition: cons_nonlinear.c:15043
unsigned int SCIPgetExprNAuxvarUsesNonlinear(SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14455
SCIP_RETCODE SCIPincludeConsUpgradeNonlinear(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nlconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_nonlinear.c:12592
void SCIPgetLinvarMayDecreaseNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **var, SCIP_Real *coef)
Definition: cons_nonlinear.c:14258
void SCIPgetExprEnfoDataNonlinear(SCIP_EXPR *expr, int idx, SCIP_NLHDLR **nlhdlr, SCIP_NLHDLREXPRDATA **nlhdlrexprdata, SCIP_NLHDLR_METHOD *nlhdlrparticipation, SCIP_Bool *sepabelowusesactivity, SCIP_Bool *sepaaboveusesactivity, SCIP_Real *auxvalue)
Definition: cons_nonlinear.c:14362
int SCIPgetExprNLocksPosNonlinear(SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14311
SCIP_RETCODE SCIPcreateConsBasicSOCNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *coefs, SCIP_Real *offsets, SCIP_Real constant, SCIP_VAR *rhsvar, SCIP_Real rhscoeff, SCIP_Real rhsoffset)
Definition: cons_nonlinear.c:12835
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18218
SCIP_RETCODE SCIPcreateConsBasicVarbound(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_VAR *var, SCIP_VAR *vbdvar, SCIP_Real vbdcoef, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_varbound.c:5462
SCIP_RETCODE SCIPchgLhsNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_nonlinear.c:13910
SCIP_HASHMAP * SCIPgetVarExprHashmapNonlinear(SCIP_CONSHDLR *conshdlr)
Definition: cons_nonlinear.c:13006
SCIP_RETCODE SCIPinsertBilinearTermImplicitNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_VAR *x, SCIP_VAR *y, SCIP_VAR *auxvar, SCIP_Real coefx, SCIP_Real coefy, SCIP_Real coefaux, SCIP_Real cst, SCIP_Bool overestimate)
Definition: cons_nonlinear.c:13492
void SCIPsetExprEnfoAuxValueNonlinear(SCIP_EXPR *expr, int idx, SCIP_Real auxvalue)
Definition: cons_nonlinear.c:14403
SCIP_RETCODE SCIPcreateConsBounddisjunction(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_BOUNDTYPE *boundtypes, SCIP_Real *bounds, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_bounddisjunction.c:3286
SCIP_RETCODE SCIPgetNlRowNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_NLROW **nlrow)
Definition: cons_nonlinear.c:13829
SCIP_RETCODE SCIPchgRhsNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_nonlinear.c:13949
SCIP_RETCODE SCIPgetAbsViolationNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Real *viol)
Definition: cons_nonlinear.c:14218
SCIP_RETCODE SCIPgetExprRelAuxViolationNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Real auxvalue, SCIP_SOL *sol, SCIP_Real *viol, SCIP_Bool *violunder, SCIP_Bool *violover)
Definition: cons_nonlinear.c:14635
SCIP_Longint SCIPgetCurBoundsTagNonlinear(SCIP_CONSHDLR *conshdlr)
Definition: cons_nonlinear.c:12957
SCIP_Bool SCIPassumeConvexNonlinear(SCIP_CONSHDLR *conshdlr)
Definition: cons_nonlinear.c:13287
SCIP_VAR * SCIPgetExprAuxVarNonlinear(SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14336
int SCIPgetBilinTermIdxNonlinear(SCIP_CONSHDLR *conshdlr, SCIP_VAR *x, SCIP_VAR *y)
Definition: cons_nonlinear.c:13363
void SCIPgetLinvarMayIncreaseNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **var, SCIP_Real *coef)
Definition: cons_nonlinear.c:14282
SCIP_RETCODE SCIPinsertBilinearTermExistingNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_VAR *x, SCIP_VAR *y, SCIP_VAR *auxvar, int nlockspos, int nlocksneg)
Definition: cons_nonlinear.c:13455
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:18066
SCIP_RETCODE SCIPaddExprNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_EXPR *expr, SCIP_Real coef)
Definition: cons_nonlinear.c:14115
SCIP_RETCODE SCIPprocessRowprepNonlinear(SCIP *scip, SCIP_NLHDLR *nlhdlr, SCIP_CONS *cons, SCIP_EXPR *expr, SCIP_ROWPREP *rowprep, SCIP_Bool overestimate, SCIP_VAR *auxvar, SCIP_Real auxvalue, SCIP_Bool allowweakcuts, SCIP_Bool branchscoresuccess, SCIP_Bool inenforcement, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_nonlinear.c:13016
SCIP_EXPR * SCIPgetExprNonlinear(SCIP_CONS *cons)
Definition: cons_nonlinear.c:13781
SCIP_RETCODE SCIPgetExprAbsOrigViolationNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Longint soltag, SCIP_Real *viol, SCIP_Bool *violunder, SCIP_Bool *violover)
Definition: cons_nonlinear.c:14568
unsigned int SCIPgetExprNSepaUsesActivityNonlinear(SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14441
SCIP_RETCODE SCIPcreateConsNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable)
Definition: cons_nonlinear.c:12663
SCIP_RETCODE SCIPcreateConsBasicNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_nonlinear.c:12718
SCIP_RETCODE SCIPgetExprActivityNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Real *activity)
Definition: cons_nonlinear.c:14191
int SCIPgetExprNEnfosNonlinear(SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14351
int SCIPgetExprNLocksNegNonlinear(SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14322
SCIP_CONSNONLINEAR_BILINTERM * SCIPgetBilinTermsNonlinear(SCIP_CONSHDLR *conshdlr)
Definition: cons_nonlinear.c:13344
SCIP_RETCODE SCIPtightenExprIntervalNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_INTERVAL newbounds, SCIP_Bool *cutoff, int *ntightenings)
Definition: cons_nonlinear.c:14727
SCIP_RETCODE SCIPaddExprsViolScoreNonlinear(SCIP *scip, SCIP_EXPR **exprs, int nexprs, SCIP_Real violscore, SCIP_SOL *sol, SCIP_Bool *success)
Definition: cons_nonlinear.c:14972
int SCIPgetNBilinTermsNonlinear(SCIP_CONSHDLR *conshdlr)
Definition: cons_nonlinear.c:13325
SCIP_Real SCIPgetExprPartialDiffNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_VAR *var)
Definition: cons_nonlinear.c:15089
SCIP_Longint SCIPgetLastBoundRelaxTagNonlinear(SCIP_CONSHDLR *conshdlr)
Definition: cons_nonlinear.c:12970
SCIP_RETCODE SCIPcollectBilinTermsNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_nonlinear.c:13306
SCIP_RETCODE SCIPregisterExprUsageNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool useauxvar, SCIP_Bool useactivityforprop, SCIP_Bool useactivityforsepabelow, SCIP_Bool useactivityforsepaabove)
Definition: cons_nonlinear.c:14478
SCIP_RETCODE SCIPcomputeFacetVertexPolyhedralNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_Bool overestimate, SCIP_DECL_VERTEXPOLYFUN((*function)), void *fundata, SCIP_Real *xstar, SCIP_Real *box, int nallvars, SCIP_Real targetvalue, SCIP_Bool *success, SCIP_Real *facetcoefs, SCIP_Real *facetconstant)
Definition: cons_nonlinear.c:13590
SCIP_RETCODE SCIPcreateConsBasicQuadraticNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, int nquadterms, SCIP_VAR **quadvars1, SCIP_VAR **quadvars2, SCIP_Real *quadcoefs, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_nonlinear.c:12808
SCIP_CONSNONLINEAR_BILINTERM * SCIPgetBilinTermNonlinear(SCIP_CONSHDLR *conshdlr, SCIP_VAR *x, SCIP_VAR *y)
Definition: cons_nonlinear.c:13408
SCIP_RETCODE SCIPgetRelViolationNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Real *viol)
Definition: cons_nonlinear.c:14241
SCIP_INTERVAL SCIPgetExprBoundsNonlinear(SCIP *scip, SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14671
SCIP_RETCODE SCIPcreateConsBasicAnd(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_VAR *resvar, int nvars, SCIP_VAR **vars)
Definition: cons_and.c:5180
unsigned int SCIPgetExprNPropUsesActivityNonlinear(SCIP_EXPR *expr)
Definition: cons_nonlinear.c:14427
SCIP_RETCODE SCIPcreateConsQuadraticNonlinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, int nquadterms, SCIP_VAR **quadvars1, SCIP_VAR **quadvars2, SCIP_Real *quadcoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable)
Definition: cons_nonlinear.c:12737
SCIP_RETCODE SCIPchgExprNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_EXPR *expr)
Definition: cons_nonlinear.c:13988
SCIP_EXPRCURV SCIPgetCurvatureNonlinear(SCIP_CONS *cons)
Definition: cons_nonlinear.c:13858
void SCIPaddExprViolScoreNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Real violscore)
Definition: cons_nonlinear.c:14926
void SCIPincrementCurBoundsTagNonlinear(SCIP_CONSHDLR *conshdlr, SCIP_Bool boundrelax)
Definition: cons_nonlinear.c:12988
SCIP_RETCODE SCIPgetExprAbsAuxViolationNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Real auxvalue, SCIP_SOL *sol, SCIP_Real *viol, SCIP_Bool *violunder, SCIP_Bool *violover)
Definition: cons_nonlinear.c:14603
SCIP_Real SCIPevalExprQuadraticAuxNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol)
Definition: cons_nonlinear.c:15181
SCIP_Real SCIPgetExprPartialDiffGradientDirNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_VAR *var)
Definition: cons_nonlinear.c:15135
SCIP_RETCODE SCIPincludeConshdlrNonlinear(SCIP *scip)
Definition: cons_nonlinear.c:12356
SCIP_RETCODE SCIPcreateExprVar(SCIP *scip, SCIP_EXPR **expr, SCIP_VAR *var, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: expr_var.c:390
SCIP_Bool SCIPisExprVaridx(SCIP *scip, SCIP_EXPR *expr)
Definition: expr_varidx.c:252
SCIP_RETCODE SCIPappendExprSumExpr(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPR *child, SCIP_Real childcoef)
Definition: expr_sum.c:1151
SCIP_RETCODE SCIPcreateExprSignpower(SCIP *scip, SCIP_EXPR **expr, SCIP_EXPR *child, SCIP_Real exponent, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: expr_pow.c:3217
SCIP_Bool SCIPisExprSignpower(SCIP *scip, SCIP_EXPR *expr)
Definition: expr_pow.c:3242
SCIP_RETCODE SCIPcreateExprSum(SCIP *scip, SCIP_EXPR **expr, int nchildren, SCIP_EXPR **children, SCIP_Real *coefficients, SCIP_Real constant, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: expr_sum.c:1114
SCIP_RETCODE SCIPcreateExprValue(SCIP *scip, SCIP_EXPR **expr, SCIP_Real value, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: expr_value.c:270
SCIP_RETCODE SCIPcreateExprPow(SCIP *scip, SCIP_EXPR **expr, SCIP_EXPR *child, SCIP_Real exponent, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: expr_pow.c:3193
int SCIPhashmapGetImageInt(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3284
void * SCIPhashmapGetImage(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3264
SCIP_RETCODE SCIPhashmapInsert(SCIP_HASHMAP *hashmap, void *origin, void *image)
Definition: misc.c:3159
SCIP_RETCODE SCIPhashmapCreate(SCIP_HASHMAP **hashmap, BMS_BLKMEM *blkmem, int mapsize)
Definition: misc.c:3077
SCIP_Bool SCIPhashmapExists(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3426
SCIP_RETCODE SCIPhashmapInsertInt(SCIP_HASHMAP *hashmap, void *origin, int image)
Definition: misc.c:3195
SCIP_RETCODE SCIPhashmapRemove(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3442
void SCIPhashsetFree(SCIP_HASHSET **hashset, BMS_BLKMEM *blkmem)
Definition: misc.c:3793
SCIP_Bool SCIPhashsetExists(SCIP_HASHSET *hashset, void *element)
Definition: misc.c:3820
SCIP_RETCODE SCIPhashsetInsert(SCIP_HASHSET *hashset, BMS_BLKMEM *blkmem, void *element)
Definition: misc.c:3803
SCIP_RETCODE SCIPhashsetCreate(SCIP_HASHSET **hashset, BMS_BLKMEM *blkmem, int size)
Definition: misc.c:3762
SCIP_RETCODE SCIPhashsetRemove(SCIP_HASHSET *hashset, void *element)
Definition: misc.c:3861
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2299
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2611
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2550
SCIP_RETCODE SCIPlpiChgSides(SCIP_LPI *lpi, int nrows, const int *ind, const SCIP_Real *lhs, const SCIP_Real *rhs)
Definition: lpi_clp.cpp:1167
SCIP_RETCODE SCIPlpiChgObjsen(SCIP_LPI *lpi, SCIP_OBJSEN objsen)
Definition: lpi_clp.cpp:1220
SCIP_RETCODE SCIPlpiSetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real dval)
Definition: lpi_clp.cpp:3833
SCIP_RETCODE SCIPlpiSetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int ival)
Definition: lpi_clp.cpp:3692
SCIP_RETCODE SCIPlpiGetSol(SCIP_LPI *lpi, SCIP_Real *objval, SCIP_Real *primsol, SCIP_Real *dualsol, SCIP_Real *activity, SCIP_Real *redcost)
Definition: lpi_clp.cpp:2788
SCIP_RETCODE SCIPlpiLoadColLP(SCIP_LPI *lpi, SCIP_OBJSEN objsen, int ncols, const SCIP_Real *obj, const SCIP_Real *lb, const SCIP_Real *ub, char **colnames, int nrows, const SCIP_Real *lhs, const SCIP_Real *rhs, char **rownames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_clp.cpp:677
SCIP_RETCODE SCIPlpiCreate(SCIP_LPI **lpi, SCIP_MESSAGEHDLR *messagehdlr, const char *name, SCIP_OBJSEN objsen)
Definition: lpi_clp.cpp:531
SCIP_RETCODE SCIPlpiChgObj(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *obj)
Definition: lpi_clp.cpp:1240
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3475
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:208
void SCIPdialogMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:191
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:120
SCIP_RETCODE SCIPhasExprCurvature(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPRCURV curv, SCIP_Bool *success, SCIP_HASHMAP *assumevarfixed)
Definition: nlhdlr_convex.c:2628
SCIP_RETCODE SCIPheurPassSolTrySol(SCIP *scip, SCIP_HEUR *heur, SCIP_SOL *sol)
Definition: heur_trysol.c:252
SCIP_RETCODE SCIPupdateStartpointHeurSubNlp(SCIP *scip, SCIP_HEUR *heur, SCIP_SOL *solcand, SCIP_Real violation)
Definition: heur_subnlp.c:1943
SCIP_RETCODE SCIPaddCharParam(SCIP *scip, const char *name, const char *desc, char *valueptr, SCIP_Bool isadvanced, char defaultvalue, const char *allowedvalues, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:167
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPgetCharParam(SCIP *scip, const char *name, char *value)
Definition: scip_param.c:326
SCIP_RETCODE SCIPaddExternBranchCand(SCIP *scip, SCIP_VAR *var, SCIP_Real score, SCIP_Real solval)
Definition: scip_branch.c:665
SCIP_Real SCIPgetBranchingPoint(SCIP *scip, SCIP_VAR *var, SCIP_Real suggestion)
Definition: scip_branch.c:897
SCIP_RETCODE SCIPbranchVarVal(SCIP *scip, SCIP_VAR *var, SCIP_Real val, SCIP_NODE **downchild, SCIP_NODE **eqchild, SCIP_NODE **upchild)
Definition: scip_branch.c:1126
SCIP_RETCODE SCIPgetLPBranchCands(SCIP *scip, SCIP_VAR ***lpcands, SCIP_Real **lpcandssol, SCIP_Real **lpcandsfrac, int *nlpcands, int *npriolpcands, int *nfracimplvars)
Definition: scip_branch.c:395
SCIP_Real SCIPgetBranchScore(SCIP *scip, SCIP_VAR *var, SCIP_Real downgain, SCIP_Real upgain)
Definition: scip_branch.c:849
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4227
int SCIPconshdlrGetMaxNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4970
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:941
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4217
SCIP_RETCODE SCIPincludeConshdlr(SCIP *scip, const char *name, const char *desc, int sepapriority, int enfopriority, int chckpriority, int sepafreq, int propfreq, int eagerfreq, int maxprerounds, SCIP_Bool delaysepa, SCIP_Bool delayprop, SCIP_Bool needscons, SCIP_PROPTIMING proptiming, SCIP_PRESOLTIMING presoltiming, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSFREE((*consfree)), SCIP_DECL_CONSINIT((*consinit)), SCIP_DECL_CONSEXIT((*consexit)), SCIP_DECL_CONSINITPRE((*consinitpre)), SCIP_DECL_CONSEXITPRE((*consexitpre)), SCIP_DECL_CONSINITSOL((*consinitsol)), SCIP_DECL_CONSEXITSOL((*consexitsol)), SCIP_DECL_CONSDELETE((*consdelete)), SCIP_DECL_CONSTRANS((*constrans)), SCIP_DECL_CONSINITLP((*consinitlp)), SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFORELAX((*consenforelax)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSPROP((*consprop)), SCIP_DECL_CONSPRESOL((*conspresol)), SCIP_DECL_CONSRESPROP((*consresprop)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_DECL_CONSACTIVE((*consactive)), SCIP_DECL_CONSDEACTIVE((*consdeactive)), SCIP_DECL_CONSENABLE((*consenable)), SCIP_DECL_CONSDISABLE((*consdisable)), SCIP_DECL_CONSDELVARS((*consdelvars)), SCIP_DECL_CONSPRINT((*consprint)), SCIP_DECL_CONSCOPY((*conscopy)), SCIP_DECL_CONSPARSE((*consparse)), SCIP_DECL_CONSGETVARS((*consgetvars)), SCIP_DECL_CONSGETNVARS((*consgetnvars)), SCIP_DECL_CONSGETDIVEBDCHGS((*consgetdivebdchgs)), SCIP_DECL_CONSGETPERMSYMGRAPH((*consgetpermsymgraph)), SCIP_DECL_CONSGETSIGNEDPERMSYMGRAPH((*consgetsignedpermsymgraph)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:83
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4593
SCIP_Bool SCIPconsIsPropagationEnabled(SCIP_CONS *cons)
Definition: cons.c:8332
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2537
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:998
SCIP_Bool SCIPconsIsSeparationEnabled(SCIP_CONS *cons)
Definition: cons.c:8321
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1174
SCIP_Real SCIPgetCutEfficacy(SCIP *scip, SCIP_SOL *sol, SCIP_ROW *cut)
Definition: scip_cut.c:94
SCIP_Bool SCIPisCutEfficacious(SCIP *scip, SCIP_SOL *sol, SCIP_ROW *cut)
Definition: scip_cut.c:117
SCIP_Bool SCIPisCutApplicable(SCIP *scip, SCIP_ROW *cut)
Definition: scip_cut.c:207
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:250
SCIP_RETCODE SCIPreleaseDialog(SCIP *scip, SCIP_DIALOG **dialog)
Definition: scip_dialog.c:124
SCIP_DIALOG * SCIPdialoghdlrGetRoot(SCIP_DIALOGHDLR *dialoghdlr)
Definition: dialog.c:436
SCIP_Bool SCIPdialogHasEntry(SCIP_DIALOG *dialog, const char *entryname)
Definition: dialog.c:995
SCIP_RETCODE SCIPdialoghdlrAddHistory(SCIP_DIALOGHDLR *dialoghdlr, SCIP_DIALOG *dialog, const char *command, SCIP_Bool escapecommand)
Definition: dialog.c:726
SCIP_RETCODE SCIPincludeDialog(SCIP *scip, SCIP_DIALOG **dialog, SCIP_DECL_DIALOGCOPY((*dialogcopy)), SCIP_DECL_DIALOGEXEC((*dialogexec)), SCIP_DECL_DIALOGDESC((*dialogdesc)), SCIP_DECL_DIALOGFREE((*dialogfree)), const char *name, const char *desc, SCIP_Bool issubmenu, SCIP_DIALOGDATA *dialogdata)
Definition: scip_dialog.c:59
SCIP_RETCODE SCIPaddDialogEntry(SCIP *scip, SCIP_DIALOG *dialog, SCIP_DIALOG *subdialog)
Definition: scip_dialog.c:171
int SCIPdialogFindEntry(SCIP_DIALOG *dialog, const char *entryname, SCIP_DIALOG **subdialog)
Definition: dialog.c:1028
int SCIPgetPtrarrayMinIdx(SCIP *scip, SCIP_PTRARRAY *ptrarray)
Definition: scip_datastructures.c:592
void * SCIPgetPtrarrayVal(SCIP *scip, SCIP_PTRARRAY *ptrarray, int idx)
Definition: scip_datastructures.c:558
SCIP_RETCODE SCIPfreePtrarray(SCIP *scip, SCIP_PTRARRAY **ptrarray)
Definition: scip_datastructures.c:509
int SCIPgetPtrarrayMaxIdx(SCIP *scip, SCIP_PTRARRAY *ptrarray)
Definition: scip_datastructures.c:606
SCIP_RETCODE SCIPcreatePtrarray(SCIP *scip, SCIP_PTRARRAY **ptrarray)
Definition: scip_datastructures.c:492
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:104
SCIP_EVENTHDLR * SCIPfindEventhdlr(SCIP *scip, const char *name)
Definition: scip_event.c:234
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:354
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:400
SCIP_RETCODE SCIPcatchEvent(SCIP *scip, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:286
SCIP_RETCODE SCIPdropEvent(SCIP *scip, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:320
SCIP_Bool SCIPexprhdlrHasGetSymData(SCIP_EXPRHDLR *exprhdlr)
Definition: expr.c:685
SCIP_Bool SCIPexprhdlrHasMonotonicity(SCIP_EXPRHDLR *exprhdlr)
Definition: expr.c:665
SCIP_Bool SCIPexprhdlrHasReverseProp(SCIP_EXPRHDLR *exprhdlr)
Definition: expr.c:675
void SCIPexprSetActivity(SCIP_EXPR *expr, SCIP_INTERVAL activity, SCIP_Longint activitytag)
Definition: expr.c:4042
SCIP_RETCODE SCIPcreateExprQuadratic(SCIP *scip, SCIP_EXPR **expr, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, int nquadterms, SCIP_VAR **quadvars1, SCIP_VAR **quadvars2, SCIP_Real *quadcoefs, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1033
SCIP_RETCODE SCIPgetSymDataExpr(SCIP *scip, SCIP_EXPR *expr, SYM_EXPRDATA **symdata)
Definition: scip_expr.c:1792
SCIP_RETCODE SCIPevalExpr(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Longint soltag)
Definition: scip_expr.c:1635
void SCIPexprGetQuadraticBilinTerm(SCIP_EXPR *expr, int termidx, SCIP_EXPR **expr1, SCIP_EXPR **expr2, SCIP_Real *coef, int *pos2, SCIP_EXPR **prodexpr)
Definition: expr.c:4204
SCIP_RETCODE SCIPcomputeExprIntegrality(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:2015
SCIP_Bool SCIPisExprProduct(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1464
SCIP_RETCODE SCIPevalExprGradient(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Longint soltag)
Definition: scip_expr.c:1667
SCIP_EXPR * SCIPexpriterSkipDFS(SCIP_EXPRITER *iterator)
Definition: expriter.c:930
SCIP_EXPR_OWNERDATA * SCIPexprGetOwnerData(SCIP_EXPR *expr)
Definition: expr.c:3921
SCIP_RETCODE SCIPgetExprNVars(SCIP *scip, SCIP_EXPR *expr, int *nvars)
Definition: scip_expr.c:2058
SCIP_Bool SCIPexprAreQuadraticExprsVariables(SCIP_EXPR *expr)
Definition: expr.c:4240
void SCIPexprGetQuadraticData(SCIP_EXPR *expr, SCIP_Real *constant, int *nlinexprs, SCIP_EXPR ***linexprs, SCIP_Real **lincoefs, int *nquadexprs, int *nbilinexprs, SCIP_Real **eigenvalues, SCIP_Real **eigenvectors)
Definition: expr.c:4119
SCIP_RETCODE SCIPreplaceExprChild(SCIP *scip, SCIP_EXPR *expr, int childidx, SCIP_EXPR *newchild)
Definition: scip_expr.c:1248
SCIP_EXPRITER_USERDATA SCIPexpriterGetCurrentUserData(SCIP_EXPRITER *iterator)
Definition: expriter.c:756
SCIP_Real SCIPgetCoefExprProduct(SCIP_EXPR *expr)
Definition: expr_product.c:2301
void SCIPfreeExprQuadratic(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:2395
SCIP_RETCODE SCIPreleaseExpr(SCIP *scip, SCIP_EXPR **expr)
Definition: scip_expr.c:1417
SCIP_EXPR * SCIPexpriterGetCurrent(SCIP_EXPRITER *iterator)
Definition: expriter.c:683
void SCIPexpriterSetStagesDFS(SCIP_EXPRITER *iterator, SCIP_EXPRITER_STAGE stopstages)
Definition: expriter.c:664
SCIP_RETCODE SCIPparseExpr(SCIP *scip, SCIP_EXPR **expr, const char *exprstr, const char **finalpos, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1380
SCIP_EXPR * SCIPexpriterRestartDFS(SCIP_EXPRITER *iterator, SCIP_EXPR *expr)
Definition: expriter.c:630
SCIP_RETCODE SCIPcreateExpriter(SCIP *scip, SCIP_EXPRITER **iterator)
Definition: scip_expr.c:2337
void SCIPexprSetIntegrality(SCIP_EXPR *expr, SCIP_Bool isintegral)
Definition: expr.c:4089
SCIP_RETCODE SCIPprintExpr(SCIP *scip, SCIP_EXPR *expr, FILE *file)
Definition: scip_expr.c:1486
SCIP_EXPR * SCIPexpriterGetParentDFS(SCIP_EXPRITER *iterator)
Definition: expriter.c:740
void SCIPexpriterSetCurrentUserData(SCIP_EXPRITER *iterator, SCIP_EXPRITER_USERDATA userdata)
Definition: expriter.c:806
SCIP_RETCODE SCIPreplaceCommonSubexpressions(SCIP *scip, SCIP_EXPR **exprs, int nexprs, SCIP_Bool *replacedroot)
Definition: scip_expr.c:1820
SCIP_EXPR * SCIPexpriterGetNext(SCIP_EXPRITER *iterator)
Definition: expriter.c:858
SCIP_RETCODE SCIPcheckExprQuadratic(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool *isquadratic)
Definition: scip_expr.c:2377
SCIP_RETCODE SCIPcopyExpr(SCIP *sourcescip, SCIP *targetscip, SCIP_EXPR *expr, SCIP_EXPR **copyexpr, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *valid)
Definition: scip_expr.c:1318
void SCIPexpriterSetChildUserData(SCIP_EXPRITER *iterator, SCIP_EXPRITER_USERDATA userdata)
Definition: expriter.c:838
void SCIPexprGetQuadraticQuadTerm(SCIP_EXPR *quadexpr, int termidx, SCIP_EXPR **expr, SCIP_Real *lincoef, SCIP_Real *sqrcoef, int *nadjbilin, int **adjbilin, SCIP_EXPR **sqrexpr)
Definition: expr.c:4164
int SCIPexpriterGetChildIdxDFS(SCIP_EXPRITER *iterator)
Definition: expriter.c:707
SCIP_EXPRITER_STAGE SCIPexpriterGetStageDFS(SCIP_EXPRITER *iterator)
Definition: expriter.c:696
SCIP_RETCODE SCIPduplicateExpr(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPR **copyexpr, SCIP_DECL_EXPR_MAPEXPR((*mapexpr)), void *mapexprdata, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1281
SCIP_RETCODE SCIPexpriterInit(SCIP_EXPRITER *iterator, SCIP_EXPR *expr, SCIP_EXPRITER_TYPE type, SCIP_Bool allowrevisit)
Definition: expriter.c:501
SCIP_RETCODE SCIPgetExprVarExprs(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPR **varexprs, int *nvarexprs)
Definition: scip_expr.c:2096
SCIP_RETCODE SCIPsimplifyExpr(SCIP *scip, SCIP_EXPR *rootexpr, SCIP_EXPR **simplified, SCIP_Bool *changed, SCIP_Bool *infeasible, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1773
SCIP_RETCODE SCIPevalExprActivity(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1717
SCIP_EXPR * SCIPexpriterGetChildExprDFS(SCIP_EXPRITER *iterator)
Definition: expriter.c:721
void SCIPintervalIntersectEps(SCIP_INTERVAL *resultant, SCIP_Real eps, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:578
SCIP_Bool SCIPintervalIsEntire(SCIP_Real infinity, SCIP_INTERVAL operand)
Definition: intervalarith.c:482
void SCIPintervalSetEntire(SCIP_Real infinity, SCIP_INTERVAL *resultant)
Definition: intervalarith.c:470
SCIP_Bool SCIPintervalIsSubsetEQ(SCIP_Real infinity, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:509
SCIP_Bool SCIPintervalIsEmpty(SCIP_Real infinity, SCIP_INTERVAL operand)
Definition: intervalarith.c:458
void SCIPintervalSetBounds(SCIP_INTERVAL *resultant, SCIP_Real inf, SCIP_Real sup)
Definition: intervalarith.c:433
void SCIPintervalSetEmpty(SCIP_INTERVAL *resultant)
Definition: intervalarith.c:447
#define SCIPensureBlockMemoryArray(scip, ptr, arraysizeptr, minsize)
Definition: scip_mem.h:107
#define SCIPallocClearBufferArray(scip, ptr, num)
Definition: scip_mem.h:126
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:132
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:99
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:111
SCIP_RETCODE SCIPsetNlRowExpr(SCIP *scip, SCIP_NLROW *nlrow, SCIP_EXPR *expr)
Definition: scip_nlp.c:1248
SCIP_RETCODE SCIPaddLinearCoefToNlRow(SCIP *scip, SCIP_NLROW *nlrow, SCIP_VAR *var, SCIP_Real val)
Definition: scip_nlp.c:1161
SCIP_RETCODE SCIPreleaseNlRow(SCIP *scip, SCIP_NLROW **nlrow)
Definition: scip_nlp.c:1058
SCIP_RETCODE SCIPchgNlRowConstant(SCIP *scip, SCIP_NLROW *nlrow, SCIP_Real constant)
Definition: scip_nlp.c:1126
void SCIPsetNlRowCurvature(SCIP *scip, SCIP_NLROW *nlrow, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:1140
SCIP_RETCODE SCIPcreateNlRow(SCIP *scip, SCIP_NLROW **nlrow, const char *name, SCIP_Real constant, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:954
SCIP_NLHDLR ** SCIPgetNlhdlrsNonlinear(SCIP_CONSHDLR *conshdlr)
Definition: cons_nonlinear.c:15309
int SCIPnlhdlrGetDetectPriority(SCIP_NLHDLR *nlhdlr)
Definition: nlhdlr.c:186
SCIP_NLHDLREXPRDATA * SCIPgetNlhdlrExprDataNonlinear(SCIP_NLHDLR *nlhdlr, SCIP_EXPR *expr)
Definition: cons_nonlinear.c:15349
int SCIPgetNNlhdlrsNonlinear(SCIP_CONSHDLR *conshdlr)
Definition: cons_nonlinear.c:15294
SCIP_NLHDLR * SCIPfindNlhdlrNonlinear(SCIP_CONSHDLR *conshdlr, const char *name)
Definition: cons_nonlinear.c:15324
SCIP_RETCODE SCIPincludeNlhdlrNonlinear(SCIP *scip, SCIP_NLHDLR **nlhdlr, const char *name, const char *desc, int detectpriority, int enfopriority, SCIP_DECL_NLHDLRDETECT((*detect)), SCIP_DECL_NLHDLREVALAUX((*evalaux)), SCIP_NLHDLRDATA *nlhdlrdata)
Definition: cons_nonlinear.c:15245
SCIP_CONSHDLR * SCIProwGetOriginConshdlr(SCIP_ROW *row)
Definition: lp.c:17456
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2212
void SCIPmarkRowNotRemovableLocal(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1868
SCIP_RETCODE SCIPcreateSolCopy(SCIP *scip, SCIP_SOL **sol, SCIP_SOL *sourcesol)
Definition: scip_sol.c:470
SCIP_RETCODE SCIPcreateLPSol(SCIP *scip, SCIP_SOL **sol, SCIP_HEUR *heur)
Definition: scip_sol.c:222
SCIP_RETCODE SCIPincSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var, SCIP_Real incval)
Definition: scip_sol.c:1170
SCIP_RETCODE SCIPsetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var, SCIP_Real val)
Definition: scip_sol.c:1073
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1213
SCIP_Real SCIPgetSolTransObj(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1343
SCIP_Real SCIPgetAvgPseudocostCount(SCIP *scip, SCIP_BRANCHDIR dir)
Definition: scip_solvingstats.c:1842
SCIP_RETCODE SCIPincludeTable(SCIP *scip, const char *name, const char *desc, SCIP_Bool active, SCIP_DECL_TABLECOPY((*tablecopy)), SCIP_DECL_TABLEFREE((*tablefree)), SCIP_DECL_TABLEINIT((*tableinit)), SCIP_DECL_TABLEEXIT((*tableexit)), SCIP_DECL_TABLEINITSOL((*tableinitsol)), SCIP_DECL_TABLEEXITSOL((*tableexitsol)), SCIP_DECL_TABLEOUTPUT((*tableoutput)), SCIP_TABLEDATA *tabledata, int position, SCIP_STAGE earlieststage)
Definition: scip_table.c:56
SCIP_RETCODE SCIPcreateClock(SCIP *scip, SCIP_CLOCK **clck)
Definition: scip_timing.c:76
SCIP_RETCODE SCIPresetClock(SCIP *scip, SCIP_CLOCK *clck)
Definition: scip_timing.c:144
SCIP_Real SCIPgetClockTime(SCIP *scip, SCIP_CLOCK *clck)
Definition: scip_timing.c:319
SCIP_RETCODE SCIPstartClock(SCIP *scip, SCIP_CLOCK *clck)
Definition: scip_timing.c:161
SCIP_Bool SCIPisRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1156
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1143
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1128
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:471
SCIP_Bool SCIPisSumLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:692
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:869
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:881
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:445
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:857
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:404
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5326
SCIP_RETCODE SCIPaddVarLocks(SCIP *scip, SCIP_VAR *var, int nlocksdown, int nlocksup)
Definition: scip_var.c:4440
SCIP_Real SCIPgetVarPseudocostCountCurrentRun(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:9073
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3353
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5443
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:4768
SCIP_Real SCIPgetVarPseudocostVal(SCIP *scip, SCIP_VAR *var, SCIP_Real solvaldelta)
Definition: scip_var.c:8937
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:4736
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8299
SCIP_CLIQUE ** SCIPvarGetCliques(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:18440
SCIP_RETCODE SCIPmarkDoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8838
SCIP_RETCODE SCIPcreateVarBasic(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype)
Definition: scip_var.c:194
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3295
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1439
SCIP_RETCODE SCIPqueueCreate(SCIP_QUEUE **queue, int initsize, SCIP_Real sizefac)
Definition: misc.c:996
void SCIPfreeRandom(SCIP *scip, SCIP_RANDNUMGEN **randnumgen)
Definition: scip_randnumgen.c:79
SCIP_Real SCIPrandomGetReal(SCIP_RANDNUMGEN *randnumgen, SCIP_Real minrandval, SCIP_Real maxrandval)
Definition: misc.c:10133
int SCIPrandomGetInt(SCIP_RANDNUMGEN *randnumgen, int minrandval, int maxrandval)
Definition: misc.c:10111
SCIP_RETCODE SCIPcreateRandom(SCIP *scip, SCIP_RANDNUMGEN **randnumgen, unsigned int initialseed, SCIP_Bool useglobalseed)
Definition: scip_randnumgen.c:56
SCIP_VAR ** SCIProwprepGetVars(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:639
SCIP_RETCODE SCIPcleanupRowprep2(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_SOL *sol, SCIP_Real maxcoefbound, SCIP_Bool *success)
Definition: misc_rowprep.c:1376
int SCIProwprepGetNModifiedVars(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:699
SCIP_Real SCIPgetRowprepViolation(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_SOL *sol, SCIP_Bool *reliable)
Definition: misc_rowprep.c:972
SCIP_Real * SCIProwprepGetCoefs(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:649
SCIP_VAR ** SCIProwprepGetModifiedVars(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:709
SCIP_SIDETYPE SCIProwprepGetSidetype(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:669
SCIP_RETCODE SCIPaddRowprepTerm(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_VAR *var, SCIP_Real coef)
Definition: misc_rowprep.c:913
SCIP_RETCODE SCIPgetRowprepRowCons(SCIP *scip, SCIP_ROW **row, SCIP_ROWPREP *rowprep, SCIP_CONS *cons)
Definition: misc_rowprep.c:1678
void SCIProwprepRecordModifications(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:791
SCIP_RETCODE SCIPcleanupRowprep(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_SOL *sol, SCIP_Real minviol, SCIP_Real *viol, SCIP_Bool *success)
Definition: misc_rowprep.c:1201
void SCIPfreeRowprep(SCIP *scip, SCIP_ROWPREP **rowprep)
Definition: misc_rowprep.c:583
void SCIPprintRowprep(SCIP *scip, SCIP_ROWPREP *rowprep, FILE *file)
Definition: misc_rowprep.c:801
SCIP_Bool SCIPsortedvecFindPtr(void **ptrarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), void *val, int len, int *pos)
void SCIPsortDown(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:6080
void SCIPsortPtr(void **ptrarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
void SCIPsortDownPtr(void **ptrarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
void SCIPsortDownIntPtr(int *intarray, void **ptrarray, int len)
void SCIPsort(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:5541
SCIP_RETCODE SCIPaddSymgraphEdge(SCIP *scip, SYM_GRAPH *graph, int first, int second, SCIP_Bool hasval, SCIP_Real val)
Definition: symmetry_graph.c:634
SCIP_RETCODE SCIPaddSymgraphOpnode(SCIP *scip, SYM_GRAPH *graph, int op, int *nodeidx)
Definition: symmetry_graph.c:382
SCIP_RETCODE SCIPgetSymActiveVariables(SCIP *scip, SYM_SYMTYPE symtype, SCIP_VAR ***vars, SCIP_Real **scalars, int *nvars, SCIP_Real *constant, SCIP_Bool transformed)
Definition: symmetry_graph.c:1686
SCIP_RETCODE SCIPaddSymgraphValnode(SCIP *scip, SYM_GRAPH *graph, SCIP_Real val, int *nodeidx)
Definition: symmetry_graph.c:423
int SCIPgetSymgraphVarnodeidx(SCIP *scip, SYM_GRAPH *graph, SCIP_VAR *var)
Definition: symmetry_graph.c:512
SCIP_RETCODE SCIPaddSymgraphConsnode(SCIP *scip, SYM_GRAPH *graph, SCIP_CONS *cons, SCIP_Real lhs, SCIP_Real rhs, int *nodeidx)
Definition: symmetry_graph.c:464
SCIP_RETCODE SCIPaddSymgraphVarAggregation(SCIP *scip, SYM_GRAPH *graph, int rootidx, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Real constant)
Definition: symmetry_graph.c:294
int SCIPgetSymExprdataNConstants(SYM_EXPRDATA *symdata)
Definition: symmetry_graph.c:1773
int SCIPgetSymgraphNegatedVarnodeidx(SCIP *scip, SYM_GRAPH *graph, SCIP_VAR *var)
Definition: symmetry_graph.c:532
SCIP_RETCODE SCIPfreeSymDataExpr(SCIP *scip, SYM_EXPRDATA **symdata)
Definition: symmetry_graph.c:1750
SCIP_Real * SCIPgetSymExprdataConstants(SYM_EXPRDATA *symdata)
Definition: symmetry_graph.c:1783
SCIP_RETCODE SCIPgetCoefSymData(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPR *parentexpr, SCIP_Real *coef, SCIP_Bool *success)
Definition: symmetry_graph.c:1793
NLP local search primal heuristic using sub-SCIPs.
primal heuristic that tries a given solution
SCIP_Bool SCIPcliqueHasVar(SCIP_CLIQUE *clique, SCIP_VAR *var, SCIP_Bool value)
Definition: implics.c:1141
SCIP_RETCODE SCIPlapackSolveLinearEquations(BMS_BUFMEM *bufmem, int n, SCIP_Real *A, SCIP_Real *b, SCIP_Real *x, SCIP_Bool *success)
Definition: lapack_calls.c:386
interface methods for lapack functions
Definition: objbenders.h:44
SCIP_RETCODE SCIPnlhdlrCreate(SCIP *scip, SCIP_NLHDLR **nlhdlr, const char *name, const char *desc, int detectpriority, int enfopriority, SCIP_DECL_NLHDLRDETECT((*detect)), SCIP_DECL_NLHDLREVALAUX((*evalaux)), SCIP_NLHDLRDATA *nlhdlrdata)
Definition: nlhdlr.c:353
void SCIPnlhdlrPrintStatistics(SCIP *scip, SCIP_NLHDLR **nlhdlrs, int nnlhdlrs, FILE *file)
Definition: nlhdlr.c:752
private functions of nonlinear handlers of nonlinear constraints
#define SCIPnlhdlrResetNDetectionslast(nlhdlr)
Definition: nlhdlr.h:129
nonlinear handlers for convex and concave expressions, respectively
SCIP_RETCODE SCIPgetSymOpNodeType(SCIP *scip, const char *opnodename, int *nodetype)
Definition: prop_symmetry.c:7178
propagator for symmetry handling
methods for sorting joint arrays of various types
public functions to work with algebraic expressions
Definition: cons_nonlinear.c:357
Definition: cons_nonlinear.c:241
SCIP_DECL_NONLINCONSUPGD((*consupgd))
Definition: cons_nonlinear.c:150
Definition: struct_implics.h:76
Definition: struct_clock.h:65
Definition: struct_lp.h:136
Definition: cons_nonlinear.h:58
Definition: cons_nonlinear.h:79
SCIP_CONSNONLINEAR_AUXEXPR ** exprs
Definition: cons_nonlinear.h:84
union SCIP_ConsNonlinear_BilinTerm::@4 aux
Definition: struct_cons.h:47
Definition: struct_cons.h:127
Definition: struct_dialog.h:46
Definition: struct_event.h:205
Definition: struct_expr.h:204
Definition: struct_expr.h:106
Definition: struct_misc.h:138
Definition: struct_misc.h:150
Definition: struct_misc.h:90
Definition: struct_heur.h:98
Definition: intervalarith.h:54
Definition: lpi_clp.cpp:105
Definition: struct_nlp.h:65
Definition: struct_nlhdlr.h:44
Definition: struct_tree.h:142
Definition: struct_misc.h:191
Definition: struct_misc.h:61
Definition: struct_misc.h:269
Definition: struct_misc.h:287
Definition: struct_lp.h:202
Definition: struct_sol.h:74
Definition: struct_var.h:208
Definition: struct_symmetry.h:103
Definition: struct_symmetry.h:46
Definition: struct_scip.h:70
structs for symmetry computations
methods for dealing with symmetry detection graphs
Definition: type_expr.h:703