lp.c
Go to the documentation of this file.
41/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
72 * using the LP solver activity is potentially faster, but may not be consistent with the SCIP_ROW calculations
518 /* we do not save the farkas coefficient, since it can be recomputed; thus, we invalidate it here */
521 /* if the column was created after performing the storage (possibly during probing), we treat it as implicitly zero;
606 /* if the row was created after performing the storage (possibly during probing), we treat it as basic;
656#ifdef SCIP_MORE_DEBUG /* enable this to check the sortings within rows (for debugging, very slow!) */
806 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
843 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
861/* recompute the global pseudo solution value from scratch, if it was marked to be unreliable before */
885 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
967/** sorts column entries of linked rows currently in the LP such that lower row indices precede higher ones */
998/** sorts column entries of unlinked rows or rows currently not in the LP such that lower row indices precede higher
1015 SCIPsortPtrRealInt((void**)(&(col->rows[col->nlprows])), &(col->vals[col->nlprows]), &(col->linkpos[col->nlprows]), SCIProwComp, col->len - col->nlprows);
1031/** sorts row entries of linked columns currently in the LP such that lower column indices precede higher ones */
1046 SCIPsortIntPtrIntReal(row->cols_index, (void**)row->cols, row->linkpos, row->vals, row->nlpcols);
1062/** sorts row entries of unlinked columns or columns currently not in the LP such that lower column indices precede
1081 SCIPsortIntPtrIntReal(&(row->cols_index[row->nlpcols]), (void**)(&(row->cols[row->nlpcols])), &(row->linkpos[row->nlpcols]), &(row->vals[row->nlpcols]), row->len - row->nlpcols);
1099/** searches coefficient in part of the column, returns position in col vector or -1 if not found */
1174/** searches coefficient in part of the row, returns position in col vector or -1 if not found */
1266/** moves a coefficient in a column to a different place, and updates all corresponding data structures */
1362/** moves a coefficient in a row to a different place, and updates all corresponding data structures */
1483 if( (row->eventfilter->len > 0 && (row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWCOEFCHANGED) != 0) )
1488 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1511 if( (row->eventfilter->len > 0 && (row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWCONSTCHANGED)) )
1516 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1540 if( (row->eventfilter->len > 0 && !(row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWSIDECHANGED)) )
1545 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1551#ifdef SCIP_MORE_DEBUG /* enable this to check links between columns and rows in LP data structure (for debugging, very slow!) */
1717 /*assert(colSearchCoef(col, row) == -1);*/ /* this assert would lead to slight differences in the solution process */
1727 /* if the row is in current LP and is linked to the column, we have to insert it at the end of the linked LP rows
1741 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
1752 /* if the column is in current LP, we have to link it to the row, because otherwise, the primal information
1757 /* this call might swap the current row with the first non-LP/not linked row, s.t. insertion position
1779 /* if the column is in current LP, now both conditions, row->cols[linkpos]->lppos >= 0 and row->linkpos[linkpos] >= 0
1811 SCIPsetDebugMsg(set, "added coefficient %g * <%s> at position %d (%d/%d) to column <%s> (nunlinked=%d)\n",
1845 /* if row is a linked LP row, move last linked LP coefficient to position of empty slot (deleted coefficient) */
1881 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
1927 /* Euclidean norm, sum norm, and objective function scalar product only take LP columns into account */
2012 /* Euclidean norm, sum norm, and objective function scalar product only take LP columns into account */
2063 /*assert(rowSearchCoef(row, col) == -1);*/ /* this assert would lead to slight differences in the solution process */
2078 /* if the column is in current LP and is linked to the row, we have to insert it at the end of the linked LP columns
2092 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
2105 /* if the row is in current LP, we have to link it to the column, because otherwise, the dual information
2110 /* this call might swap the current column with the first non-LP/not linked column, s.t. insertion position
2132 /* if the row is in current LP, now both conditions, col->rows[linkpos]->lppos >= 0 and col->linkpos[linkpos] >= 0
2173 SCIPsetDebugMsg(set, "added coefficient %g * <%s> at position %d (%d/%d) to row <%s> (nunlinked=%d)\n",
2211 SCIPerrorMessage("cannot delete a coefficient from the locked unmodifiable row <%s>\n", row->name);
2218 /* if column is a linked LP column, move last linked LP coefficient to position of empty slot (deleted coefficient) */
2264 SCIPerrorMessage("cannot change a coefficient of the locked unmodifiable row <%s>\n", row->name);
2268 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
2378 /* this call might swap the current row with the first non-LP/not linked row, but this is of no harm */
2383 assert(col->nlprows == 0 || col->rows[col->nlprows-1]->cols[col->linkpos[col->nlprows-1]] == col);
2384 assert(col->nlprows == 0 || col->rows[col->nlprows-1]->linkpos[col->linkpos[col->nlprows-1]] == col->nlprows-1);
2458 /* this call might swap the current column with the first non-LP/not linked column, but this is of no harm */
2463 assert(row->nlpcols == 0 || row->cols[row->nlpcols-1]->rows[row->linkpos[row->nlpcols-1]] == row);
2464 assert(row->nlpcols == 0 || row->cols[row->nlpcols-1]->linkpos[row->linkpos[row->nlpcols-1]] == row->nlpcols-1);
2579/** checks, that parameter of type int in LP solver has the given value, ignoring unknown parameters */
2604/** checks, that parameter of type SCIP_Bool in LP solver has the given value, ignoring unknown parameters */
2615/** checks, that parameter of type SCIP_Real in LP solver has the given value, ignoring unknown parameters */
2646#define lpCutoffDisabled(set,prob) (set->lp_disablecutoff == 1 || ((set->nactivepricers > 0 || !SCIPprobAllColsInLP(prob, set, lp)) && set->lp_disablecutoff == 2))
2667 /* We disabled the objective limit in the LP solver or we want so solve exactly and thus cannot rely on the LP
2668 * solver's objective limit handling, so we make sure that the objective limit is inactive (infinity). */
2685 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2724 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2767 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2810 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2879 /* We might only set lp->solved to false if fastmip is turned off, since the latter should be the more
3048/** sets the pricing strategy of the LP solver (given the character representation of the strategy) */
3176 assert((int) SCIP_CLOCKTYPE_CPU == 1 && (int) SCIP_CLOCKTYPE_WALL == 2); /*lint !e506*//*lint !e1564*/
3208 /* we don't check this parameter because SoPlex will always return its current random seed, not the initial one */
3419 SCIPmessageFPrintInfo(messagehdlr, file, "(obj: %.15g) [%.15g,%.15g], ", col->obj, col->lb, col->ub);
3433/** sorts column entries such that LP rows precede non-LP rows and inside both parts lower row indices precede higher ones
3489 SCIPerrorMessage("coefficient for row <%s> doesn't exist in column <%s>\n", row->name, SCIPvarGetName(col->var));
3605 SCIP_CALL( rowChgCoefPos(row, blkmem, set, eventqueue, lp, col->linkpos[pos], col->vals[pos] + incval) );
3640 * @note: Here we only consider cancellations which can occur during decreasing the oldvalue to newvalue; not the
3679 if( SCIPsetIsLT(set, lp->objsqrnorm, 0.0) || isNewValueUnreliable(set, lp->objsqrnorm, oldvalue) )
3685 /* due to numerical troubles it still can appear that lp->objsqrnorm is a little bit smaller than 0 */
3711 SCIPsetDebugMsg(set, "changing objective value of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->obj, newobj);
3727 /* in any case, when the sign of the objective (and thereby the best bound) changes, the variable has to enter the
3741 /* update original objective value, as long as we are not in diving or probing and changed objective values */
3770 SCIPsetDebugMsg(set, "changing lower bound of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->lb, newlb);
3786 /* in any case, when the best bound is zero and gets changed, the variable has to enter the LP and the LP has to be
3815 SCIPsetDebugMsg(set, "changing upper bound of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->ub, newub);
3831 /* in any case, when the best bound is zero and gets changed, the variable has to enter the LP and the LP has to be
4029/** calculates the Farkas coefficient y^T A_i of a column i using the given dual Farkas vector y */
4158/** gets the Farkas value of a column in last LP (which must be infeasible), i.e. the Farkas coefficient y^T A_i times
4311 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4369 /* if a loose variables has an infinite best bound, the LP bound is -infinity and no gain can be achieved */
4396 retcode = SCIPlpiStrongbranchInt(lp->lpi, col->lpipos, col->primsol, itlim, down == NULL ? NULL : &sbdown, up == NULL ? NULL : &sbup, &sbdownvalid, &sbupvalid, &iter);
4400 retcode = SCIPlpiStrongbranchFrac(lp->lpi, col->lpipos, col->primsol, itlim, down == NULL ? NULL : &sbdown, up == NULL ? NULL : &sbup, &sbdownvalid, &sbupvalid, &iter);
4433 iter = stat->ndualresolvelps > 0 ? (int)(2*stat->ndualresolvelpiterations / stat->ndualresolvelps)
4435 : stat->nprimalresolvelps > 0 ? (int)(2*stat->nprimalresolvelpiterations / stat->nprimalresolvelps)
4495 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
4568 /* if a loose variables has an infinite best bound, the LP bound is -infinity and no gain can be achieved */
4596 SCIPsetDebugMsg(set, "performing strong branching on %d variables with %d iterations\n", ncols, itlim);
4600 retcode = SCIPlpiStrongbranchesInt(lp->lpi, lpipos, nsubcols, primsols, itlim, sbdown, sbup, sbdownvalid, sbupvalid, &iter);
4602 retcode = SCIPlpiStrongbranchesFrac(lp->lpi, lpipos, nsubcols, primsols, itlim, sbdown, sbup, sbdownvalid, sbupvalid, &iter);
4671 iter = stat->ndualresolvelps > 0 ? (int)(2*stat->ndualresolvelpiterations / stat->ndualresolvelps)
4673 : stat->nprimalresolvelps > 0 ? (int)(2*stat->nprimalresolvelpiterations / stat->nprimalresolvelps)
4705 * keep in mind, that the returned old values may have nothing to do with the current LP solution
4711 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4715 SCIP_Real* solval, /**< stores LP solution value of column at last strong branching call, or NULL */
4735/** if strong branching was already applied on the column at the current node, returns the number of LPs solved after
4750/** marks a column to be not removable from the LP in the current node because it became obsolete */
4760 /* lpRemoveObsoleteCols() does not remove a column if the node number stored in obsoletenode equals the current node number */
4898/** checks, whether the given scalar scales the given value to an integral number with error in the given bounds */
4903 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
4904 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
4937 * if the row's activity is proven to be integral, the sides are automatically rounded to the next integer
4948 SCIP_Bool integralcontvars, /**< should the coefficients of the continuous variables also be made integral,
4950 SCIP_Real minrounddelta, /**< minimal relative difference of scaled coefficient s*c and integral i,
4952 SCIP_Real maxrounddelta /**< maximal relative difference of scaled coefficient s*c and integral i
4976 SCIPsetDebugMsg(set, "scale row <%s> with %g (tolerance=[%g,%g])\n", row->name, scaleval, minrounddelta, maxrounddelta);
4984 /* scale the row coefficients, thereby recalculating whether the row's activity is always integral;
4985 * if the row coefficients are rounded to the nearest integer value, calculate the maximal activity difference,
4997 /* get local or global bounds for column, depending on the local or global feasibility of the row */
5061 /* scale the row sides, and move the constant to the sides; relax the sides with accumulated delta in order
5098 for( c = 0; c < row->len && SCIPcolIsIntegral(row->cols[c]) && SCIPsetIsIntegral(set, row->vals[c]); ++c )
5122 void* origin, /**< pointer to constraint handler or separator who created the row (NULL if unkown) */
5124 SCIP_Bool modifiable, /**< is row modifiable during node processing (subject to column generation)? */
5134 * in case, for example, lhs > rhs but they are equal with tolerances, one could pass lhs=rhs=lhs+rhs/2 to
5327 SCIPmessageFPrintInfo(messagehdlr, file, "%+.15g<%s> ", row->vals[i], SCIPvarGetName(row->cols[i]->var));
5347 SCIPdebugMessage("capture row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5365 SCIPsetDebugMsg(set, "release row <%s> with nuses=%d and nlocks=%u\n", (*row)->name, (*row)->nuses, (*row)->nlocks);
5377/** locks an unmodifiable row, which forbids further changes; has no effect on modifiable rows */
5387 SCIPdebugMessage("lock row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5392/** unlocks a lock of an unmodifiable row; a row with no sealed lock may be modified; has no effect on modifiable rows */
5402 SCIPdebugMessage("unlock row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5452 SCIPerrorMessage("coefficient for column <%s> doesn't exist in row <%s>\n", SCIPvarGetName(col->var), row->name);
5554 /* coefficient doesn't exist, or sorting is delayed: add coefficient to the end of the row's arrays */
5659 SCIP_CALL( SCIProwChgConstant(row, blkmem, set, stat, eventqueue, lp, row->constant + addval) );
5690 SCIP_CALL( rowEventSideChanged(row, blkmem, set, eventqueue, SCIP_SIDETYPE_LEFT, oldlhs, lhs) );
5722 SCIP_CALL( rowEventSideChanged(row, blkmem, set, eventqueue, SCIP_SIDETYPE_RIGHT, oldrhs, rhs) );
5746/** tries to find a value, such that all row coefficients, if scaled with this value become integral */
5750 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
5751 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
5754 SCIP_Bool usecontvars, /**< should the coefficients of the continuous variables also be made integral? */
5755 SCIP_Real* intscalar, /**< pointer to store scalar that would make the coefficients integral, or NULL */
5777 /**@todo call misc.c:SCIPcalcIntegralScalar() instead - if usecontvars == FALSE, filter the integer variables first */
5787 SCIPsetDebugMsg(set, "trying to find rational representation for row <%s> (contvars: %u)\n", SCIProwGetName(row), usecontvars);
5788 SCIPdebug( val = 0; ); /* avoid warning "val might be used uninitialized; see SCIPdebugMessage lastval=%g below */
5828 /* try, if row coefficients can be made integral by multiplying them with the reciprocal of the smallest coefficient
5857 SCIPsetDebugMsg(set, " -> val=%g, scaleval=%g, val*scaleval=%g, scalable=%u\n", val, scaleval, val*scaleval, scalable);
5868 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (minval=%g)\n", scaleval, minval);
5886 && (absval * twomultval < 0.5 || !isIntegralScalar(val, twomultval, mindelta, maxdelta, NULL)) )
5910 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (power of 2)\n", twomultval);
5915 /* convert each coefficient into a rational number, calculate the greatest common divisor of the numerators
5935 SCIPsetDebugMsg(set, " -> first rational: val: %g == %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", rational=%u\n",
5955 SCIPsetDebugMsg(set, " -> next rational : val: %g == %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", rational=%u\n",
5963 /* make row coefficients integral by multiplying them with the smallest common multiple of the denominators */
5968 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (rational:%" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ")\n",
5974 SCIPsetDebugMsg(set, " -> rationalizing failed: gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", lastval=%g\n", gcd, scm, val); /*lint !e771*/
5988 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
5989 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
5992 SCIP_Bool usecontvars, /**< should the coefficients of the continuous variables also be made integral? */
6001 SCIP_CALL( SCIProwCalcIntegralScalar(row, set, mindelta, maxdelta, maxdnom, maxscale, usecontvars,
6007 SCIP_CALL( rowScale(row, blkmem, set, eventqueue, stat, lp, intscalar, usecontvars, mindelta, maxdelta) );
6013/** sorts row entries such that LP columns precede non-LP columns and inside both parts lower column indices precede
6043/** sorts row, and merges equal column entries (resulting from lazy sorting and adding) into a single entry; removes
6103 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
6106 row->integral = row->integral && SCIPcolIsIntegral(cols[t]) && SCIPsetIsIntegral(set, vals[t]);
6116 row->integral = row->integral && SCIPcolIsIntegral(cols[t]) && SCIPsetIsIntegral(set, vals[t]);
6125 /* if equal entries were merged, we have to recalculate the norms, since the squared Euclidean norm is wrong */
6253/** returns the feasibility of a row in the current LP solution: negative value means infeasibility */
6270/** returns the feasibility of a row in the relaxed solution solution: negative value means infeasibility
6332/** returns the feasibility of a row in the current NLP solution: negative value means infeasibility
6418 assert(!row->integral || EPSISINT(row->pseudoactivity - row->constant, SCIP_DEFAULT_SUMEPSILON));
6449/** returns the pseudo feasibility of a row in the current pseudo solution: negative value means infeasibility */
6583 /* even if the row is integral, the bounds on the variables used for computing minimum and maximum activity might
6584 * be integral only within feasibility tolerance; this can happen, e.g., if a continuous variable is promoted to
6585 * an (implicit) integer variable and the bounds cannot be adjusted because they are minimally tighter than the
6586 * rounded bound value; hence, the activity may violate integrality; we allow 1000 times the default feasibility
6589 assert(!row->integral || mininfinite || REALABS(row->minactivity - row->constant) > 1.0/SCIPsetSumepsilon(set)
6591 assert(!row->integral || maxinfinite || REALABS(row->maxactivity - row->constant) > 1.0/SCIPsetSumepsilon(set)
6802 solcutoffdist = -SCIProwGetLPFeasibility(row, set, stat, lp) / ABS(solcutoffdist); /*lint !e795*/
6848/** returns whether the row's efficacy with respect to the current LP solution is greater than the minimal cut efficacy */
6905/** returns whether the row's efficacy with respect to the given primal solution is greater than the minimal cut
7024 * The columns in a row are divided into two parts: LP columns, which are currently in the LP and non-LP columns;
7025 * we sort the rows, but that only ensures that within these two parts, columns are sorted w.r.t. their index.
7026 * Normally, this should be suficient, because a column contained in both rows should either be one of the LP columns
7028 * However, directly after a row was created, before a row is added to the LP, the row is not linked to all its
7029 * columns and all columns are treated as non-LP columns. Moreover, for example when doing column generation,
7030 * columns can be added later and remain unlinked while all previously added columns might already be linked.
7031 * Therefore, we have to be very careful about whether we can rely on the partitioning of the variables.
7046 * -> we need to compare three partitions: the LP part of the completely linked row and both partitions of the
7050 * -> we need to compare three partitions: the complete unlinked row and both partitions of the other row
7069 /* check that we can rely on the partition into LP columns and non-LP columns if the rows are completely linked */
7113 /* set the iterators to the last column we want to regard in the row: nunlinked is either 0 or row->len,
7138 /* the "harder" cases 3) - 5): start with four partitions and reduce their number iteratively */
7160 while( ilp1 < row1->nlpcols && inlp1 < row1->len && ilp2 < row2->nlpcols && inlp2 < row2->len )
7169 assert((row1->cols[inlp1] == row2->cols[inlp2]) == (row1colsidx[inlp1] == row2colsidx[inlp2]));
7236 /* One partition was completely handled, we just have to handle the three remaining partitions:
7238 * If necessary, we swap the partitions to ensure that row1 is the row with only one remaining partition.
7257 /* determine section of row 1 that we want to look at (current iterator = begin, end, LP-columns?)
7275 /* handle the case of three partitions (case 4) until one partition is finished, this reduces our problem to case 1), 2), or 5);
7317 /* if the second section of row 1 was finished, we can stop; otherwise, we have to consider the remaining parts of
7322 /* determine section of row 2 that we want to look at (current iterator = begin, end, LP-columns?) */
7337 /* handle the case of two partitions (standard case 5, or case 1 or 2 due to partition reduction) */
7381 * The columns in a row are divided into two parts: LP columns, which are currently in the LP and non-LP columns;
7382 * we sort the rows, but that only ensures that within these two parts, columns are sorted w.r.t. their index.
7383 * Normally, this should be suficient, because a column contained in both rows should either be one of the LP columns
7385 * However, directly after a row was created, before a row is added to the LP, the row is not linked to all its
7386 * columns and all columns are treated as non-LP columns. Moreover, for example when doing column generation,
7387 * columns can be added later and remain unlinked while all previously added columns might already be linked.
7388 * Therefore, we have to be very careful about whether we can rely on the partitioning of the variables.
7403 * -> we need to compare three partitions: the LP part of the completely linked row and both partitions of the
7407 * -> we need to compare three partitions: the complete unlinked row and both partitions of the other row
7426 /* check that we can rely on the partition into LP columns and non-LP columns if the rows are completely linked */
7470 /* set the iterators to the last column we want to regard in the row: nunlinked is either 0 or row->len,
7495 /* the "harder" cases 3) - 5): start with four partitions and reduce their number iteratively */
7517 while( ilp1 < row1->nlpcols && inlp1 < row1->len && ilp2 < row2->nlpcols && inlp2 < row2->len )
7526 assert((row1->cols[inlp1] == row2->cols[inlp2]) == (row1colsidx[inlp1] == row2colsidx[inlp2]));
7593 /* One partition was completely handled, we just have to handle the three remaining partitions:
7595 * If necessary, we swap the partitions to ensure that row1 is the row with only one remaining partition.
7614 /* determine section of row 1 that we want to look at (current iterator = begin, end, LP-columns?)
7632 /* handle the case of three partitions (case 4) until one partition is finished, this reduces our problem to case 1), 2), or 5);
7674 /* if the second section of row 1 was finished, we can stop; otherwise, we have to consider the remaining parts of
7679 /* determine section of row 2 that we want to look at (current iterator = begin, end, LP-columns?) */
7694 /* handle the case of two partitions (standard case 5, or case 1 or 2 due to partition reduction) */
7720/** returns the degree of parallelism between the hyperplanes defined by the two row vectors v, w:
7772 parallelism = scalarprod / (sqrt((SCIP_Real) SCIProwGetNNonz(row1)) * sqrt((SCIP_Real) SCIProwGetNNonz(row2)));
7784/** returns the degree of orthogonality between the hyperplanes defined by the two row vectors v, w:
7797/** gets parallelism of row with objective function: if the returned value is 1, the row is parallel to the objective
7839 SCIP_EVENTDATA* eventdata, /**< event data to pass to the event handler for the event processing */
7848 SCIPsetDebugMsg(set, "catch event of type 0x%" SCIP_EVENTTYPE_FORMAT " of row <%s> with handler %p and data %p\n",
7851 SCIP_CALL( SCIPeventfilterAdd(row->eventfilter, blkmem, set, eventtype, eventhdlr, eventdata, filterpos) );
7863 SCIP_EVENTDATA* eventdata, /**< event data to pass to the event handler for the event processing */
7870 SCIPsetDebugMsg(set, "drop event of row <%s> with handler %p and data %p\n", row->name, (void*)eventhdlr, (void*)eventdata);
7872 SCIP_CALL( SCIPeventfilterDel(row->eventfilter, blkmem, set, eventtype, eventhdlr, eventdata, filterpos) );
7877/** marks a row to be not removable from the LP in the current node because it became obsolete */
7887 /* lpRemoveObsoleteRows() does not remove a row if the node number stored in obsoletenode equals the current node number */
7943 SCIPdebugMessage("flushing col deletions: shrink LP from %d to %d columns\n", lp->nlpicols, lp->lpifirstchgcol);
7989 if( SCIPsetIsInfinity(set, -col->lb) || (SCIPsetIsLE(set, col->lb, col->lazylb) && !SCIPlpDiving(lp)) )
7997 if( SCIPsetIsInfinity(set, col->ub) || (SCIPsetIsGE(set, col->ub, col->lazyub) && !SCIPlpDiving(lp)) )
8134 SCIPsetDebugMsg(set, "flushing col additions: enlarge LP from %d to %d columns\n", lp->nlpicols, lp->ncols);
8204 SCIPsetDebugMsg(set, "flushing row deletions: shrink LP from %d to %d rows\n", lp->nlpirows, lp->lpifirstchgrow);
8332 SCIPsetDebugMsgPrint(set, " %+gx%d(<%s>)", row->vals[i], lpipos+1, SCIPvarGetName(row->cols[i]->var));
8349 SCIPsetDebugMsg(set, "flushing row additions: enlarge LP from %d to %d rows\n", lp->nlpirows, lp->nrows);
8435 || (!SCIPsetIsInfinity(set, -lpilb) && !SCIPsetIsInfinity(set, -col->flushedlb) && SCIPsetIsFeasEQ(set, lpilb, col->flushedlb)));
8437 || (!SCIPsetIsInfinity(set, lpiub) && !SCIPsetIsInfinity(set, col->flushedub) && SCIPsetIsFeasEQ(set, lpiub, col->flushedub)));
8485 SCIPsetDebugMsg(set, "flushing objective changes: change %d objective values of %d changed columns\n", nobjchg, lp->nchgcols);
8499 SCIPsetDebugMsg(set, "flushing bound changes: change %d bounds of %d changed columns\n", nbdchg, lp->nchgcols);
8600 SCIPsetDebugMsg(set, "flushing side changes: change %d sides of %d rows\n", nchg, lp->nchgrows);
8682 SCIPsetDebugMsg(set, "flushing LP changes: old (%d cols, %d rows), nchgcols=%d, nchgrows=%d, firstchgcol=%d, firstchgrow=%d, new (%d cols, %d rows), flushed=%u\n",
8683 lp->nlpicols, lp->nlpirows, lp->nchgcols, lp->nchgrows, lp->lpifirstchgcol, lp->lpifirstchgrow, lp->ncols, lp->nrows, lp->flushed);
8704 /* if the cutoff bound was changed in between and it is not disabled (e.g. for column generation),
8706 if( lp->cutoffbound != lp->lpiobjlim && lp->ncols > 0 && ! lpCutoffDisabled(set, prob) ) /*lint !e777*/
8803 assert(col->flushedlb == (SCIPsetIsInfinity(set, -col->lb) ? -SCIPlpiInfinity(lp->lpi) : col->lb)); /*lint !e777*/
8804 assert(col->flushedub == (SCIPsetIsInfinity(set, col->ub) ? SCIPlpiInfinity(lp->lpi) : col->ub)); /*lint !e777*/
8835 assert(row->flushedlhs == (SCIPsetIsInfinity(set, -row->lhs) ? -SCIPlpiInfinity(lp->lpi) : row->lhs - row->constant)); /*lint !e777*/
8836 assert(row->flushedrhs == (SCIPsetIsInfinity(set, row->rhs) ? SCIPlpiInfinity(lp->lpi) : row->rhs - row->constant)); /*lint !e777*/
9149 (*lp)->validsollp = stat->lpcount; /* the initial (empty) SCIP_LP is solved with primal and dual solution of zero */
9221 "LP Solver <%s>: objective limit cannot be set -- can lead to unnecessary simplex iterations\n",
9229 "LP Solver <%s>: primal feasibility tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9237 "LP Solver <%s>: dual feasibility tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9245 "LP Solver <%s>: barrier convergence tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9284 "LP Solver <%s>: iteration limit cannot be set -- can lead to unnecessary simplex iterations\n",
9306 "LP Solver <%s>: row representation of the basis not available -- SCIP parameter lp/rowrepswitch has no effect\n",
9309 SCIP_CALL( lpSetIntpar(*lp, SCIP_LPPAR_POLISHING, ((*lp)->lpisolutionpolishing ? 1 : 0), &success) );
9314 "LP Solver <%s>: solution polishing not available -- SCIP parameter lp/solutionpolishing has no effect\n",
9322 "LP Solver <%s>: refactorization interval not available -- SCIP parameter lp/refactorinterval has no effect\n",
9329 "LP Solver <%s>: condition number limit for the basis not available -- SCIP parameter lp/conditionlimit has no effect\n",
9336 "LP Solver <%s>: markowitz threshhold not available -- SCIP parameter lp/minmarkowitz has no effect\n",
9358 /* Check that infinity value of LP-solver is at least as large as the one used in SCIP. This is necessary, because we
9362 SCIPerrorMessage("The infinity value of the LP solver has to be at least as large as the one of SCIP.\n");
9412/** resets the LP to the empty LP by removing all columns and rows from LP, releasing all rows, and flushing the
9433 lp->validsollp = stat->lpcount; /* the initial (empty) SCIP_LP is solved with primal and dual solution of zero */
9467 SCIPsetDebugMsg(set, "adding column <%s> to LP (%d rows, %d cols)\n", SCIPvarGetName(col->var), lp->nrows, lp->ncols);
9527 SCIPsetDebugMsg(set, "adding row <%s> to LP (%d rows, %d cols)\n", row->name, lp->nrows, lp->ncols);
9567 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
9575/** method checks if all columns in the lazycols array have at least one lazy bound and also have a counter part in the
9576 * cols array; furthermore, it is checked if columns in the cols array which have a lazy bound have a counter part in
9596 assert(!SCIPsetIsInfinity(set, lp->lazycols[i]->lazyub) || !SCIPsetIsInfinity(set, -lp->lazycols[i]->lazylb));
9603 assert(!SCIPsetIsInfinity(set, lp->cols[c]->lazyub) || !SCIPsetIsInfinity(set, -lp->cols[c]->lazylb));
9610 /* check if each column in the column array which has at least one lazy bound has a counter part in the lazy column *
9625 assert(contained == (!SCIPsetIsInfinity(set, lp->cols[c]->lazyub) || !SCIPsetIsInfinity(set, -lp->cols[c]->lazylb)));
9752 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
9815/** gets all indices of basic columns and rows: index i >= 0 corresponds to column i, index i < 0 to row -i-1 */
9832/** gets current basis status for columns and rows; arrays must be large enough to store the basis status */
9897/** gets a row from the product of inverse basis matrix B^-1 and coefficient matrix A (i.e. from B^-1 * A) */
9920/** gets a column from the product of inverse basis matrix B^-1 and coefficient matrix A (i.e. from B^-1 * A),
9944/** calculates a weighted sum of all LP rows; for negative weights, the left and right hand side of the corresponding
9952 SCIP_REALARRAY* sumcoef, /**< array to store sum coefficients indexed by variables' probindex */
9974 SCIP_CALL( SCIPrealarrayExtend(sumcoef, set->mem_arraygrowinit, set->mem_arraygrowfac, 0, prob->nvars-1) );
9999 SCIP_CALL( SCIPrealarrayIncVal(sumcoef, set->mem_arraygrowinit, set->mem_arraygrowfac, idx, weights[r] * row->vals[i]) );
10065 SCIP_Bool wasprimchecked, /**< true if the LP solution has passed the primal feasibility check */
10067 SCIP_Bool wasdualchecked /**< true if the LP solution has passed the dual feasibility check */
10088 /* @todo: setting feasibility to TRUE might be wrong because in probing mode, the state is even saved when the LP was
10210 SCIPsetDebugMsg(set, "setting LP upper objective limit from %g to %g\n", lp->cutoffbound, cutoffbound);
10212 /* if the objective function was changed in diving, the cutoff bound has no meaning (it will be set correctly
10221 /* if the cutoff bound is increased, and the LP was proved to exceed the old cutoff, it is no longer solved */
10229 /* if the cutoff bound is decreased below the current optimal value, the LP now exceeds the objective limit;
10230 * if the objective limit in the LP solver was disabled, the solution status of the LP is not changed
10265 SCIPsetDebugMsg(set, "setting LP primal feasibility tolerance from %g to %g\n", lp->feastol, newfeastol);
10279 * Sets primal feasibility tolerance to min of numerics/lpfeastolfactor * numerics/feastol and relaxfeastol.
10291 SCIPlpSetFeastol(lp, set, MIN(SCIPsetRelaxfeastol(set), SCIPsetLPFeastolFactor(set) * SCIPsetFeastol(set))); /*lint !e666*/
10319/** calls LPI to perform primal simplex, measures time and counts iterations, gets basis feasibility status */
10326 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10341 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with primal simplex (diving=%d, nprimallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10342 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nprimallps, stat->ndivinglps);
10350 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
10352 SCIPsetDebugMsg(set, "wrote LP to file <%s> (primal simplex, objlim=%.15g, feastol=%.15g/%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
10385 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") primal simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10471 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with primal simplex (diving=%d, nprimallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10484 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10499 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10500 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nduallps, stat->ndivinglps);
10508 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
10510 SCIPsetDebugMsg(set, "wrote LP to file <%s> (dual simplex, objlim=%.15g, feastol=%.15g/%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
10543 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10629 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10635/** calls LPI to perform lexicographic dual simplex to find a lexicographically minimal optimal solution, measures time and counts iterations
10644 * We do, however, not aim for the exact lexicographically minimal optimal solutions, but perform a
10647 * More precisely, we first solve the problem with the dual simplex algorithm. Then we fix those
10649 * variables) that have nonzero reduced cost. This fixes the objective function value, because only
10652 * Then the not yet fixed variables are considered in turn. If they are at their lower bounds and
10653 * nonbasic, they are fixed to this bound, since their value cannot be decreased further. Once a
10654 * candidate is found, we set the objective to minimize this variable. We run the primal simplex
10656 * variables out of the basis have been fixed to their lower bound, the basis is also not primal
10657 * feasible anymore). After the optimization, we again fix nonbasic variables that have nonzero
10664 * @todo Can we skip the consideration of basic variables that are at their lower bound? How can we
10665 * guarantee that these variables will not be changed in later stages? We can fix these variables
10675 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10692 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with lex dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10693 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nduallps, stat->ndivinglps);
10718 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10957 /* check columns: find first candidate (either basic or nonbasic and zero reduced cost) and fix variables */
11084 /* solve with primal simplex, because we are primal feasible, but not necessarily dual feasible */
11089 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") in lex-dual: primal simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11167 while( pos >= 0 && nDualDeg > 0 && (set->lp_lexdualmaxrounds == -1 || rounds < set->lp_lexdualmaxrounds) );
11174 /* resolve to update solvers internal data structures - should only produce few pivots - is this needed? */
11179 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11243 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with lex dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
11266/** calls LPI to perform barrier, measures time and counts iterations, gets basis feasibility status */
11273 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11287 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with barrier%s (diving=%d, nbarrierlps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
11288 stat->lpcount+1, lp->ncols, lp->nrows, crossover ? "/crossover" : "", lp->diving || lp->probing,
11297 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
11299 SCIPsetDebugMsg(set, "wrote LP to file <%s> (barrier, objlim=%.15g, feastol=%.15g/%.15g, convtol=%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
11326 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") barrier solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11397 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with barrier%s (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", nbarrierlps=%" SCIP_LONGINT_FORMAT ")\n",
11398 stat->lpcount, crossover ? "/crossover" : "", lp->diving || lp->probing, stat->nbarrierlps, stat->ndivinglps);
11411 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11440 SCIPsetDebugMsg(set, "calling LP algorithm <%s> with a time limit of %g seconds\n", lpalgoName(lpalgo), lptimelimit);
11451 if( set->lp_lexdualalgo && (!set->lp_lexdualrootonly || stat->maxdepth == 0) && (!set->lp_lexdualstalling || lp->installing) )
11479 SCIPsetDebugMsg(set, "LP feasibility: primalfeasible=%u, dualfeasible=%u\n", lp->primalfeasible, lp->dualfeasible);
11485/** maximal number of verblevel-high messages about numerical trouble in LP that will be printed
11486 * when this number is reached and display/verblevel is not full, then further messages are suppressed in this run
11516 /* if already max number of messages about numerical trouble in LP on verblevel at most high, then skip message */
11540 if( set->disp_verblevel < SCIP_VERBLEVEL_FULL && verblevel <= SCIP_VERBLEVEL_HIGH && stat->nnumtroublelpmsgs > MAXNUMTROUBLELPMSGS )
11542 SCIPmessagePrintInfo(messagehdlr, " -- further messages will be suppressed (use display/verblevel=5 to see all)");
11566 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "ignoring instability of %s", lpalgoName(lpalgo));
11586 int itlim, /**< maximal number of LP iterations to perform in first LP calls (before solving from scratch), or -1 for no limit */
11587 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
11592 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
11594 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11615 /**@todo implement solving the LP when loose variables with infinite best bound are present; for this, we need to
11616 * solve with deactivated objective limit in order to determine whether we are (a) infeasible or (b) feasible
11617 * and hence unbounded; to handle case (b) we need to store an array of loose variables with best bound in
11622 SCIPerrorMessage("cannot solve LP when loose variable with infinite best bound is present\n");
11633 if( lp->lpihaspolishing && (set->lp_solutionpolishing == 2 || (set->lp_solutionpolishing == 1 && stat->nnodes == 1 && !lp->probing)
11634 || (set->lp_solutionpolishing == 3 && ((lp->probing && !lp->strongbranchprobing) || lp->diving))) )
11652 SCIP_CALL( lpSetObjlim(lp, set, prob, lp->cutoffbound - getFiniteLooseObjval(lp, set, prob), &success) );
11655 SCIP_CALL( lpSetFeastol(lp, tightprimfeastol ? FEASTOLTIGHTFAC * lp->feastol : lp->feastol, &success) );
11656 SCIP_CALL( lpSetDualfeastol(lp, tightdualfeastol ? FEASTOLTIGHTFAC * SCIPsetDualfeastol(set) : SCIPsetDualfeastol(set),
11658 SCIP_CALL( lpSetBarrierconvtol(lp, (tightprimfeastol || tightdualfeastol) ? FEASTOLTIGHTFAC * SCIPsetBarrierconvtol(set)
11671 SCIP_CALL( lpSetRandomseed(lp, (int) (SCIPsetInitializeRandomSeed(set, (unsigned) set->random_randomseed) % INT_MAX), &success) );
11677 /* after the first solve, do not use starting basis, since otherwise the solver will probably think the basis is
11681 /* check for stability; iteration limit exceeded is also treated like instability if the iteration limit is soft */
11682 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11693 /* In the following, whenever the LP iteration limit is exceeded in an LP solving call, we leave out the
11694 * remaining resolving calls with changed settings and go directly to solving the LP from scratch.
11697 /* if FASTMIP is turned on, solve again without FASTMIP (starts from the solution of the last LP solving call);
11705 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s without FASTMIP", lpalgoName(lpalgo));
11709 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11722 /* if the iteration limit was exceeded in the last LP solving call, we leave out the remaining resolving calls with changed settings
11727 /* solve again with opposite scaling setting (starts from the solution of the last LP solving call) */
11731 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s %s scaling",
11736 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11753 /* if the iteration limit was exceeded in the last LP solving call, we leave out the remaining resolving calls with changed settings
11757 /* solve again with opposite presolving setting (starts from the solution of the last LP solving call) */
11761 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s %s presolving",
11766 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11783 /* solve again with a tighter feasibility tolerance (starts from the solution of the last LP solving call);
11786 if( ((simplex && (!tightprimfeastol || !tightdualfeastol)) || (!tightprimfeastol && !tightdualfeastol)) &&
11804 SCIP_CALL( lpSetBarrierconvtol(lp, FEASTOLTIGHTFAC * SCIPsetBarrierconvtol(set), &success3) );
11810 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s with tighter primal and dual feasibility tolerance",
11815 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11842 /* all LPs solved after this point are solved from scratch, so set the LP iteration limit to the hard limit;
11852 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s", lpalgoName(lpalgo));
11872 lpalgo = (lpalgo == SCIP_LPALGO_PRIMALSIMPLEX ? SCIP_LPALGO_DUALSIMPLEX : SCIP_LPALGO_PRIMALSIMPLEX);
11873 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s", lpalgoName(lpalgo));
11892 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s %s scaling",
11917 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s %s presolving",
11956 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s with tighter feasibility tolerance",
12004 if( SCIPsetIsInfinity(set, lp->lpobjval) && lp->lpobjval != SCIPsetInfinity(set) ) /*lint !e777*/
12013 else if( SCIPsetIsInfinity(set, -lp->lpobjval) && lp->lpobjval != -SCIPsetInfinity(set) ) /*lint !e777*/
12033 int resolveitlim, /**< maximal number of LP iterations to perform in resolving calls, or -1 for no limit */
12034 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
12041 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
12043 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12069 SCIP_CALL( lpSolveStable(lp, set, messagehdlr, stat, prob, lpalgo, itlim, harditlim, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch,
12078 SCIPsetDebugMsg(set, "unresolved error while solving LP with %s\n", lpalgoName(lp->lastlpalgo));
12095 assert(!(SCIPlpiIsOptimal(lp->lpi) && SCIPlpiIsObjlimExc(lp->lpi) && SCIPlpiIsPrimalInfeasible(lp->lpi) &&
12096 SCIPlpiExistsPrimalRay(lp->lpi) && SCIPlpiIsIterlimExc(lp->lpi) && SCIPlpiIsTimelimExc(lp->lpi)));
12109 /* the solver may return the optimal value, even if this is greater or equal than the upper bound */
12110 SCIPsetDebugMsg(set, "optimal solution %.15g exceeds objective limit %.15g\n", lp->lpobjval, lp->lpiobjlim);
12114 /* if we did not disable the cutoff bound in the LP solver, the LP solution status should be objective limit
12117 assert(lpCutoffDisabled(set, prob) || lp->lpsolstat == SCIP_LPSOLSTAT_OBJLIMIT || SCIPsetIsInfinity(set, lp->cutoffbound)
12125 /* the LP solution objective should exceed the limit in this case; if this assert is triggered, it typically means
12126 * that the LP interface method SCIPlpiIsStable() lacks a check for this event and incorrectly returned TRUE */
12136 /* because of numerical instability lpalgo != lp->lastlpalgo might happen - hence, we have to check both */
12137 if( needdualray && !SCIPlpiHasDualRay(lp->lpi) && !solveddual && lpalgo != SCIP_LPALGO_DUALSIMPLEX )
12148 /* because of numerical instability lpalgo != lp->lastlpalgo might happen - hence, we have to check both */
12149 if( needprimalray && !SCIPlpiIsPrimalUnbounded(lp->lpi) && !solvedprimal && lpalgo != SCIP_LPALGO_PRIMALSIMPLEX )
12163 /* The lpobjval might be infinite, e.g. if the LP solver was not able to produce a valid bound while reaching the
12164 iteration limit. In this case, we avoid the warning in adjustLPobjval() by setting the messagehdlr to NULL. */
12182 "(node %" SCIP_LONGINT_FORMAT ") solution status of LP %" SCIP_LONGINT_FORMAT " could not be proven (internal status:%d) -- solve again with %s\n",
12191 "(node %" SCIP_LONGINT_FORMAT ") solution status of LP %" SCIP_LONGINT_FORMAT " could not be proven (internal status:%d) -- solve again with %s\n",
12197 SCIPerrorMessage("(node %" SCIP_LONGINT_FORMAT ") error or unknown return status of %s in LP %" SCIP_LONGINT_FORMAT " (internal status: %d)\n",
12205 SCIPsetDebugMsg(set, "solving LP with %s returned solstat=%d (internal status: %d, primalfeasible=%u, dualfeasible=%u)\n",
12212/** flushes the LP and solves it with the primal or dual simplex algorithm, depending on the current basis feasibility */
12222 int resolveitlim, /**< maximal number of LP iterations to perform in resolving calls, or -1 for no limit */
12223 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
12229 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
12231 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12244 fastmip = ((!lp->flushaddedcols && !lp->flushdeletedcols) ? fastmip : 0); /* turn off FASTMIP if columns were changed */
12257 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_DUALSIMPLEX, resolveitlim, harditlim, needprimalray,
12258 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12263 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_PRIMALSIMPLEX, resolveitlim, harditlim, needprimalray,
12264 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12270 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_PRIMALSIMPLEX, resolveitlim, harditlim, needprimalray,
12271 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12276 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_DUALSIMPLEX, resolveitlim, harditlim, needprimalray,
12277 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12282 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_BARRIER, resolveitlim, harditlim, needprimalray,
12283 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12288 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_BARRIERCROSSOVER, resolveitlim, harditlim, needprimalray,
12289 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12319 assert(SCIPsetIsInfinity(set, -col->lazylb) || SCIPsetIsFeasGE(set, col->primsol, col->lazylb));
12320 assert(SCIPsetIsInfinity(set, col->lazyub) || SCIPsetIsFeasLE(set, col->primsol, col->lazyub));
12327/** marks all lazy columns to be changed; this is needed for reloading/removing bounds of these columns before and after
12347 SCIPsetDebugMsg(set, "mark all lazy columns as changed in order to reload bounds (diving=%u, applied=%u)\n",
12357 assert((!(lp->divinglazyapplied)) || (col->flushedlb == col->lb) || col->lbchanged); /*lint !e777*/
12371 assert((!(lp->divinglazyapplied)) || (col->flushedub == col->ub) || col->ubchanged); /*lint !e777*/
12383 /* update lp->divinglazyapplied flag: if we are in diving mode, we just applied the lazy bounds,
12402 /* set itlim to INT_MAX if it is -1 to reduce the number of cases to be regarded in the following */
12405 /* return resolveiterfac * average iteration number per call after root, but at least resolveitermin and at most the hard iteration limit */
12407 (set->lp_resolveiterfac * (stat->nlpiterations - stat->nrootlpiterations) / (SCIP_Real)(stat->nlps - stat->nrootlps))));
12426 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12450 SCIPsetDebugMsg(set, "solving LP: %d rows, %d cols, primalfeasible=%u, dualfeasible=%u, solved=%u, diving=%u, probing=%u, cutoffbnd=%g\n",
12451 lp->nrows, lp->ncols, lp->primalfeasible, lp->dualfeasible, lp->solved, lp->diving, lp->probing, lp->cutoffbound);
12458 /* compute the limit for the number of LP resolving iterations, if needed (i.e. if limitresolveiters == TRUE) */
12463 /* if there are lazy bounds, check whether the bounds should explicitly be put into the LP (diving was started)
12468 /* @todo avoid loosing primal feasibility here after changing the objective already did destroy dual feasibility;
12479 /* if the time limit was reached in the last call and the LP did not change, lp->solved is set to TRUE, but we want
12482 if( !lp->solved || (lp->lpsolstat == SCIP_LPSOLSTAT_TIMELIMIT && stat->status != SCIP_STATUS_TIMELIMIT) )
12499 fastmip = ((lp->lpihasfastmip && !lp->flushaddedcols && !lp->flushdeletedcols && stat->nnodes > 1) ? set->lp_fastmip : 0);
12511 SCIP_CALL( lpFlushAndSolve(lp, blkmem, set, messagehdlr, stat, prob, eventqueue, resolveitlim, harditlim, needprimalray,
12512 needdualray, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12513 SCIPsetDebugMsg(set, "lpFlushAndSolve() returned solstat %d (error=%u)\n", SCIPlpGetSolstat(lp), *lperror);
12570 SCIPsetDebugMsg(set, "removed obsoletes - resolve LP again: %d rows, %d cols\n", lp->nrows, lp->ncols);
12577 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12581 /* solution is infeasible (this can happen due to numerical problems): solve again without FASTMIP */
12583 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again without FASTMIP\n",
12590 /* solution is infeasible (this can happen due to numerical problems): solve again with tighter feasibility
12594 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again with tighter feasibility tolerance\n",
12602 /* solution is infeasible (this can happen due to numerical problems): solve again from scratch */
12604 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again from scratch\n",
12618 lp->lpobjval, getFiniteLooseObjval(lp, set, prob), lp->lpobjval + getFiniteLooseObjval(lp, set, prob),
12624 if( !SCIPprobAllColsInLP(prob, set, lp) || set->lp_checkfarkas || set->misc_exactsolve || set->lp_alwaysgetduals )
12630 /* it might happen that we have no infeasibility proof for the current LP (e.g. if the LP was always solved
12636 "(node %" SCIP_LONGINT_FORMAT ") infeasibility of LP %" SCIP_LONGINT_FORMAT " could not be proven by dual ray\n", stat->nnodes, stat->nlps);
12649 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12653 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12657 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again without FASTMIP\n",
12668 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again with tighter dual feasibility tolerance\n",
12675 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12679 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again from scratch\n",
12686 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems) and nothing
12689 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP infeasible");
12724 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12728 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again without FASTMIP */
12730 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again without FASTMIP\n",
12737 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again with tighter feasibility
12741 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again with tighter primal feasibility tolerance\n",
12748 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again from scratch */
12750 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again from scratch\n",
12757 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again without scaling */
12759 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving without scaling\n",
12766 /* unbounded solution is infeasible (this can happen due to numerical problems) and nothing helped:
12769 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP unbounded");
12780 /* Some LP solvers, e.g. CPLEX With FASTMIP setting, do not apply the final pivot to reach the dual solution
12781 * exceeding the objective limit. In some cases like branch-and-price, however, we must make sure that a dual
12782 * feasible solution exists that exceeds the objective limit. Therefore, we have to continue solving it without
12783 * objective limit for at least one iteration. We first try to continue with FASTMIP for one additional simplex
12784 * iteration using the steepest edge pricing rule. If this does not fix the problem, we temporarily disable
12794 /* actually, SCIPsetIsGE(set, lp->lpobjval, lp->lpiuobjlim) should hold, but we are a bit less strict in
12801 /* do one additional simplex step if the computed dual solution doesn't exceed the objective limit */
12808 SCIPsetDebugMsg(set, "objval = %f < %f = lp->lpiobjlim, but status objlimit\n", objval, lp->lpiobjlim);
12810 /* we want to resolve from the current basis (also if the LP had to be solved from scratch) */
12823 FALSE, FALSE, TRUE, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12844 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12849 FALSE, FALSE, TRUE, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, scaling, keepsol, lperror) );
12857 SCIPsetDebugMsg(set, " ---> new objval = %f (solstat: %d, without fastmip)\n", objval, solstat);
12864 SCIPsetDebugMsg(set, "unresolved error while resolving LP in order to exceed the objlimit\n");
12907 /* in debug mode, check that lazy bounds (if present) are not violated by an optimal LP solution */
12923 /* LP solution is not feasible or objective limit was reached without the LP value really exceeding
12937 lp->lpobjval, getFiniteLooseObjval(lp, set, prob), lp->lpobjval + getFiniteLooseObjval(lp, set, prob),
12951 /* it might happen that we have no infeasibility proof for the current LP (e.g. if the LP was always solved
12957 "(node %" SCIP_LONGINT_FORMAT ") infeasibility of LP %" SCIP_LONGINT_FORMAT " could not be proven by dual ray\n", stat->nnodes, stat->nlps);
12969 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12977 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again with tighter primal feasibility tolerance\n",
12984 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12988 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again from scratch\n",
12995 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems) and nothing
12998 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP infeasible");
13038 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, unbounded LP");
13068 SCIPmessagePrintWarning(messagehdlr, "LP solver reached time limit, but SCIP time limit is not exceeded yet; "
13089 /* if the LP had to be solved from scratch, we have to reset this flag since it is stored in the LPI; otherwise it
13095 SCIPsetDebugMsg(set, "resetting parameter SCIP_LPPARAM_FROMSCRATCH to FALSE %s\n", success ? "" : "failed");
13115 * @note This method returns the objective value of the current LP solution, which might be primal or dual infeasible
13116 * if a limit was hit during solving. It must not be used as a dual bound if the LP solution status is
13267/** gets the global pseudo objective value; that is all variables set to their best (w.r.t. the objective function)
13288 /* if the global pseudo objective value is smaller than -infinity, we just return -infinity */
13299/** gets the pseudo objective value for the current search node; that is all variables set to their best (w.r.t. the
13331/** gets pseudo objective value, if a bound of the given variable would be modified in the given way */
13369/** gets pseudo objective value, if a bound of the given variable would be modified in the given way;
13573 assert(SCIPsetIsPositive(set, obj)); /* we only need to update if the objective is positive */
13614 assert(SCIPsetIsNegative(set, obj)); /* we only need to update if the objective is negative */
13641/** updates current pseudo and loose objective values for a change in a variable's objective value or bounds */
13676 /* after changing a local bound on a LOOSE variable, we have to update the loose objective value, too */
13721/** updates current pseudo and loose objective values for a change in a variable's objective value or bounds;
13755 if( SCIPvarGetStatus(var) != SCIP_VARSTATUS_LOOSE && SCIPvarGetStatus(var) != SCIP_VARSTATUS_COLUMN )
13776 SCIPintervalSub(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval -= oldlb * oldobj; */
13788 SCIPintervalSub(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval -= oldub * oldobj; */
13802 SCIPintervalAdd(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval += newlb * newobj; */
13814 SCIPintervalAdd(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval += newub * newobj; */
13837/** updates current pseudo and loose objective value for a change in a variable's objective coefficient */
13853 SCIP_CALL( lpUpdateVarProved(lp, set, var, oldobj, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
13864 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
13867 /* the objective coefficient can only be changed during presolving, that implies that the global and local
13874 getObjvalDeltaObj(set, oldobj, newobj, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), &deltaval, &deltainf);
13880 getObjvalDeltaObj(set, oldobj, newobj, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var), &deltaval, &deltainf);
13891/** updates current root pseudo objective value for a global change in a variable's lower bound */
13918/** updates current pseudo and loose objective value for a change in a variable's lower bound */
13945 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
13959/** updates current root pseudo objective value for a global change in a variable's upper bound */
14013 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14035 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14056 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14154 SCIPintervalSub(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval -= lb * obj; */
14167 SCIPintervalSub(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval -= ub * obj; */
14172 /* get rid of numerical problems: set loose objective value explicitly to zero, if no loose variables remain */
14285 SCIPintervalAdd(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval += lb * obj; */
14298 SCIPintervalAdd(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval += ub * obj; */
14339 /* get rid of numerical problems: set loose objective value explicitly to zero, if no loose variables remain */
14352 SCIP_Bool* primalfeasible, /**< pointer to store whether the solution is primal feasible, or NULL */
14353 SCIP_Bool* dualfeasible /**< pointer to store whether the solution is dual feasible, or NULL */
14383 /* initialize return and feasibility flags; if primal oder dual feasibility shall not be checked, we set the
14447 * thus change the solution here to a reasonable value (0.0) and declare it as neither primal nor dual feasible
14453 SCIPsetDebugMsg(set, " col <%s>: primsol=%.9f is not finite\n", SCIPvarGetName(lpicols[c]->var), primsol[c]);
14463 (SCIPsetIsInfinity(set, -lpicols[c]->lb) || SCIPlpIsFeasGE(set, lp, lpicols[c]->primsol, lpicols[c]->lb))
14464 && (SCIPsetIsInfinity(set, lpicols[c]->ub) || SCIPlpIsFeasLE(set, lp, lpicols[c]->primsol, lpicols[c]->ub));
14471 /* complementary slackness in barrier solutions is measured as product of primal slack and dual multiplier;
14472 * we use a slack of at most 1, because otherwise we multiply by something like SCIPinfinty() for unbounded
14486 SCIPsetDebugMsg(set, " col <%s> [%.9g,%.9g]: primsol=%.9f, redcost=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14487 SCIPvarGetName(lpicols[c]->var), lpicols[c]->lb, lpicols[c]->ub, lpicols[c]->primsol, lpicols[c]->redcost,
14491 !SCIPsetIsDualfeasPositive(set, MIN((lpicols[c]->primsol - lpicols[c]->lb), 1.0) * lpicols[c]->redcost),
14492 !SCIPsetIsDualfeasNegative(set, MIN((lpicols[c]->ub - lpicols[c]->primsol), 1.0) * lpicols[c]->redcost),
14503 /* complementary slackness means that if a variable is not at its lower or upper bound, its reduced costs
14504 * must be non-positive or non-negative, respectively; in particular, if a variable is strictly within its
14508 && (SCIPsetIsInfinity(set, -lpicols[c]->lb) || SCIPlpIsFeasGT(set, lp, lpicols[c]->primsol, lpicols[c]->lb)) )
14511 && (SCIPsetIsInfinity(set, lpicols[c]->ub) || SCIPlpIsFeasLT(set, lp, lpicols[c]->primsol, lpicols[c]->ub)) )
14514 SCIPsetDebugMsg(set, " col <%s> [%.9g,%.9g]: primsol=%.9f, redcost=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14515 SCIPvarGetName(lpicols[c]->var), lpicols[c]->lb, lpicols[c]->ub, lpicols[c]->primsol, lpicols[c]->redcost,
14519 !SCIPlpIsFeasGT(set, lp, lpicols[c]->primsol, lpicols[c]->lb) || !SCIPsetIsDualfeasPositive(set, lpicols[c]->redcost),
14520 !SCIPlpIsFeasLT(set, lp, lpicols[c]->primsol, lpicols[c]->ub) || !SCIPsetIsDualfeasNegative(set, lpicols[c]->redcost),
14524 /* we intentionally use an exact positive/negative check because ignoring small reduced cost values may lead to a
14525 * wrong bound value; if the corresponding bound is +/-infinity, we use zero reduced cost (if stilldualfeasible is
14554 (SCIPsetIsInfinity(set, -lpirows[r]->lhs) || SCIPlpIsFeasGE(set, lp, lpirows[r]->activity, lpirows[r]->lhs))
14555 && (SCIPsetIsInfinity(set, lpirows[r]->rhs) || SCIPlpIsFeasLE(set, lp, lpirows[r]->activity, lpirows[r]->rhs));
14561 /* complementary slackness in barrier solutions is measured as product of primal slack and dual multiplier;
14562 * we use a slack of at most 1, because otherwise we multiply by something like SCIPinfinity() for unbounded
14576 SCIPsetDebugMsg(set, " row <%s> [%.9g,%.9g]: activity=%.9f, dualsol=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14577 lpirows[r]->name, lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->activity, lpirows[r]->dualsol,
14581 !SCIPsetIsDualfeasPositive(set, MIN((lpirows[r]->activity - lpirows[r]->lhs), 1.0) * lpirows[r]->dualsol),
14582 !SCIPsetIsDualfeasNegative(set, MIN((lpirows[r]->rhs - lpirows[r]->activity), 1.0) * lpirows[r]->dualsol),
14587 /* complementary slackness means that if the activity of a row is not at its left-hand or right-hand side,
14588 * its dual multiplier must be non-positive or non-negative, respectively; in particular, if the activity is
14592 (SCIPsetIsInfinity(set, -lpirows[r]->lhs) || SCIPlpIsFeasGT(set, lp, lpirows[r]->activity, lpirows[r]->lhs)) )
14595 (SCIPsetIsInfinity(set,lpirows[r]->rhs) || SCIPlpIsFeasLT(set, lp, lpirows[r]->activity, lpirows[r]->rhs)) )
14598 SCIPsetDebugMsg(set, " row <%s> [%.9g,%.9g] + %.9g: activity=%.9f, dualsol=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14599 lpirows[r]->name, lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->constant, lpirows[r]->activity, lpirows[r]->dualsol,
14603 !SCIPlpIsFeasGT(set, lp, lpirows[r]->activity, lpirows[r]->lhs) || !SCIPsetIsDualfeasPositive(set, lpirows[r]->dualsol),
14604 !SCIPlpIsFeasLT(set, lp, lpirows[r]->activity, lpirows[r]->rhs) || !SCIPsetIsDualfeasNegative(set, lpirows[r]->dualsol),
14608 /* we intentionally use an exact positive/negative check because ignoring small dual multipliers may lead to a
14609 * wrong bound value; if the corresponding side is +/-infinity, we use a zero dual multiplier (if
14610 * stilldualfeasible is TRUE, we are in the case that the dual multiplier is tiny with wrong sign)
14621 /* if the objective value returned by the LP solver is smaller than the internally computed primal bound, then we
14622 * declare the solution primal infeasible; we assume primalbound and lp->lpobjval to be equal if they are both +/-
14625 /**@todo alternatively, if otherwise the LP solution is feasible, we could simply update the objective value */
14626 if( stillprimalfeasible && !(SCIPsetIsInfinity(set, primalbound) && SCIPsetIsInfinity(set, lp->lpobjval))
14630 SCIPsetDebugMsg(set, " primalbound=%.9f, lpbound=%.9g, pfeas=%u(%u)\n", primalbound, lp->lpobjval,
14631 SCIPsetIsFeasLE(set, primalbound, lp->lpobjval), primalfeasible != NULL ? stillprimalfeasible : TRUE);
14634 /* if the objective value returned by the LP solver is smaller than the internally computed dual bound, we declare
14635 * the solution dual infeasible; we assume dualbound and lp->lpobjval to be equal if they are both +/- infinity
14637 /**@todo alternatively, if otherwise the LP solution is feasible, we could simply update the objective value */
14638 if( stilldualfeasible && !(SCIPsetIsInfinity(set, dualbound) && SCIPsetIsInfinity(set, lp->lpobjval))
14642 SCIPsetDebugMsg(set, " dualbound=%.9f, lpbound=%.9g, dfeas=%u(%u)\n", dualbound, lp->lpobjval,
14643 SCIPsetIsFeasGE(set, dualbound, lp->lpobjval), dualfeasible != NULL ? stilldualfeasible : TRUE);
14669 SCIP_Bool* primalfeasible, /**< pointer to store whether the solution is primal feasible, or NULL */
14670 SCIP_Bool* rayfeasible /**< pointer to store whether the primal ray is a feasible unboundedness proof, or NULL */
14713 SCIPsetDebugMsg(set, "getting new unbounded LP solution %" SCIP_LONGINT_FORMAT "\n", stat->lpcount);
14729 /* calculate the objective value decrease of the ray and heuristically try to construct primal solution */
14738 /* there should only be a nonzero value in the ray if there is no finite bound in this direction */
14749 /* Many LP solvers cannot directly provide a feasible solution if they detected unboundedness. We therefore first
14766 assert( SCIPlpIsFeasGE(set, lp, primsol[c], col->lb) && SCIPlpIsFeasLE(set, lp, primsol[c], col->ub) );
14824 /* check whether primal solution satisfies the bounds; note that we also ensure that the primal
14825 * solution is within SCIP's infinity bounds; otherwise the rayscale below is not well-defined */
14826 if( SCIPsetIsInfinity(set, REALABS(primsol[c])) || SCIPlpIsFeasLT(set, lp, primsol[c], lpicols[c]->lb) ||
14955 SCIPsetDebugMsg(set, "unbounded LP solution: rayobjval=%f, rayscale=%f\n", rayobjval, rayscale);
14958 /* Note: We do not check the feasibility of the unbounded solution, because it will likely be infeasible due to the
14968 lpicols[c]->primsol = MAX(-SCIPsetInfinity(set), MIN(SCIPsetInfinity(set), primsolval)); /*lint !e666*/
14994 SCIP_Real* ray /**< array for storing primal ray values, they are stored w.r.t. the problem index of the variables,
15047/** stores the dual Farkas multipliers for infeasibility proof in rows. besides, the proof is checked for validity if
15130 if( (SCIPsetIsDualfeasGT(set, dualfarkas[r], 0.0) && SCIPsetIsInfinity(set, -lpirows[r]->lhs))
15131 || (SCIPsetIsDualfeasLT(set, dualfarkas[r], 0.0) && SCIPsetIsInfinity(set, lpirows[r]->rhs)) )
15133 SCIPsetDebugMsg(set, "farkas proof is invalid: row <%s>[lhs=%g,rhs=%g,c=%g] has multiplier %g\n",
15134 SCIProwGetName(lpirows[r]), lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->constant, dualfarkas[r]);
15142 /* dual multipliers, for which the corresponding row side in infinite, are treated as zero if they are zero
15205 * due to numerics, it might happen that the left-hand side of the aggregation is larger/smaller or equal than +/- infinity.
15208 if( checkfarkas && (SCIPsetIsInfinity(set, REALABS(farkaslhs)) || SCIPsetIsGE(set, maxactivity, farkaslhs)) )
15210 SCIPsetDebugMsg(set, "farkas proof is invalid: maxactivity=%.12f, lhs=%.12f\n", maxactivity, farkaslhs);
15239/** increases age of columns with solution value 0.0 and basic rows with activity not at its bounds,
15294 /*debugMsg(scip, " -> row <%s>: activity=%f, age=%d\n", lpirows[r]->name, lpirows[r]->activity, lpirows[r]->age);*/
15336 /* mark column to be deleted from the LPI, update column arrays of all linked rows, and update the objective
15451 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
15544 && cols[c]->obsoletenode != stat->nnodes /* don't remove column a second time from same node (avoid cycling), or a first time if marked nonremovable locally */
15547 && SCIPsetIsZero(set, SCIPcolGetBestBound(cols[c])) ) /* bestbd != 0 -> column would be priced in next time */
15623 && rows[r]->obsoletenode != stat->nnodes /* don't remove row a second time from same node (avoid cycling), or a first time if marked nonremovable locally */
15650/** removes all non-basic columns and basic rows in the part of the LP created at the current node, that are too old */
15666 SCIPsetDebugMsg(set, "removing obsolete columns starting with %d/%d, obsolete rows starting with %d/%d\n",
15675 SCIP_CALL( lpRemoveObsoleteRows(lp, blkmem, set, stat, eventqueue, eventfilter, lp->firstnewrow) );
15756 && SCIPsetIsZero(set, SCIPcolGetBestBound(cols[c])) ) /* bestbd != 0 -> column would be priced in next time */
15850/** removes all non-basic columns at 0.0 and basic rows in the part of the LP created at the current node */
15874 SCIPsetDebugMsg(set, "removing unused columns starting with %d/%d (%u), unused rows starting with %d/%d (%u), LP algo: %d, basic sol: %u\n",
15875 lp->firstnewcol, lp->ncols, cleanupcols, lp->firstnewrow, lp->nrows, cleanuprows, lp->lastlpalgo, lp->solisbasic);
15913 SCIPsetDebugMsg(set, "removing all unused columns (%u) and rows (%u), LP algo: %d, basic sol: %u\n",
16088 SCIP_CALL( rowStoreSolVals(lp->rows[r], blkmem, lp->storedsolvals->lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE) );
16108/** quits LP diving and resets bounds and objective values of columns to the current node's values */
16130 SCIPsetDebugMsg(set, "diving ended (LP flushed: %u, solstat: %d)\n", lp->flushed, SCIPlpGetSolstat(lp));
16173 /* reload LPI state saved at start of diving and free it afterwards; it may be NULL, in which case simply nothing
16177 lp->divelpwasprimfeas, lp->divelpwasprimchecked, lp->divelpwasdualfeas, lp->divelpwasdualchecked) );
16189 /* if the LP was solved before starting the dive, but not to optimality (or unboundedness), then we need to solve the
16190 * LP again to reset the solution (e.g. we do not save the Farkas proof for infeasible LPs, because we assume that we
16191 * are not called in this case, anyway); restoring by solving the LP again in either case can be forced by setting
16193 * restoring an unbounded ray after solve does not seem to work currently (bug 631), so we resolve also in this case
16197 && (set->lp_resolverestore || lp->storedsolvals->lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || lp->divenolddomchgs < stat->domchgcount) )
16201 SCIP_CALL( SCIPlpSolveAndEval(lp, set, messagehdlr, blkmem, stat, eventqueue, eventfilter, prob, -1LL, FALSE, FALSE, FALSE, &lperror) );
16204 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved when resolving LP after diving");
16217 /* otherwise, we can just reload the buffered LP solution values at start of diving; this has the advantage that we
16218 * are guaranteed to continue with the same LP status as before diving, while in numerically difficult cases, a
16229 /* @todo avoid loosing primal feasibility here after changing the objective already did destroy dual feasibility;
16239 /* increment lp counter to ensure that we do not use solution values from the last solved diving lp */
16256 SCIP_CALL( colRestoreSolVals(lp->cols[c], blkmem, stat->lpcount, set->lp_freesolvalbuffers) );
16260 SCIP_CALL( rowRestoreSolVals(lp->rows[r], blkmem, stat->lpcount, set->lp_freesolvalbuffers, lp->storedsolvals->lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE) );
16372 * Calculating this value in interval arithmetics gives a proved lower LP bound for the following reason (assuming,
16384 SCIP_Bool usefarkas, /**< use y = dual Farkas and c = 0 instead of y = dual solution and c = obj? */
16519 SCIPsetDebugMsg(set, "proved Farkas value of LP: %g -> infeasibility %sproved\n", bound, *proved ? "" : "not ");
16547 SCIP_Bool genericnames, /**< should generic names like x_i and row_j be used in order to avoid
16577 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Original Variable and Constraint Names have been replaced by generic names.\n");
16580 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Warning: Variable and Constraint Names should not contain special characters like '+', '=' etc.\n");
16581 SCIPmessageFPrintInfo(messagehdlr, file, "\\ If this is the case, the model may be corrupted!\n");
16586 SCIPmessageFPrintInfo(messagehdlr, file, "\\ An artificial variable 'objoffset' has been added and fixed to 1.\n");
16587 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Switching this variable to 0 will disable the offset in the objective.\n\n");
16623 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g objoffset", objoffset * (SCIP_Real) objsense * objscale);
16635 /* constraint types: 'l' means: only lhs exists, 'r' means: only rhs exists, 'e' means: both sides exist and are
16636 * equal, 'b' and 'B' mean: both sides exist, if the type is 'b', the lhs will be written, if the type is 'B',
16637 * the rhs will be written. Ergo: set type to b first, change it to 'B' afterwards and go back to WRITEROW.
16639 if( SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16641 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16643 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsEQ(set, lp->rows[i]->lhs, lp->rows[i]->rhs) )
16645 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16664 SCIPmessageFPrintInfo(messagehdlr, file, "\\\\ WARNING: The lhs and the rhs of the row with original name <%s>", lp->rows[i]->name);
16665 SCIPmessageFPrintInfo(messagehdlr, file, "are not in a valid range. The following two constraints may be corrupted!\n");
16666 SCIPmessagePrintWarning(messagehdlr, "The lhs and rhs of row <%s> are not in a valid range.\n", lp->rows[i]->name);
16682 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g x_%d", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->lppos);
16684 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g %s", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->var->name);
16694 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16698 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16702 SCIPmessageFPrintInfo(messagehdlr, file, " <= %.15g\n", lp->rows[i]->rhs - lp->rows[i]->constant);
16705 SCIPmessageFPrintInfo(messagehdlr, file, " = %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16726 /* constraint types: 'l' means: only lhs exists, 'r' means: only rhs exists, 'e' means: both sides exist and are
16727 * equal, 'b' and 'B' mean: both sides exist, if the type is 'b', the lhs will be written, if the type is 'B',
16728 * the rhs will be written. Ergo: set type to b first, change it to 'B' afterwards and go back to WRITEROW.
16730 if( SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16732 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16734 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsEQ(set, lp->rows[i]->lhs, lp->rows[i]->rhs) )
16736 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16755 SCIPmessageFPrintInfo(messagehdlr, file, "\\\\ WARNING: The lhs and the rhs of the row with original name <%s>", lp->rows[i]->name);
16756 SCIPmessageFPrintInfo(messagehdlr, file, "are not in a valid range. The following two constraints may be corrupted!\n");
16757 SCIPmessagePrintWarning(messagehdlr, "The lhs and rhs of row <%s> are not in a valid range.\n",lp->rows[i]->name);
16773 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g x_%d", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->lppos);
16775 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g %s", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->var->name);
16785 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16789 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16793 SCIPmessageFPrintInfo(messagehdlr, file, " <= %.15g\n", lp->rows[i]->rhs - lp->rows[i]->constant);
16796 SCIPmessageFPrintInfo(messagehdlr, file, " = %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
17028/** gets the basis status of a column in the LP solution; only valid for LPs with status SCIP_LPSOLSTAT_OPTIMAL
17029 * and with SCIPisLPSolBasic(scip) == TRUE; returns SCIP_BASESTAT_ZERO for columns not in the current SCIP_LP
17071/** returns whether the associated variable is of integral type (binary, integer, implicit integer) */
17135/** get number of nonzero entries in column vector, that correspond to rows currently in the SCIP_LP;
17137 * @warning This method is only applicable on columns, that are completely linked to their rows (e.g. a column
17138 * that is in the current LP and the LP was solved, or a column that was in a solved LP and didn't change afterwards
17170/** gets node number of the last node in current branch and bound run, where strong branching was used on the
17192/** gets the age of a column, i.e., the total number of successive times a column was in the LP and was 0.0 in the solution */
17222/** get number of nonzero entries in row vector, that correspond to columns currently in the SCIP_LP;
17224 * @warning This method is only applicable on rows, that are completely linked to their columns (e.g. a row
17225 * that is in the current LP and the LP was solved, or a row that was in a solved LP and didn't change afterwards
17337/** gets the basis status of a row in the LP solution; only valid for LPs with status SCIP_LPSOLSTAT_OPTIMAL
17338 * and with SCIPisLPSolBasic(scip) == TRUE; returns SCIP_BASESTAT_BASIC for rows not in the current SCIP_LP
17390/** returns TRUE iff the activity of the row (without the row's constant) is always integral in a feasible solution */
17410/** returns TRUE iff row is modifiable during node processing (subject to column generation) */
17675/** recalculates Euclidean norm of objective function vector of column variables if it have gotten unreliable during calculation */
17697 /* due to numerical troubles it still can appear that lp->objsqrnorm is a little bit smaller than 0 */
17705/** gets Euclidean norm of objective function vector of column variables, only use this method if
17706 * lp->objsqrnormunreliable == FALSE, so probably you have to call SCIPlpRecalculateObjSqrNorm before */
17718/** sets whether the root lp is a relaxation of the problem and its optimal objective value is a global lower bound */
17729/** returns whether the root lp is a relaxation of the problem and its optimal objective value is a global lower bound */
17739/** gets the objective value of the root node LP; returns SCIP_INVALID if the root node LP was not (yet) solved */
17749/** gets part of the objective value of the root node LP that results from COLUMN variables only;
17761/** gets part of the objective value of the root node LP that results from LOOSE variables only;
17783/** sets whether the current LP is a relaxation of the current problem and its optimal objective value is a local lower bound */
17794/** returns whether the current LP is a relaxation of the problem for which it has been solved and its
17856/** returns whether the LP is in diving mode and the objective value of at least one column was changed */
17888/* returns TRUE if at least one left/right hand side of an LP row was changed during diving mode */
17912 SCIP_Bool* success /**< buffer to indicate whether interior point was successfully computed */
17945 SCIPmessagePrintWarning(messagehdlr, "Could not set feasibility tolerance of LP solver for relative interior point computation.\n");
17953 SCIPmessagePrintWarning(messagehdlr, "Could not set dual feasibility tolerance of LP solver for relative interior point computation.\n");
17966 /* note: if the variable is fixed we cannot simply fix the variables (because alpha scales the problem) */
18393 SCIP_CALL( SCIPlpiAddRows(lpi, ntotrows, matlhs, matrhs, NULL, matidx, matbeg, matinds, matvals) );
18420 SCIPmessagePrintWarning(messagehdlr, "Could not set time limit of LP solver for relative interior point computation.\n");
18429 SCIPmessagePrintWarning(messagehdlr, "Could not set iteration limit of LP solver for relative interior point computation.\n");
18439 SCIPmessagePrintWarning(messagehdlr, "Iteration limit exceeded in relative interior point computation.\n");
18441 SCIPmessagePrintWarning(messagehdlr, "Time limit exceeded in relative interior point computation.\n");
18546 assert( SCIPsetIsFeasZero(set, primal[lp->ncols+1+cnt]) || SCIPsetIsFeasGT(set, val, col->lb) );
18552 assert( SCIPsetIsFeasZero(set, primal[lp->ncols+1+cnt]) || SCIPsetIsFeasLT(set, val, col->ub) );
18572 * "Identifying the Set of Always-Active Constraints in a System of Linear Inequalities by a Single Linear Program"@par
18599 * If the original LP is feasible, this LP is feasible as well. Any optimal solution yields the relative interior point
18600 * \f$x^*_j/\alpha^*\f$. Note that this will just produce some relative interior point. It does not produce a
18601 * particular relative interior point, e.g., one that maximizes the distance to the boundary in some norm.
18613 SCIP_Bool* success /**< buffer to indicate whether interior point was successfully computed */
18637 if( inclobjcutoff && (SCIPsetIsInfinity(set, lp->cutoffbound) || lp->looseobjvalinf > 0 || lp->looseobjval == SCIP_INVALID) ) /*lint !e777 */
18656 retcode = computeRelIntPoint(lpi, set, messagehdlr, lp, prob, relaxrows, inclobjcutoff, timelimit, iterlimit, point, success);
18669/** computes two measures for dual degeneracy (dual degeneracy rate and variable-constraint ratio)
18673 * and the variable-constraint ratio, i.e., the number of unfixed variables in relation to the basis size
18733 /* count number of rows that will be turned into equations when reducing the LP to the optimal face */
18775 assert(nfixedcols + nfixedrows <= ncols + nineq + nbasicequalities - nrows - nalreadyfixedcols - nimplicitfixedrows);
18778 lp->degeneracy = 1.0 - 1.0 * (nfixedcols + nfixedrows) / (ncols + nineq - nrows + nbasicequalities - nalreadyfixedcols);
18783 lp->varconsratio = 1.0 * (ncols + nineq + nbasicequalities - nfixedcols - nfixedrows - nalreadyfixedcols) / nrows;
internal methods for clocks and timing issues
SCIP_RETCODE SCIPconsRelease(SCIP_CONS **cons, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: cons.c:6266
internal methods for constraints and constraint handlers
SCIP_RETCODE SCIPeventCreateRowDeletedLP(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row)
Definition: event.c:913
SCIP_RETCODE SCIPeventqueueAdd(SCIP_EVENTQUEUE *eventqueue, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PRIMAL *primal, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTFILTER *eventfilter, SCIP_EVENT **event)
Definition: event.c:2240
SCIP_RETCODE SCIPeventfilterFree(SCIP_EVENTFILTER **eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: event.c:1846
SCIP_RETCODE SCIPeventCreateRowSideChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_SIDETYPE side, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:980
SCIP_RETCODE SCIPeventfilterDel(SCIP_EVENTFILTER *eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: event.c:1979
SCIP_RETCODE SCIPeventfilterCreate(SCIP_EVENTFILTER **eventfilter, BMS_BLKMEM *blkmem)
Definition: event.c:1821
SCIP_RETCODE SCIPeventCreateRowConstChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:957
SCIP_RETCODE SCIPeventfilterAdd(SCIP_EVENTFILTER *eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: event.c:1886
SCIP_RETCODE SCIPeventCreateRowCoefChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_COL *col, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:932
SCIP_RETCODE SCIPeventCreateRowAddedLP(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row)
Definition: event.c:894
internal methods for managing events
SCIP_RETCODE SCIPlpiChgSides(SCIP_LPI *lpi, int nrows, const int *ind, const SCIP_Real *lhs, const SCIP_Real *rhs)
Definition: lpi_clp.cpp:1167
SCIP_RETCODE SCIPlpiSetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, const SCIP_LPISTATE *lpistate)
Definition: lpi_clp.cpp:3429
SCIP_RETCODE SCIPlpiGetBInvACol(SCIP_LPI *lpi, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3349
SCIP_RETCODE SCIPlpiGetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real *dval)
Definition: lpi_clp.cpp:3796
SCIP_RETCODE SCIPlpiGetBase(SCIP_LPI *lpi, int *cstat, int *rstat)
Definition: lpi_clp.cpp:2967
SCIP_RETCODE SCIPlpiAddRows(SCIP_LPI *lpi, int nrows, const SCIP_Real *lhs, const SCIP_Real *rhs, char **rownames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_clp.cpp:914
SCIP_RETCODE SCIPlpiGetPrimalRay(SCIP_LPI *lpi, SCIP_Real *ray)
Definition: lpi_clp.cpp:2832
SCIP_RETCODE SCIPlpiGetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int *ival)
Definition: lpi_clp.cpp:3648
SCIP_RETCODE SCIPlpiWriteLP(SCIP_LPI *lpi, const char *fname)
Definition: lpi_clp.cpp:4001
SCIP_RETCODE SCIPlpiSetIntegralityInformation(SCIP_LPI *lpi, int ncols, int *intInfo)
Definition: lpi_clp.cpp:480
SCIP_RETCODE SCIPlpiSetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real dval)
Definition: lpi_clp.cpp:3833
SCIP_RETCODE SCIPlpiStrongbranchFrac(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2283
SCIP_RETCODE SCIPlpiSetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, const SCIP_LPINORMS *lpinorms)
Definition: lpi_clp.cpp:3610
SCIP_RETCODE SCIPlpiStrongbranchInt(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2329
SCIP_RETCODE SCIPlpiGetBounds(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *lbs, SCIP_Real *ubs)
Definition: lpi_clp.cpp:1709
SCIP_RETCODE SCIPlpiGetDualfarkas(SCIP_LPI *lpi, SCIP_Real *dualfarkas)
Definition: lpi_clp.cpp:2857
SCIP_RETCODE SCIPlpiGetObjval(SCIP_LPI *lpi, SCIP_Real *objval)
Definition: lpi_clp.cpp:2766
SCIP_RETCODE SCIPlpiStartStrongbranch(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2006
SCIP_RETCODE SCIPlpiGetSolFeasibility(SCIP_LPI *lpi, SCIP_Bool *primalfeasible, SCIP_Bool *dualfeasible)
Definition: lpi_clp.cpp:2405
SCIP_RETCODE SCIPlpiFreeNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lpi_clp.cpp:3623
SCIP_RETCODE SCIPlpiChgBounds(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *lb, const SCIP_Real *ub)
Definition: lpi_clp.cpp:1084
SCIP_Bool SCIPlpiIsPrimalUnbounded(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2488
SCIP_RETCODE SCIPlpiIgnoreInstability(SCIP_LPI *lpi, SCIP_Bool *success)
Definition: lpi_clp.cpp:1647
SCIP_RETCODE SCIPlpiStrongbranchesFrac(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2304
SCIP_RETCODE SCIPlpiGetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lpi_clp.cpp:3592
SCIP_Bool SCIPlpiHasStateBasis(SCIP_LPI *lpi, SCIP_LPISTATE *lpistate)
Definition: lpi_clp.cpp:3522
SCIP_RETCODE SCIPlpiSetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int ival)
Definition: lpi_clp.cpp:3692
SCIP_RETCODE SCIPlpiGetBInvRow(SCIP_LPI *lpi, int r, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3241
SCIP_RETCODE SCIPlpiDelRows(SCIP_LPI *lpi, int firstrow, int lastrow)
Definition: lpi_clp.cpp:986
SCIP_RETCODE SCIPlpiGetBInvCol(SCIP_LPI *lpi, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3276
SCIP_RETCODE SCIPlpiGetBInvARow(SCIP_LPI *lpi, int r, const SCIP_Real *binvrow, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3314
SCIP_RETCODE SCIPlpiSolveBarrier(SCIP_LPI *lpi, SCIP_Bool crossover)
Definition: lpi_clp.cpp:1957
SCIP_RETCODE SCIPlpiEndStrongbranch(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2018
SCIP_RETCODE SCIPlpiGetSides(SCIP_LPI *lpi, int firstrow, int lastrow, SCIP_Real *lhss, SCIP_Real *rhss)
Definition: lpi_clp.cpp:1740
SCIP_RETCODE SCIPlpiStrongbranchesInt(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2350
SCIP_RETCODE SCIPlpiGetSol(SCIP_LPI *lpi, SCIP_Real *objval, SCIP_Real *primsol, SCIP_Real *dualsol, SCIP_Real *activity, SCIP_Real *redcost)
Definition: lpi_clp.cpp:2788
SCIP_RETCODE SCIPlpiGetObj(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *vals)
Definition: lpi_clp.cpp:1686
SCIP_RETCODE SCIPlpiFreeState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lpi_clp.cpp:3503
SCIP_Bool SCIPlpiIsPrimalInfeasible(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2502
SCIP_RETCODE SCIPlpiAddCols(SCIP_LPI *lpi, int ncols, const SCIP_Real *obj, const SCIP_Real *lb, const SCIP_Real *ub, char **colnames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_clp.cpp:758
SCIP_RETCODE SCIPlpiGetIterations(SCIP_LPI *lpi, int *iterations)
Definition: lpi_clp.cpp:2921
SCIP_RETCODE SCIPlpiGetBasisInd(SCIP_LPI *lpi, int *bind)
Definition: lpi_clp.cpp:3189
SCIP_RETCODE SCIPlpiCreate(SCIP_LPI **lpi, SCIP_MESSAGEHDLR *messagehdlr, const char *name, SCIP_OBJSEN objsen)
Definition: lpi_clp.cpp:531
SCIP_RETCODE SCIPlpiChgObj(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *obj)
Definition: lpi_clp.cpp:1240
SCIP_RETCODE SCIPlpiInterrupt(SCIP_LPI *lpi, SCIP_Bool interrupt)
Definition: lpi_clp.cpp:3895
SCIP_RETCODE SCIPlpiDelCols(SCIP_LPI *lpi, int firstcol, int lastcol)
Definition: lpi_clp.cpp:837
SCIP_RETCODE SCIPlpiDelRowset(SCIP_LPI *lpi, int *dstat)
Definition: lpi_clp.cpp:1018
SCIP_RETCODE SCIPlpiGetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lpi_clp.cpp:3389
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9124
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:9397
SCIP_Longint SCIPcolGetStrongbranchNode(SCIP_COL *col)
Definition: lp.c:17173
SCIP_BOUNDTYPE SCIPboundtypeOpposite(SCIP_BOUNDTYPE boundtype)
Definition: lp.c:17203
SCIP_Real SCIPintervalGetInf(SCIP_INTERVAL interval)
Definition: intervalarith.c:405
void SCIPintervalSub(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:797
void SCIPintervalSet(SCIP_INTERVAL *resultant, SCIP_Real value)
Definition: intervalarith.c:421
void SCIPintervalSetBounds(SCIP_INTERVAL *resultant, SCIP_Real inf, SCIP_Real sup)
Definition: intervalarith.c:433
void SCIPintervalMul(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:976
void SCIPintervalAdd(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:690
SCIP_Real SCIProwGetOrthogonality(SCIP_ROW *row1, SCIP_ROW *row2, char orthofunc)
Definition: lp.c:7788
SCIP_Real SCIProwGetScalarProduct(SCIP_ROW *row1, SCIP_ROW *row2)
Definition: lp.c:7008
SCIP_Real SCIProwGetParallelism(SCIP_ROW *row1, SCIP_ROW *row2, char orthofunc)
Definition: lp.c:7724
SCIP_CONSHDLR * SCIProwGetOriginConshdlr(SCIP_ROW *row)
Definition: lp.c:17456
SCIP_Longint SCIProwGetNLPsAfterCreation(SCIP_ROW *row)
Definition: lp.c:17555
void SCIPsortPtrRealInt(void **ptrarray, SCIP_Real *realarray, int *intarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
void SCIPsortIntPtrIntReal(int *intarray1, void **ptrarray, int *intarray2, SCIP_Real *realarray, int len)
interval arithmetics for provable bounds
static SCIP_RETCODE lpFlushDelRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: lp.c:8179
SCIP_RETCODE SCIPlpCleanupNew(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_Bool root)
Definition: lp.c:15851
static void getObjvalDeltaObj(SCIP_SET *set, SCIP_Real oldobj, SCIP_Real newobj, SCIP_Real lb, SCIP_Real ub, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13430
static SCIP_RETCODE lpSetObjlim(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real objlim, SCIP_Bool *success)
Definition: lp.c:2653
static SCIP_RETCODE insertColChgcols(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:3619
SCIP_Real SCIProwGetRelaxEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6924
SCIP_RETCODE SCIPcolChgUb(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newub)
Definition: lp.c:3802
SCIP_Real SCIProwGetLPFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6254
SCIP_Real SCIPcolCalcRedcost(SCIP_COL *col, SCIP_Real *dualsol)
Definition: lp.c:3847
SCIP_RETCODE SCIPlpGetBInvRow(SCIP_LP *lp, int r, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9850
static SCIP_RETCODE lpSetRefactorInterval(SCIP_LP *lp, int refactor, SCIP_Bool *success)
Definition: lp.c:3252
SCIP_Real SCIProwGetNLPFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6336
SCIP_RETCODE SCIPcolFree(SCIP_COL **col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:3377
static SCIP_RETCODE lpSolveStable(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LPALGO lpalgo, int itlim, int harditlim, SCIP_Bool resolve, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, int scaling, SCIP_Bool keepsol, SCIP_Bool *timelimit, SCIP_Bool *lperror)
Definition: lp.c:11579
SCIP_Real SCIPlpGetModifiedProvedPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_BOUNDTYPE boundtype)
Definition: lp.c:13372
SCIP_RETCODE SCIPlpFreeState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lp.c:10100
SCIP_Real SCIProwGetPseudoFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6450
SCIP_RETCODE SCIPlpGetBInvCol(SCIP_LP *lp, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9872
SCIP_RETCODE SCIPcolChgLb(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newlb)
Definition: lp.c:3757
static SCIP_RETCODE lpSetTiming(SCIP_LP *lp, SCIP_CLOCKTYPE timing, SCIP_Bool enabled, SCIP_Bool *success)
Definition: lp.c:3165
static SCIP_RETCODE lpLexDualSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:10670
static void rowDelNorms(SCIP_ROW *row, SCIP_SET *set, SCIP_COL *col, SCIP_Real val, SCIP_Bool forcenormupdate, SCIP_Bool updateindex, SCIP_Bool updateval)
Definition: lp.c:1985
SCIP_RETCODE SCIProwChgCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val)
Definition: lp.c:5476
static SCIP_RETCODE lpSetFromscratch(SCIP_LP *lp, SCIP_Bool fromscratch, SCIP_Bool *success)
Definition: lp.c:2835
static SCIP_RETCODE ensureLpicolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:214
SCIP_Real SCIPcolCalcFarkasCoef(SCIP_COL *col, SCIP_Real *dualfarkas)
Definition: lp.c:4030
static SCIP_RETCODE lpSetFastmip(SCIP_LP *lp, int fastmip, SCIP_Bool *success)
Definition: lp.c:2860
SCIP_RETCODE SCIPlpGetNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lp.c:10133
static SCIP_RETCODE lpSetRealpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Real value, SCIP_Bool *success)
Definition: lp.c:2553
static SCIP_RETCODE lpCopyIntegrality(SCIP_LP *lp, SCIP_SET *set)
Definition: lp.c:8623
static SCIP_RETCODE lpStoreSolVals(SCIP_LP *lp, SCIP_STAT *stat, BMS_BLKMEM *blkmem)
Definition: lp.c:376
SCIP_RETCODE SCIPlpGetState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lp.c:10033
void SCIPlpRecalculateObjSqrNorm(SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:17676
static void lpUpdateObjNorms(SCIP_LP *lp, SCIP_SET *set, SCIP_Real oldobj, SCIP_Real newobj)
Definition: lp.c:3662
static SCIP_RETCODE lpRemoveObsoleteRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int firstrow)
Definition: lp.c:15575
SCIP_Real SCIProwGetSolFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6508
void SCIProwRecalcPseudoActivity(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:6395
SCIP_RETCODE SCIProwEnsureSize(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, int num)
Definition: lp.c:629
SCIP_Bool SCIPlpIsFeasPositive(SCIP_LP *lp, SCIP_Real val)
Definition: lp.c:18915
SCIP_Bool SCIPlpIsFeasGT(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18864
SCIP_RETCODE SCIPlpIsInfeasibilityProved(SCIP_LP *lp, SCIP_SET *set, SCIP_Bool *proved)
Definition: lp.c:16505
SCIP_Real SCIProwGetRelaxFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6274
SCIP_RETCODE SCIPlpAddCol(SCIP_LP *lp, SCIP_SET *set, SCIP_COL *col, int depth)
Definition: lp.c:9450
SCIP_Real SCIPlpGetLooseObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13158
SCIP_RETCODE SCIPlpSetState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_EVENTQUEUE *eventqueue, SCIP_LPISTATE *lpistate, SCIP_Bool wasprimfeas, SCIP_Bool wasprimchecked, SCIP_Bool wasdualfeas, SCIP_Bool wasdualchecked)
Definition: lp.c:10057
static SCIP_RETCODE colDelCoefPos(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, int pos)
Definition: lp.c:1819
static void rowCalcActivityBounds(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6526
static SCIP_RETCODE lpUpdateVarProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldobj, SCIP_Real oldlb, SCIP_Real oldub, SCIP_Real newobj, SCIP_Real newlb, SCIP_Real newub)
Definition: lp.c:13725
SCIP_Real SCIProwGetMaxActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6619
SCIP_RETCODE SCIProwMakeIntegral(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Bool usecontvars, SCIP_Bool *success)
Definition: lp.c:5981
static SCIP_RETCODE lpSetPresolving(SCIP_LP *lp, SCIP_Bool presolving, SCIP_Bool *success)
Definition: lp.c:2941
SCIP_RETCODE SCIPlpRemoveNewObsoletes(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15651
SCIP_Bool SCIProwIsLPEfficacious(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Bool root)
Definition: lp.c:6849
SCIP_Real SCIProwGetSolEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6865
static int colSearchCoefPart(SCIP_COL *col, const SCIP_ROW *row, int minpos, int maxpos)
Definition: lp.c:1101
static int rowSearchCoefPart(SCIP_ROW *row, const SCIP_COL *col, int minpos, int maxpos)
Definition: lp.c:1176
SCIP_RETCODE SCIPlpFlush(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8671
static SCIP_RETCODE rowDelCoefPos(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, int pos)
Definition: lp.c:2184
SCIP_RETCODE SCIPlpUpdateVarLb(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb)
Definition: lp.c:13919
SCIP_RETCODE SCIProwAddConstant(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real addval)
Definition: lp.c:5640
static SCIP_RETCODE rowChgCoefPos(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, int pos, SCIP_Real val)
Definition: lp.c:2244
static SCIP_RETCODE rowEventCoefChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_COL *col, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1466
static void recomputePseudoObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:821
void SCIPlpSetFeastol(SCIP_LP *lp, SCIP_SET *set, SCIP_Real newfeastol)
Definition: lp.c:10256
SCIP_RETCODE SCIPcolChgCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val)
Definition: lp.c:3513
static void adjustLPobjval(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr)
Definition: lp.c:11995
static SCIP_RETCODE lpFlushAddRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8228
SCIP_Real SCIPlpGetModifiedPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_BOUNDTYPE boundtype)
Definition: lp.c:13332
SCIP_Real SCIProwGetLPActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6224
void SCIProwMarkNotRemovableLocal(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:7878
static SCIP_RETCODE lpSetPricing(SCIP_LP *lp, SCIP_PRICING pricing)
Definition: lp.c:3027
SCIP_RETCODE SCIPlpUpdateVarLbGlobal(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb)
Definition: lp.c:13892
static SCIP_RETCODE colRestoreSolVals(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_Longint validlp, SCIP_Bool freebuffer)
Definition: lp.c:497
SCIP_RETCODE SCIPlpShrinkCols(SCIP_LP *lp, SCIP_SET *set, int newncols)
Definition: lp.c:9633
void SCIPlpStoreRootObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13178
static SCIP_RETCODE lpSetPricingChar(SCIP_LP *lp, char pricingchar)
Definition: lp.c:3050
SCIP_RETCODE SCIProwCreate(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, const char *name, int len, SCIP_COL **cols, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_ROWORIGINTYPE origintype, void *origin, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: lp.c:5110
static SCIP_RETCODE colStoreSolVals(SCIP_COL *col, BMS_BLKMEM *blkmem)
Definition: lp.c:470
static SCIP_RETCODE rowAddCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val, int linkpos)
Definition: lp.c:2043
static SCIP_RETCODE ensureSoldirectionSize(SCIP_LP *lp, int num)
Definition: lp.c:283
void SCIPlpRecomputeLocalAndGlobalPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13202
static SCIP_RETCODE lpSetMarkowitz(SCIP_LP *lp, SCIP_Real threshhold, SCIP_Bool *success)
Definition: lp.c:3140
static SCIP_RETCODE lpCheckIntpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, int value)
Definition: lp.c:2581
SCIP_RETCODE SCIPlpUpdateAddVar(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14028
SCIP_RETCODE SCIPlpClear(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9771
static SCIP_RETCODE colEnsureSize(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, int num)
Definition: lp.c:349
static SCIP_RETCODE ensureChgcolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:168
SCIP_RETCODE SCIProwDelCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col)
Definition: lp.c:5430
static SCIP_RETCODE rowEventConstantChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1496
void SCIPcolInvalidateStrongbranchData(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4264
static SCIP_RETCODE lpSolve(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LPALGO lpalgo, int resolveitlim, int harditlim, SCIP_Bool needprimalray, SCIP_Bool needdualray, SCIP_Bool resolve, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, int scaling, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12026
static int lpGetResolveItlim(SCIP_SET *set, SCIP_STAT *stat, int itlim)
Definition: lp.c:12393
SCIP_RETCODE SCIPcolGetStrongbranch(SCIP_COL *col, SCIP_Bool integral, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp, int itlim, SCIP_Bool updatecol, SCIP_Bool updatestat, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *lperror)
Definition: lp.c:4299
static SCIP_RETCODE lpCheckRealpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Real value)
Definition: lp.c:2617
SCIP_RETCODE SCIPcolDelCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row)
Definition: lp.c:3468
static SCIP_Bool isIntegralScalar(SCIP_Real val, SCIP_Real scalar, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Real *intval)
Definition: lp.c:4900
SCIP_Real SCIPlpGetObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13119
static void computeLPBounds(SCIP_LP *lp, SCIP_SET *set, SCIP_COL *col, SCIP_Real lpiinf, SCIP_Real *lb, SCIP_Real *ub)
Definition: lp.c:7970
SCIP_RETCODE SCIPlpCleanupAll(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_Bool root)
Definition: lp.c:15890
void SCIProwRecalcLPActivity(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:6172
static SCIP_Bool isNewValueUnreliable(SCIP_SET *set, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: lp.c:3644
static SCIP_RETCODE provedBound(SCIP_LP *lp, SCIP_SET *set, SCIP_Bool usefarkas, SCIP_Real *bound)
Definition: lp.c:16381
SCIP_Longint SCIPcolGetStrongbranchLPAge(SCIP_COL *col, SCIP_STAT *stat)
Definition: lp.c:4739
static SCIP_RETCODE lpDelColset(SCIP_LP *lp, SCIP_SET *set, int *coldstat)
Definition: lp.c:15302
static SCIP_RETCODE lpRemoveObsoleteCols(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, int firstcol)
Definition: lp.c:15499
static SCIP_RETCODE rowScale(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real scaleval, SCIP_Bool integralcontvars, SCIP_Real minrounddelta, SCIP_Real maxrounddelta)
Definition: lp.c:4940
static SCIP_RETCODE ensureLazycolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:303
SCIP_Bool SCIPlpIsFeasGE(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18884
static SCIP_RETCODE ignoreInstability(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_LPALGO lpalgo, SCIP_Bool *success)
Definition: lp.c:11550
SCIP_RETCODE SCIPlpGetProvedLowerbound(SCIP_LP *lp, SCIP_SET *set, SCIP_Real *bound)
Definition: lp.c:16491
SCIP_RETCODE SCIPcolChgObj(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newobj)
Definition: lp.c:3698
SCIP_Real SCIProwGetLPSolCutoffDistance(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol, SCIP_LP *lp)
Definition: lp.c:6751
static SCIP_RETCODE lpSetRandomseed(SCIP_LP *lp, int randomseed, SCIP_Bool *success)
Definition: lp.c:3199
static SCIP_RETCODE rowRestoreSolVals(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_Longint validlp, SCIP_Bool freebuffer, SCIP_Bool infeasible)
Definition: lp.c:581
static SCIP_RETCODE ensureChgrowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:191
SCIP_Real SCIProwGetSolActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6466
static SCIP_RETCODE lpSetScaling(SCIP_LP *lp, int scaling, SCIP_Bool *success)
Definition: lp.c:2891
static SCIP_RETCODE colChgCoefPos(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, int pos, SCIP_Real val)
Definition: lp.c:1864
SCIP_RETCODE SCIPlpFree(SCIP_LP **lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9370
static SCIP_RETCODE lpSetIntpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, int value, SCIP_Bool *success)
Definition: lp.c:2514
SCIP_RETCODE SCIPlpFreeNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lp.c:10177
static SCIP_RETCODE lpBarrier(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool crossover, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:11268
SCIP_RETCODE SCIProwAddCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val)
Definition: lp.c:5409
SCIP_RETCODE SCIPlpGetBInvARow(SCIP_LP *lp, int r, SCIP_Real *binvrow, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9898
SCIP_Bool SCIPlpIsFeasLT(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18824
static SCIP_RETCODE rowStoreSolVals(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_Bool infeasible)
Definition: lp.c:544
SCIP_RETCODE SCIProwIncCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real incval)
Definition: lp.c:5528
static SCIP_RETCODE lpUpdateVarColumnProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14120
SCIP_RETCODE SCIPlpRemoveRedundantRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15929
SCIP_Real SCIProwGetNLPEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6964
SCIP_RETCODE SCIPlpSetNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS *lpinorms)
Definition: lp.c:10157
SCIP_RETCODE SCIPlpComputeRelIntPoint(SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_LP *lp, SCIP_PROB *prob, SCIP_Bool relaxrows, SCIP_Bool inclobjcutoff, SCIP_Real timelimit, int iterlimit, SCIP_Real *point, SCIP_Bool *success)
Definition: lp.c:18603
SCIP_RETCODE SCIPlpGetDualDegeneracy(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Real *degeneracy, SCIP_Real *varconsratio)
Definition: lp.c:18675
static SCIP_RETCODE lpSetBoolpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Bool value, SCIP_Bool *success)
Definition: lp.c:2541
static SCIP_RETCODE ensureColsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:260
SCIP_Real SCIProwGetLPEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6808
SCIP_RETCODE SCIPlpGetSol(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *primalfeasible, SCIP_Bool *dualfeasible)
Definition: lp.c:14348
static void rowAddNorms(SCIP_ROW *row, SCIP_SET *set, SCIP_COL *col, SCIP_Real val, SCIP_Bool updateidxvals)
Definition: lp.c:1908
static void lpUpdateObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real deltaval, int deltainf, SCIP_Bool local, SCIP_Bool loose, SCIP_Bool global)
Definition: lp.c:13643
void SCIPcolGetStrongbranchLast(SCIP_COL *col, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Real *solval, SCIP_Real *lpobjval)
Definition: lp.c:4707
SCIP_RETCODE SCIPcolAddCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val)
Definition: lp.c:3447
static SCIP_RETCODE computeRelIntPoint(SCIP_LPI *lpi, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_LP *lp, SCIP_PROB *prob, SCIP_Bool relaxrows, SCIP_Bool inclobjcutoff, SCIP_Real timelimit, int iterlimit, SCIP_Real *point, SCIP_Bool *success)
Definition: lp.c:17901
SCIP_RETCODE SCIPcolIncCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real incval)
Definition: lp.c:3564
void SCIProwPrint(SCIP_ROW *row, SCIP_MESSAGEHDLR *messagehdlr, FILE *file)
Definition: lp.c:5299
SCIP_RETCODE SCIPlpSetCutoffbound(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real cutoffbound)
Definition: lp.c:10201
SCIP_RETCODE SCIPlpRecordOldRowSideDive(SCIP_LP *lp, SCIP_ROW *row, SCIP_SIDETYPE sidetype)
Definition: lp.c:16291
static SCIP_RETCODE lpCleanupCols(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, int firstcol)
Definition: lp.c:15713
static SCIP_RETCODE lpAlgorithm(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_LPALGO lpalgo, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *timelimit, SCIP_Bool *lperror)
Definition: lp.c:11405
SCIP_Real SCIPcolGetFeasibility(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:3976
SCIP_RETCODE SCIPlpShrinkRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int newnrows)
Definition: lp.c:9705
SCIP_Bool SCIProwIsRedundant(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6640
void SCIPlpStartStrongbranchProbing(SCIP_LP *lp)
Definition: lp.c:16345
static SCIP_RETCODE lpSetRowrepswitch(SCIP_LP *lp, SCIP_Real rowrepswitch, SCIP_Bool *success)
Definition: lp.c:2966
SCIP_RETCODE SCIPlpGetIterations(SCIP_LP *lp, int *iterations)
Definition: lp.c:15227
static void recomputeLooseObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:779
SCIP_RETCODE SCIProwChgConstant(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real constant)
Definition: lp.c:5585
static SCIP_RETCODE lpSetFeastol(SCIP_LP *lp, SCIP_Real feastol, SCIP_Bool *success)
Definition: lp.c:2705
SCIP_Bool SCIProwIsSolEfficacious(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol, SCIP_Bool root)
Definition: lp.c:6908
static SCIP_RETCODE lpUpdateVarColumn(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14073
SCIP_RETCODE SCIPlpUpdateDelVar(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14049
SCIP_RETCODE SCIPlpGetBInvACol(SCIP_LP *lp, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9923
static SCIP_RETCODE lpSetThreads(SCIP_LP *lp, int threads, SCIP_Bool *success)
Definition: lp.c:2916
SCIP_RETCODE SCIPlpRemoveAllObsoletes(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15682
static SCIP_RETCODE lpUpdateVarLooseProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14252
SCIP_RETCODE SCIProwCatchEvent(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: lp.c:7833
SCIP_RETCODE colLink(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2352
SCIP_RETCODE SCIProwFree(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:5259
static SCIP_Real getFiniteLooseObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:905
SCIP_Real SCIPcolGetFarkasValue(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4161
static SCIP_RETCODE lpDualSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *lperror)
Definition: lp.c:10479
static SCIP_RETCODE lpUpdateVarLoose(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14207
static void getObjvalDeltaUb(SCIP_SET *set, SCIP_Real obj, SCIP_Real oldub, SCIP_Real newub, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13602
static SCIP_RETCODE lpRestoreSolVals(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_Longint validlp)
Definition: lp.c:410
static SCIP_RETCODE rowSideChanged(SCIP_ROW *row, SCIP_SET *set, SCIP_LP *lp, SCIP_SIDETYPE sidetype)
Definition: lp.c:2300
static SCIP_Real colCalcInternalFarkasCoef(SCIP_COL *col)
Definition: lp.c:4082
SCIP_RETCODE colUnlink(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2395
SCIP_RETCODE SCIPlpCreate(SCIP_LP **lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, const char *name)
Definition: lp.c:9078
SCIP_RETCODE SCIPlpUpdateVarUbGlobal(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub)
Definition: lp.c:13960
static SCIP_RETCODE lpFlushAndSolve(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_EVENTQUEUE *eventqueue, int resolveitlim, int harditlim, SCIP_Bool needprimalray, SCIP_Bool needdualray, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, int scaling, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12214
SCIP_RETCODE SCIPlpReset(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9415
static SCIP_RETCODE lpCheckBoolpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Bool value)
Definition: lp.c:2606
SCIP_Real SCIPcolGetRedcost(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:3952
SCIP_RETCODE SCIProwDropEvent(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: lp.c:7857
static SCIP_RETCODE colAddCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val, int linkpos)
Definition: lp.c:1698
SCIP_RETCODE SCIPcolCreate(SCIP_COL **col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var, int len, SCIP_ROW **rows, SCIP_Real *vals, SCIP_Bool removable)
Definition: lp.c:3279
SCIP_RETCODE SCIPlpUpdateVarUb(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub)
Definition: lp.c:13987
static SCIP_RETCODE lpSetConditionLimit(SCIP_LP *lp, SCIP_Real condlimit, SCIP_Bool *success)
Definition: lp.c:3115
SCIP_RETCODE SCIPlpUpdateVarObj(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldobj, SCIP_Real newobj)
Definition: lp.c:13838
static void lpNumericalTroubleMessage(SCIP_MESSAGEHDLR *messagehdlr, SCIP_SET *set, SCIP_STAT *stat, SCIP_VERBLEVEL verblevel, const char *formatstr,...)
Definition: lp.c:11497
SCIP_Real SCIPcolGetFarkasCoef(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4135
SCIP_RETCODE SCIPlpUpdateVarLoose(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14309
SCIP_Real SCIPlpGetGlobalPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13270
static SCIP_RETCODE reallocDiveChgSideArrays(SCIP_LP *lp, int minsize, SCIP_Real growfact)
Definition: lp.c:9032
SCIP_RETCODE SCIPlpAddRow(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_ROW *row, int depth)
Definition: lp.c:9509
SCIP_RETCODE SCIPlpWriteMip(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, const char *fname, SCIP_Bool genericnames, SCIP_Bool origobj, SCIP_OBJSENSE objsense, SCIP_Real objscale, SCIP_Real objoffset, SCIP_Bool lazyconss)
Definition: lp.c:16542
static void getObjvalDeltaLb(SCIP_SET *set, SCIP_Real obj, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13561
SCIP_RETCODE SCIPlpStartDive(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:16003
SCIP_Bool SCIPlpIsFeasNegative(SCIP_LP *lp, SCIP_Real val)
Definition: lp.c:18926
SCIP_RETCODE SCIPlpEndDive(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_PROB *prob, SCIP_VAR **vars, int nvars)
Definition: lp.c:16109
static SCIP_RETCODE lpSetBarrierconvtol(SCIP_LP *lp, SCIP_Real barrierconvtol, SCIP_Bool *success)
Definition: lp.c:2791
SCIP_RETCODE SCIProwChgRhs(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real rhs)
Definition: lp.c:5698
static SCIP_RETCODE rowEventSideChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_SIDETYPE side, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1524
SCIP_RETCODE SCIPlpGetUnboundedSol(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *primalfeasible, SCIP_Bool *rayfeasible)
Definition: lp.c:14665
static SCIP_RETCODE lpSetDualfeastol(SCIP_LP *lp, SCIP_Real dualfeastol, SCIP_Bool *success)
Definition: lp.c:2748
SCIP_RETCODE SCIPlpGetDualfarkas(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *valid)
Definition: lp.c:15052
SCIP_RETCODE SCIProwCalcIntegralScalar(SCIP_ROW *row, SCIP_SET *set, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Bool usecontvars, SCIP_Real *intscalar, SCIP_Bool *success)
Definition: lp.c:5747
SCIP_Bool SCIPlpIsFeasEQ(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18804
SCIP_Real SCIProwGetPseudoActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6422
static SCIP_RETCODE lpSetIterationLimit(SCIP_LP *lp, int itlim)
Definition: lp.c:2991
static SCIP_RETCODE ensureRowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:326
static SCIP_Real getFinitePseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:927
static SCIP_RETCODE allocDiveChgSideArrays(SCIP_LP *lp, int initsize)
Definition: lp.c:9010
void SCIPlpSetRootLPIsRelax(SCIP_LP *lp, SCIP_Bool isrelax)
Definition: lp.c:17719
static SCIP_RETCODE ensureLpirowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:237
SCIP_RETCODE SCIProwChgLhs(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real lhs)
Definition: lp.c:5666
void SCIPcolMarkNotRemovableLocal(SCIP_COL *col, SCIP_STAT *stat)
Definition: lp.c:4751
static SCIP_RETCODE updateLazyBounds(SCIP_LP *lp, SCIP_SET *set)
Definition: lp.c:12331
SCIP_RETCODE rowLink(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2433
SCIP_Real SCIProwGetMinActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6598
SCIP_RETCODE SCIPlpSolveAndEval(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, BMS_BLKMEM *blkmem, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_PROB *prob, SCIP_Longint itlim, SCIP_Bool limitresolveiters, SCIP_Bool aging, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12413
void SCIPcolSetStrongbranchData(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real lpobjval, SCIP_Real primsol, SCIP_Real sbdown, SCIP_Real sbup, SCIP_Bool sbdownvalid, SCIP_Bool sbupvalid, SCIP_Longint iter, int itlim)
Definition: lp.c:4210
SCIP_Bool SCIPlpIsFeasLE(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18844
SCIP_RETCODE SCIPlpGetPrimalRay(SCIP_LP *lp, SCIP_SET *set, SCIP_Real *ray)
Definition: lp.c:14991
static SCIP_RETCODE lpSetSolutionPolishing(SCIP_LP *lp, SCIP_Bool polishing, SCIP_Bool *success)
Definition: lp.c:3229
static SCIP_RETCODE lpPrimalSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *lperror)
Definition: lp.c:10321
SCIP_Real SCIProwGetObjParallelism(SCIP_ROW *row, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:7800
static void recomputeGlbPseudoObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:863
SCIP_RETCODE SCIPlpSumRows(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real *weights, SCIP_REALARRAY *sumcoef, SCIP_Real *sumlhs, SCIP_Real *sumrhs)
Definition: lp.c:9947
SCIP_RETCODE SCIPcolGetStrongbranches(SCIP_COL **cols, int ncols, SCIP_Bool integral, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *lperror)
Definition: lp.c:4484
static SCIP_RETCODE lpCleanupRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int firstrow)
Definition: lp.c:15780
SCIP_Real SCIPlpGetPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13302
static SCIP_RETCODE lpDelRowset(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int *rowdstat)
Definition: lp.c:15401
static int SCIProwGetDiscreteScalarProduct(SCIP_ROW *row1, SCIP_ROW *row2)
Definition: lp.c:7365
SCIP_RETCODE SCIPlpUpdateVarColumn(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14185
SCIP_RETCODE SCIProwRelease(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:5352
static SCIP_RETCODE lpFlushAddCols(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8005
void SCIPcolPrint(SCIP_COL *col, SCIP_MESSAGEHDLR *messagehdlr, FILE *file)
Definition: lp.c:3407
internal methods for LP management
interface methods for specific LP solvers
#define BMSduplicateBlockMemoryArray(mem, ptr, source, num)
Definition: memory.h:462
#define BMSfreeBlockMemoryArrayNull(mem, ptr, num)
Definition: memory.h:468
#define BMSreallocBlockMemoryArray(mem, ptr, oldnum, newnum)
Definition: memory.h:458
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:618
void SCIPmessageVFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr, va_list ap)
Definition: message.c:633
void SCIPmessagePrintInfo(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...)
Definition: message.c:594
void SCIPmessagePrintWarning(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...)
Definition: message.c:427
void SCIPmessagePrintVerbInfo(SCIP_MESSAGEHDLR *messagehdlr, SCIP_VERBLEVEL verblevel, SCIP_VERBLEVEL msgverblevel, const char *formatstr,...)
Definition: message.c:678
SCIP_RETCODE SCIPrealarrayExtend(SCIP_REALARRAY *realarray, int arraygrowinit, SCIP_Real arraygrowfac, int minidx, int maxidx)
Definition: misc.c:4091
SCIP_RETCODE SCIPrealarrayIncVal(SCIP_REALARRAY *realarray, int arraygrowinit, SCIP_Real arraygrowfac, int idx, SCIP_Real incval)
Definition: misc.c:4367
internal miscellaneous methods
SCIP_Bool SCIPprobAllColsInLP(SCIP_PROB *prob, SCIP_SET *set, SCIP_LP *lp)
Definition: prob.c:2350
internal methods for storing and manipulating the main problem
public methods for LP management
public methods for message output
public data structures and miscellaneous methods
methods for sorting joint arrays of various types
public methods for problem variables
SCIP_Bool SCIPsetIsDualfeasZero(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6918
SCIP_Bool SCIPsetIsEfficacious(SCIP_SET *set, SCIP_Bool root, SCIP_Real efficacy)
Definition: set.c:7061
SCIP_Bool SCIPsetIsFeasPositive(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6718
SCIP_Bool SCIPsetIsGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6293
SCIP_RETCODE SCIPsetGetCharParam(SCIP_SET *set, const char *name, char *value)
Definition: set.c:3179
SCIP_Bool SCIPsetIsFeasNegative(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6729
SCIP_Bool SCIPsetIsDualfeasLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6830
SCIP_Bool SCIPsetIsFeasGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6663
SCIP_Bool SCIPsetIsFeasLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6641
SCIP_Bool SCIPsetIsFeasEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6597
SCIP_Bool SCIPsetIsLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6257
SCIP_Bool SCIPsetIsSumLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6466
SCIP_Bool SCIPsetIsDualfeasNegative(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6940
SCIP_Bool SCIPsetIsSumGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6502
SCIP_Bool SCIPsetIsEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6221
SCIP_Bool SCIPsetIsFeasLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6619
SCIP_RETCODE SCIPsetSetCharParam(SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, const char *name, char value)
Definition: set.c:3424
SCIP_Bool SCIPsetIsLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6239
SCIP_Bool SCIPsetIsRelGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:7164
SCIP_Bool SCIPsetIsDualfeasPositive(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6929
SCIP_Bool SCIPsetIsDualfeasGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6874
SCIP_Bool SCIPsetIsGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6275
SCIP_Bool SCIPsetIsSumEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6430
SCIP_Bool SCIPsetIsUpdateUnreliable(SCIP_SET *set, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: set.c:7316
SCIP_Bool SCIPsetIsFeasGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6685
SCIP_Bool SCIPsetIsFeasIntegral(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6740
unsigned int SCIPsetInitializeRandomSeed(SCIP_SET *set, unsigned int initialseedvalue)
Definition: set.c:7393
internal methods for global SCIP settings
SCIP_Real SCIPsolGetVal(SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var)
Definition: sol.c:1372
internal methods for storing primal CIP solutions
SCIP_Bool SCIPsolveIsStopped(SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool checknodelimits)
Definition: solve.c:102
internal methods for main solving loop and node processing
internal methods for problem statistics
Definition: struct_lp.h:94
Definition: struct_lp.h:136
Definition: struct_cons.h:47
Definition: struct_cons.h:127
Definition: struct_event.h:189
Definition: struct_event.h:224
Definition: struct_event.h:162
Definition: struct_event.h:205
Definition: intervalarith.h:54
Definition: lpi_cpx.c:199
Definition: lpi_clp.cpp:133
Definition: lpi_clp.cpp:105
Definition: struct_lp.h:117
Definition: struct_lp.h:270
Definition: struct_message.h:46
Definition: struct_prob.h:49
Definition: struct_misc.h:158
Definition: struct_lp.h:106
Definition: struct_lp.h:202
Definition: struct_sepa.h:47
Definition: struct_set.h:74
Definition: struct_sol.h:74
Definition: struct_stat.h:60
SCIP_Longint ndualresolvelpiterations
Definition: struct_stat.h:70
SCIP_Longint nprimalresolvelpiterations
Definition: struct_stat.h:69
Definition: struct_var.h:208
datastructures for managing events
data structures for LP management
datastructures for storing and manipulating the main problem
datastructures for global SCIP settings
datastructures for problem statistics
datastructures for problem variables
Definition: heur_padm.c:135
internal methods for problem variables