cons_linear.c
Go to the documentation of this file.
27 * @brief Constraint handler for linear constraints in their most general form, \f$lhs <= a^T x <= rhs\f$.
57 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
97 #define CONSHDLR_ENFOPRIORITY -1000000 /**< priority of the constraint handler for constraint enforcing */
98 #define CONSHDLR_CHECKPRIORITY -1000000 /**< priority of the constraint handler for checking feasibility */
99 #define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
100 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
101 #define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
103 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
104 #define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
105 #define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
106 #define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
108 #define CONSHDLR_PRESOLTIMING (SCIP_PRESOLTIMING_FAST | SCIP_PRESOLTIMING_EXHAUSTIVE) /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
118 #define DEFAULT_TIGHTENBOUNDSFREQ 1 /**< multiplier on propagation frequency, how often the bounds are tightened */
119 #define DEFAULT_MAXROUNDS 5 /**< maximal number of separation rounds per node (-1: unlimited) */
120 #define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
122 #define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in root node */
123 #define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
124 #define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
125 #define DEFAULT_NMINCOMPARISONS 200000 /**< number for minimal pairwise presolving comparisons */
126 #define DEFAULT_MINGAINPERNMINCOMP 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
128 #define DEFAULT_SORTVARS TRUE /**< should variables be sorted after presolve w.r.t their coefficient absolute for faster
130 #define DEFAULT_CHECKRELMAXABS FALSE /**< should the violation for a constraint with side 0.0 be checked relative
132 #define DEFAULT_MAXAGGRNORMSCALE 0.0 /**< maximal allowed relative gain in maximum norm for constraint aggregation
134 #define DEFAULT_MAXEASYACTIVITYDELTA 1e6 /**< maximum activity delta to run easy propagation on linear constraint
136 #define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
138 #define DEFAULT_SEPARATEALL FALSE /**< should all constraints be subject to cardinality cut generation instead of only
140 #define DEFAULT_AGGREGATEVARIABLES TRUE /**< should presolving search for redundant variables in equations */
141 #define DEFAULT_SIMPLIFYINEQUALITIES TRUE /**< should presolving try to simplify inequalities */
143 #define DEFAULT_SINGLETONSTUFFING TRUE /**< should stuffing of singleton continuous variables be performed? */
144 #define DEFAULT_SINGLEVARSTUFFING FALSE /**< should single variable stuffing be performed, which tries to fulfill
146 #define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
149 #define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
152 #define DEFAULT_DETECTPARTIALOBJECTIVE TRUE/**< should presolving try to detect subsets of constraints parallel to the
155 #define DEFAULT_RANGEDROWARTCONS TRUE /**< should presolving and propagation extract sub-constraints from ranged rows and equations? */
159 #define DEFAULT_MULTAGGRREMOVE FALSE /**< should multi-aggregations only be performed if the constraint can be
161 #define DEFAULT_MAXMULTAGGRQUOT 1e+03 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
162 #define DEFAULT_MAXDUALMULTAGGRQUOT 1e+20 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
167 #define MAXSCALEDCOEFINTEGER 0 /**< maximal coefficient value after scaling if all variables are of integral
174 #define MAXVALRECOMP 1e+06 /**< maximal abolsute value we trust without recomputing the activity */
175 #define MINVALRECOMP 1e-05 /**< minimal abolsute value we trust without recomputing the activity */
178 #define NONLINCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of expressions constraints */
180 /* @todo add multi-aggregation of variables that are in exactly two equations (, if not numerically an issue),
187 {
192 QUAD_MEMBER(SCIP_Real minactivity); /**< minimal value w.r.t. the variable's local bounds for the constraint's
194 QUAD_MEMBER(SCIP_Real maxactivity); /**< maximal value w.r.t. the variable's local bounds for the constraint's
200 QUAD_MEMBER(SCIP_Real glbminactivity); /**< minimal value w.r.t. the variable's global bounds for the constraint's
202 QUAD_MEMBER(SCIP_Real glbmaxactivity); /**< maximal value w.r.t. the variable's global bounds for the constraint's
204 SCIP_Real lastglbminactivity; /**< last global minimal activity which was computed by complete summation
206 SCIP_Real lastglbmaxactivity; /**< last global maximal activity which was computed by complete summation
208 SCIP_Real maxactdelta; /**< maximal activity contribution of a single variable, or SCIP_INVALID if invalid */
209 SCIP_VAR* maxactdeltavar; /**< variable with maximal activity contribution, or NULL if invalid */
217 int minactivityneginf; /**< number of coefficients contributing with neg. infinite value to minactivity */
218 int minactivityposinf; /**< number of coefficients contributing with pos. infinite value to minactivity */
219 int maxactivityneginf; /**< number of coefficients contributing with neg. infinite value to maxactivity */
220 int maxactivityposinf; /**< number of coefficients contributing with pos. infinite value to maxactivity */
221 int minactivityneghuge; /**< number of coefficients contributing with huge neg. value to minactivity */
222 int minactivityposhuge; /**< number of coefficients contributing with huge pos. value to minactivity */
223 int maxactivityneghuge; /**< number of coefficients contributing with huge neg. value to maxactivity */
224 int maxactivityposhuge; /**< number of coefficients contributing with huge pos. value to maxactivity */
225 int glbminactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbminactivity */
226 int glbminactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbminactivity */
227 int glbmaxactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbmaxactivity */
228 int glbmaxactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbmaxactivity */
229 int glbminactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbminactivity */
230 int glbminactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbminactivity */
231 int glbmaxactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbmaxactivity */
232 int glbmaxactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbmaxactivity */
239 unsigned int rangedrowpropagated:2; /**< did we perform ranged row propagation on this constraint?
251 unsigned int changed:1; /**< was constraint changed since last aggregation round in preprocessing? */
254 unsigned int upgraded:1; /**< is the constraint upgraded and will it be removed after preprocessing? */
259 unsigned int coefsorted:1; /**< are variables sorted by type and their absolute activity delta? */
261 unsigned int hascontvar:1; /**< does the constraint contain at least one continuous variable? */
262 unsigned int hasnonbinvar:1; /**< does the constraint contain at least one non-binary variable? */
263 unsigned int hasnonbinvalid:1; /**< is the information stored in hasnonbinvar and hascontvar valid? */
264 unsigned int checkabsolute:1; /**< should the constraint be checked w.r.t. an absolute feasibilty tolerance? */
279 SCIP_LINCONSUPGRADE** linconsupgrades; /**< linear constraint upgrade methods for specializing linear constraints */
280 SCIP_Real maxaggrnormscale; /**< maximal allowed relative gain in maximum norm for constraint aggregation
282 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
284 SCIP_Real mingainpernmincomp; /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise comparison round */
285 SCIP_Real maxeasyactivitydelta;/**< maximum activity delta to run easy propagation on linear constraint
289 int tightenboundsfreq; /**< multiplier on propagation frequency, how often the bounds are tightened */
296 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
297 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
298 SCIP_Bool separateall; /**< should all constraints be subject to cardinality cut generation instead of only
300 SCIP_Bool aggregatevariables; /**< should presolving search for redundant variables in equations */
301 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
303 SCIP_Bool singletonstuffing; /**< should stuffing of singleton continuous variables be performed? */
304 SCIP_Bool singlevarstuffing; /**< should single variable stuffing be performed, which tries to fulfill
307 SCIP_Bool checkrelmaxabs; /**< should the violation for a constraint with side 0.0 be checked relative
309 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
312 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
315 SCIP_Bool detectpartialobjective;/**< should presolving try to detect subsets of constraints parallel to
317 SCIP_Bool rangedrowpropagation;/**< should presolving and propagation try to improve bounds, detect
320 SCIP_Bool rangedrowartcons; /**< should presolving and propagation extract sub-constraints from ranged rows and equations?*/
323 SCIP_Bool multaggrremove; /**< should multi-aggregations only be performed if the constraint can be
325 SCIP_Real maxmultaggrquot; /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for primal multiaggregation */
326 SCIP_Real maxdualmultaggrquot;/**< maximum coefficient dynamism (ie. maxabsval / minabsval) for dual multiaggregation */
349 PROPRULE_1_RANGEDROW = 3, /**< fixed variables and gcd of all left variables tighten bounds of a
364 } asbits;
366 } val;
387 )
429 /** constructs an inference information out of a propagation rule and a position number, returns info as int */
450 )
461 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->linconsupgrades, conshdlrdata->linconsupgradessize, newsize) );
490 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
546 {
580 SCIPfreeBlockMemoryArrayNull(scip, &(*conshdlrdata)->linconsupgrades, (*conshdlrdata)->linconsupgradessize);
606 SCIPwarningMessage(scip, "Try to add already known upgrade message for constraint handler %s.\n", conshdlrname);
629 SCIP_CALL( conshdlrdataEnsureLinconsupgradesSize(scip, conshdlrdata, conshdlrdata->nlinconsupgrades+1) );
636 assert(0 <= i && i <= conshdlrdata->nlinconsupgrades);
647 /** installs rounding locks for the given variable associated to the given coefficient in the linear constraint */
680 /** removes rounding locks for the given variable associated to the given coefficient in the linear constraint */
774 assert(consdata->eventdata[pos]->cons == cons);
922 if( SCIPisConsCompressionEnabled(scip) && SCIPisEQ(scip, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var)) )
964 /* due to compressed copying, we may have fixed variables contributing to the left and right hand side */
1036 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
1120 {
1122 SCIP_CALL( SCIPwriteVarsLinearsum(scip, file, consdata->vars, consdata->vals, consdata->nvars, TRUE) );
1155 SCIPmessageFPrintInfo(SCIPgetMessagehdlr(scip), file, " [%s] <%s>: ", SCIPconshdlrGetName(SCIPconsGetHdlr(cons)), SCIPconsGetName(cons));
1277 bound = (SCIPvarGetBestBoundType(consdata->vars[i]) == SCIP_BOUNDTYPE_LOWER) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1323 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1325 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1350 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbLocal(consdata->vars[i]) : SCIPvarGetLbLocal(consdata->vars[i]);
1352 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1377 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbGlobal(consdata->vars[i]) : SCIPvarGetUbGlobal(consdata->vars[i]);
1379 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1380 SCIPquadprecSumQD(consdata->glbminactivity, consdata->glbminactivity, consdata->vals[i] * bound);
1404 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbGlobal(consdata->vars[i]) : SCIPvarGetLbGlobal(consdata->vars[i]);
1406 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1407 SCIPquadprecSumQD(consdata->glbmaxactivity, consdata->glbmaxactivity, consdata->vals[i] * bound);
1438 }
1462 {
1470 /** checks the type of all variables of the constraint and sets hasnonbinvar and hascontvar flags accordingly */
1491 {
1567 {
1619 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1671 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1673 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1727 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1729 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1797 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1825 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1850 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1856 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1859 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1865 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1868 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1883 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1889 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1892 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1898 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1901 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1953 /* update the activity, if the current value is valid and there was a change in the finite part */
2006 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2015 consdataUpdateActivities(scip, consdata, var, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, FALSE, checkreliability);
2017 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->minactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->minactivity)));
2018 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->maxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->maxactivity)));
2031 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2040 consdataUpdateActivities(scip, consdata, var, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, FALSE, checkreliability);
2042 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->minactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->minactivity)));
2043 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->maxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->maxactivity)));
2055 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2063 consdataUpdateActivities(scip, consdata, NULL, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, TRUE, checkreliability);
2065 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbminactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbminactivity)));
2066 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbmaxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbmaxactivity)));
2068 }
2078 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2086 consdataUpdateActivities(scip, consdata, NULL, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, TRUE, checkreliability);
2088 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbminactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbminactivity)));
2089 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbmaxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbmaxactivity)));
2091 }
2093 /** updates minimum and maximum activity and maximum absolute value for coefficient addition */
2100 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2136 consdataUpdateActivitiesLb(scip, consdata, var, 0.0, SCIPvarGetLbLocal(var), val, checkreliability);
2137 consdataUpdateActivitiesUb(scip, consdata, var, 0.0, SCIPvarGetUbLocal(var), val, checkreliability);
2138 consdataUpdateActivitiesGlbLb(scip, consdata, 0.0, SCIPvarGetLbGlobal(var), val, checkreliability);
2139 consdataUpdateActivitiesGlbUb(scip, consdata, 0.0, SCIPvarGetUbGlobal(var), val, checkreliability);
2143 /** updates minimum and maximum activity for coefficient deletion, invalidates maximum absolute value if necessary */
2150 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2193 consdataUpdateActivitiesLb(scip, consdata, var, SCIPvarGetLbLocal(var), 0.0, val, checkreliability);
2194 consdataUpdateActivitiesUb(scip, consdata, var, SCIPvarGetUbLocal(var), 0.0, val, checkreliability);
2195 consdataUpdateActivitiesGlbLb(scip, consdata, SCIPvarGetLbGlobal(var), 0.0, val, checkreliability);
2196 consdataUpdateActivitiesGlbUb(scip, consdata, SCIPvarGetUbGlobal(var), 0.0, val, checkreliability);
2200 /** updates minimum and maximum activity for coefficient change, invalidates maximum absolute value if necessary */
2208 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2288 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
2294 /* @todo do something more clever here, e.g. if oldval * newval >= 0, do the update directly */
2320 {
2393 /** gets minimal activity for constraint and given values of counters for infinite and huge contributions
2394 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2407 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2411 SCIP_Bool* issettoinfinity /**< pointer to store whether minactivity was set to infinity or calculated */
2416 assert(posinf >= 0);
2438 /* if we have neg. huge contributions, we only know that -infty is a relaxation of the minactivity */
2445 /* we do not need a good relaxation and we have positive huge contributions, so we just return -infty as activity */
2476 * times the minimum value counting as "huge" plus finite (and non-huge) part of minactivity - delta
2494 /** gets maximal activity for constraint and given values of counters for infinite and huge contributions
2495 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2508 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2512 SCIP_Bool* issettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2517 assert(posinf >= 0);
2539 /* if we have pos. huge contributions, we only know that +infty is a relaxation of the maxactivity */
2546 /* we do not need a good relaxation and we have positve huge contributions, so we just return +infty as activity */
2577 * times the minimum value counting as "huge" plus the finite (and non-huge) part of maxactivity minus delta
2604 SCIP_Bool* minisrelax, /**< pointer to store whether the returned minactivity is just a relaxation,
2607 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned maxactivity is just a relaxation,
2610 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minactivity was set to infinity or calculated */
2611 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2736 SCIP_Bool* minisrelax, /**< pointer to store whether the returned residual minactivity is just a
2739 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned residual maxactivity is just a
2742 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2743 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2791 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2792 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2829 consdata->minactivityposhuge, consdata->minactivityneghuge, absval * minactbound, FALSE, goodrelax,
2833 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2834 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2871 consdata->maxactivityposhuge, consdata->maxactivityneghuge, absval * maxactbound, FALSE, goodrelax,
2883 SCIP_Real* glbminactivity, /**< pointer to store the minimal activity, or NULL, if not needed */
2884 SCIP_Real* glbmaxactivity, /**< pointer to store the maximal activity, or NULL, if not needed */
2885 SCIP_Bool* minisrelax, /**< pointer to store whether the returned minactivity is just a relaxation,
2888 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned maxactivity is just a relaxation,
2891 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2892 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2947 SCIP_Real* minresactivity, /**< pointer to store the minimal residual activity, or NULL, if not needed */
2948 SCIP_Real* maxresactivity, /**< pointer to store the maximal residual activity, or NULL, if not needed */
2949 SCIP_Bool* minisrelax, /**< pointer to store whether the returned residual minactivity is just a
2952 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned residual maxactivity is just a
2955 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2956 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2998 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2999 * and contribution of variable set to zero that has to be subtracted from finite part of activity
3005 getMinActivity(scip, consdata, consdata->glbminactivityposinf - 1, consdata->glbminactivityneginf,
3013 getMinActivity(scip, consdata, consdata->glbminactivityposinf, consdata->glbminactivityneginf - 1,
3046 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
3047 * and contribution of variable set to zero that has to be subtracted from finite part of activity
3053 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf, consdata->glbmaxactivityneginf - 1,
3061 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf - 1, consdata->glbmaxactivityneginf,
3128 else if( (SCIPisInfinity(scip, solval) && negsign) || (SCIPisInfinity(scip, -solval) && !negsign) )
3135 SCIPdebugMsg(scip, "activity of linear constraint: %.15g, %d positive infinity values, %d negative infinity values \n", activity, nposinf, nneginf);
3224 /** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3263 /** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3319 SCIP_Real abscont1 = REALABS(consdata->vals[ind1] * (SCIPvarGetUbGlobal(var1) - SCIPvarGetLbGlobal(var1)));
3320 SCIP_Real abscont2 = REALABS(consdata->vals[ind2] * (SCIPvarGetUbGlobal(var2) - SCIPvarGetLbGlobal(var2)));
3354 {
3404 * sorts variables of the remaining problem by binaries, integers, implicit integers, and continuous variables,
3525 /* the left hand side switched from -infinity to a non-infinite value -> install rounding locks */
3550 /* the left hand side switched from a non-infinite value to -infinity -> remove rounding locks */
3571 /* check whether the left hand side is increased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3653 /* the right hand side switched from infinity to a non-infinite value -> install rounding locks */
3678 /* the right hand side switched from a non-infinite value to infinity -> remove rounding locks */
3699 /* check whether the right hand side is decreased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3747 assert(!SCIPvarIsRelaxationOnly(var) || (!SCIPconsIsChecked(cons) && !SCIPconsIsEnforced(cons)));
3862 consdata->indexsorted = consdata->indexsorted && (consdataCompVar((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3868 consdata->coefsorted = consdata->coefsorted && (consdataCompVarProp((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3959 /* if at most one variable is left, the activities should be recalculated (to correspond exactly to the bounds
3971 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4037 assert(0 <= pos && pos < consdata->nvars);
4119 SCIPwarningMessage(scip, "skipped scaling for linear constraint <%s> to avoid numerical troubles (scalar: %.15g)\n",
4130 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4138 SCIPwarningMessage(scip, "coefficient %.15g of variable <%s> in linear constraint <%s> scaled to zero (scalar: %.15g)\n",
4160 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4172 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasCeil, we subtract 0.5 before ceiling up
4209 {
4234 * Apply the following rules in the given order, until the sign of the factor is determined. Later rules only apply,
4239 * 4. the number of positive coefficients must not be smaller than the number of negative coefficients
4242 * Try to identify a rational representation of the fractional coefficients, and multiply all coefficients
4333 SCIPdebugMsg(scip, "divide linear constraint with %g, because all coefficients are in absolute value the same\n", maxabsval);
4375 epsilon = SCIPepsilon(scip) * 0.9; /* slightly decrease epsilon to be safe in rational conversion below */
4384 maxmult = MIN(maxmult, (SCIP_Longint) (MAXSCALEDCOEFINTEGER / MAX(maxabsval, 1.0))); /*lint !e835*/
4410 /* 3. the absolute value of the right hand side must be greater than that of the left hand side */
4419 /* 4. the number of positive coefficients must not be smaller than the number of negative coefficients */
4472 /* it might be that we have really big coefficients, but all are integral, in that case we want to divide them by
4492 SCIPdebugMsg(scip, "scale linear constraint with %" SCIP_LONGINT_FORMAT " to make coefficients integral\n", scm);
4541 /* since the lhs/rhs is not respected for gcd calculation it can happen that we detect infeasibility */
4544 if( SCIPisEQ(scip, consdata->lhs, consdata->rhs) && !SCIPisFeasIntegral(scip, consdata->rhs / gcd) )
4548 SCIPdebugMsg(scip, "detected infeasibility of constraint after scaling with gcd=%" SCIP_LONGINT_FORMAT ":\n", gcd);
4556 SCIPdebugMsg(scip, "divide linear constraint by greatest common divisor %" SCIP_LONGINT_FORMAT "\n", gcd);
4629 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4702 /* if an unmodifiable row has been added to the LP, then we cannot apply fixing anymore (cannot change a row)
4703 * this should not happen, as applyFixings is called in addRelaxation() before creating and adding a row
4705 assert(consdata->row == NULL || !SCIProwIsInLP(consdata->row) || SCIProwIsModifiable(consdata->row));
4858 if( SCIPisEQ(scip, lhssubtrahend, consdata->lhs) && SCIPisFeasGE(scip, REALABS(lhssubtrahend), 1.0) )
4874 if( SCIPisEQ(scip, rhssubtrahend, consdata->rhs ) && SCIPisFeasGE(scip, REALABS(rhssubtrahend), 1.0) )
4888 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have
4907 /** for each variable in the linear constraint, except the inferred variable, adds one bound to the conflict analysis'
4908 * candidate store (bound depends on sign of coefficient and whether the left or right hand side was the reason for the
4909 * inference variable's bound change); the conflict analysis can be initialized with the linear constraint being the
4917 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
4946 /* for each variable, add the bound to the conflict queue, that is responsible for the minimal or maximal
4947 * residual value, depending on whether the left or right hand side is responsible for the bound change:
4952 /* if the variable is integral we only need to add reason bounds until the propagation could be applied */
4965 /* calculate the minimal and maximal global activity of all other variables involved in the constraint */
4970 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, &minresactivity, NULL,
4973 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, NULL, &maxresactivity,
4987 if( (reasonisrhs && !isminsettoinfinity && !minisrelax) || (!reasonisrhs && !ismaxsettoinfinity && !maxisrelax) ) /*lint !e644*/
4994 /* calculate the residual capacity that would be left, if the variable would be set to one more / one less
5049 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound */
5051 rescap -= vals[i] * (SCIPgetVarLbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetLbGlobal(vars[i]));
5055 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound */
5057 rescap -= vals[i] * (SCIPgetVarUbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetUbGlobal(vars[i]));
5077 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound is responsible */
5082 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound is responsible */
5090 /** for each variable in the linear ranged row constraint, except the inferred variable, adds the bounds of all fixed
5091 * variables to the conflict analysis' candidate store; the conflict analysis can be initialized
5092 * with the linear constraint being the conflict detecting constraint by using NULL as inferred variable
5099 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5114 nvars = consdata->nvars;
5131 if( !SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetLbGlobal(vars[v])) )
5137 if( !SCIPisEQ(scip, SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetUbGlobal(vars[v])) )
5147 if( SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE)) )
5149 /* add all bounds of fixed variables which lead to the boundchange of the given inference variable */
5179 {
5206 /** resolves a propagation on the given variable by supplying the variables needed for applying the corresponding
5217 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5218 SCIP_RESULT* result /**< pointer to store the result of the propagation conflict resolving call */
5259 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5260 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5269 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5270 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5279 /* the bound of the variable was tightened, because some variables were already fixed and the leftover only allow
5291 SCIPerrorMessage("invalid inference information %d in linear constraint <%s> at position %d for %s bound of variable <%s>\n",
5302 /** analyzes conflicting bounds on given constraint, and adds conflict constraint to problem */
5311 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5317 /* add the conflicting bound for each variable of infeasible constraint to conflict candidate queue */
5365 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5389 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
5391 QUAD_TO_DBL(consdata->minactivity), QUAD_TO_DBL(consdata->maxactivity), consdata->lhs, consdata->rhs, newub);
5396 SCIP_CALL( SCIPinferVarUbCons(scip, var, newub, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5435 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5459 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
5461 QUAD_TO_DBL(consdata->minactivity), QUAD_TO_DBL(consdata->maxactivity), consdata->lhs, consdata->rhs, newlb);
5466 SCIP_CALL( SCIPinferVarLbCons(scip, var, newlb, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5502 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5562 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5565 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5577 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5621 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5633 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5669 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5672 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5684 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5727 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5739 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5771 /** analyzes conflicting bounds on given ranged row constraint, and adds conflict constraint to problem */
5794 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5800 /* add the conflicting fixed variables of this ranged row constraint to conflict candidate queue */
5814 * Check ranged rows for possible solutions, possibly detect infeasibility, fix variables due to having only one possible
5815 * solution, tighten bounds if having only two possible solutions or add constraints which propagate a subset of
5900 addartconss = conshdlrdata->rangedrowartcons && SCIPgetDepth(scip) < 1 && !SCIPinProbing(scip) && !SCIPinRepropagation(scip);
5905 /* we are not allowed to add artificial constraints during propagation; if nothing changed on this constraint since
5906 * the last rangedrowpropagation, we can stop; otherwise, we mark this constraint to be rangedrowpropagated without
5924 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5953 * coefficient so that all variables in this group will have a gcd greater than 1, this group will be implicitly
5956 * the second group will contain all left unfixed variables and will be saved as infcheckvars with corresponding
5957 * coefficients as infcheckvals, the order of these variables should be the same as in the consdata object
5960 /* find first integral variables with integral coefficient greater than 1, thereby collecting all other unfixed
5970 /* partition the variables, do not change the order of collection, because it might be used later on */
5974 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6002 while( v < consdata->nvars && SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) );
6016 assert(!SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])));
6017 assert(SCIPisIntegral(scip, consdata->vals[v]) && SCIPvarGetType(consdata->vars[v]) != SCIP_VARTYPE_CONTINUOUS && REALABS(consdata->vals[v]) > 1.5);
6024 /* go on to partition the variables, do not change the order of collection, because it might be used later on;
6028 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6041 if( !SCIPisIntegral(scip, consdata->vals[v]) || SCIPvarGetType(consdata->vars[v]) == SCIP_VARTYPE_CONTINUOUS ||
6080 /* it should not happen that all variables are of integral type and have a gcd >= 2, this should be done by
6139 SCIPdebugMsg(scip, "minactinfvarsinvalid = %u, minactinfvars = %g, maxactinfvarsinvalid = %u, maxactinfvars = %g, gcd = %lld, ninfcheckvars = %d, ncontvars = %d\n",
6140 minactinfvarsinvalid, minactinfvars, maxactinfvarsinvalid, maxactinfvars, gcd, ninfcheckvars, ncontvars);
6142 /* @todo maybe we took the wrong variables as infcheckvars we could try to exchange integer variables */
6143 /* @todo if minactinfvarsinvalid or maxactinfvarsinvalid are true, try to exchange both partitions to maybe get valid
6145 /* @todo calculate minactivity and maxactivity for all non-intcheckvars, and use this for better bounding,
6147 * that therefore the conflict variables in addConflictFixedVars() need to be extended by all variables which
6151 /* check if between left hand side and right hand side exist a feasible point, if not the constraint leads to
6156 SCIPdebugMsg(scip, "no feasible value exist, constraint <%s> lead to infeasibility", SCIPconsGetName(cons));
6161 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6178 gcdinfvars = SCIPcalcGreComDiv(gcdinfvars, (SCIP_Longint)(REALABS(infcheckvals[v]) + feastol));
6186 /* compute solutions for this ranged row, if all variables are of integral type with integral coefficients */
6255 SCIPdebugMsg(scip, "here nsols %s %d, minsolvalue = %g, maxsolvalue = %g, ninfcheckvars = %d, nunfixedvars = %d\n",
6263 SCIPdebugMsg(scip, "no solution found; constraint <%s> lead to infeasibility\n", SCIPconsGetName(cons));
6268 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6296 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6317 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6329 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6411 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6418 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6423 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals,
6475 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6496 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6518 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6530 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6637 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newlb) );
6658 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newub) );
6666 /* at least two solutions and more than one variable, so we add a new constraint which bounds the feasible
6669 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6691 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons1_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6696 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6705 /* @todo maybe add constraint for all variables which are not infcheckvars, lhs should be minvalue, rhs
6726 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6776 if( v == consdata->nvars && !SCIPisHugeValue(scip, -minact) && !SCIPisHugeValue(scip, maxact) )
6791 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons2_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6796 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6822 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
6865 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
6886 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6897 (!SCIPisUbBetter(scip, newub, lb, ub) && (!SCIPisFeasLT(scip, newub, ub) || !SCIPvarIsIntegral(var))
6904 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
6905 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6921 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6938 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6953 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6954 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6970 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6988 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6999 || (!SCIPisLbBetter(scip, newlb, lb, ub) && (!SCIPisFeasGT(scip, newlb, lb) || !SCIPvarIsIntegral(var))
7006 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
7007 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
7023 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
7039 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
7054 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g], newub=%.15g\n",
7055 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
7071 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
7091 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7180 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minisrelax, &maxisrelax,
7185 slack = (SCIPisInfinity(scip, consdata->rhs) || isminsettoinfinity) ? SCIPinfinity(scip) : (consdata->rhs - minactivity);
7186 surplus = (SCIPisInfinity(scip, -consdata->lhs) || ismaxsettoinfinity) ? SCIPinfinity(scip) : (maxactivity - consdata->lhs);
7196 /* as long as the bounds might be tightened again, try to tighten them; abort after a maximal number of rounds */
7204 for( nrounds = 0; (force || consdata->boundstightened < tightenmode) && nrounds < MAXTIGHTENROUNDS; ++nrounds ) /*lint !e574*/
7208 * note: it might happen that integer variables become binary during bound tightening at the root node
7219 /* try to tighten the bounds of each variable in the constraint. During solving process, the binary variable
7243 && !SCIPisFeasEQ(scip, SCIPvarGetUbLocal(consdata->vars[v]), SCIPvarGetLbLocal(consdata->vars[v])) )
7250 SCIPdebugMessage("linear constraint <%s> found %d bound changes in round %d\n", SCIPconsGetName(cons),
7258 assert(*cutoff || SCIPisFeasEQ(scip, SCIPvarGetLbLocal(consdata->vars[0]), SCIPvarGetUbLocal(consdata->vars[0])));
7270 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
7271 SCIP_Bool checkrelmaxabs, /**< Should the violation for a constraint with side 0.0 be checked relative
7307 SCIPdebugMsg(scip, " consdata activity=%.15g (lhs=%.15g, rhs=%.15g, row=%p, checklprows=%u, rowinlp=%u, sol=%p, hascurrentnodelp=%u)\n",
7329 /* the activity of pseudo solutions may be invalid if it comprises positive and negative infinity contributions; we
7345 else if( !consdata->checkabsolute && (SCIPisFeasLT(scip, activity, consdata->lhs) || SCIPisFeasGT(scip, activity, consdata->rhs)) )
7358 /* the (much) more complicated check: we try to disregard random noise and violations of a 0.0 side which are
7407 SCIPdebugMsg(scip, " lhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7461 SCIPdebugMsg(scip, " rhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7497 ((!SCIPisInfinity(scip, -consdata->lhs) && SCIPisGT(scip, consdata->lhs-activity, SCIPfeastol(scip))) ||
7498 (!SCIPisInfinity(scip, consdata->rhs) && SCIPisGT(scip, activity-consdata->rhs, SCIPfeastol(scip)))) )
7540 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, cons, SCIPconsGetName(cons), consdata->lhs, consdata->rhs,
7543 SCIP_CALL( SCIPaddVarsToRow(scip, consdata->row, consdata->nvars, consdata->vars, consdata->vals) );
7568 /* replace all fixed variables by active counterparts, as we have no chance to do this anymore after the row has been added to the LP
7622 /* skip deactivated, redundant, or local linear constraints (the NLP does not allow for local rows at the moment) */
7634 0.0, consdata->nvars, consdata->vars, consdata->vals, NULL, consdata->lhs, consdata->rhs, SCIP_EXPRCURV_LINEAR) );
7647 /** separates linear constraint: adds linear constraint as cut, if violated by given solution */
7655 SCIP_Bool separateall, /**< should all constraints be subject to cardinality cut generation instead of only
7677 SCIP_CALL( checkCons(scip, cons, sol, (sol != NULL), conshdlrdata->checkrelmaxabs, &violated) );
7690 /* we only want to call the knapsack cardinality cut separator for rows that have a non-zero dual solution */
7744 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7789 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7828 SCIPdebug( SCIPdebugMsg(scip, "linear constraint <%s> found %d bound changes and %d fixings\n", SCIPconsGetName(cons), *nchgbds - oldnchgbds, nfixedvars); )
7838 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
7843 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (rhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7854 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (lhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7863 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
7865 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7868 /* remove the constraint locally unless it has become empty, in which case it is removed globally */
7926 SCIPdebugMsg(scip, "converting variable <%s> with fixed bounds [%.15g,%.15g] into fixed variable fixed at %.15g\n",
7963 * a) if the constraint has a finite right hand side and the negative infinity counters for the minactivity are zero
7964 * then add the variables as a clique for which all successive pairs of coefficients fullfill the following
7969 * and also add the binary to binary implication also for non-successive variables for which the same argument
7974 * e.g. 5.3 x1 + 3.6 x2 + 3.3 x3 + 2.1 x4 <= 5.5 (all x are binary) would lead to the clique (x1, x2, x3) and the
7977 * b) if the constraint has a finite left hand side and the positive infinity counters for the maxactivity are zero
7978 * then add the variables as a clique for which all successive pairs of coefficients fullfill the follwoing
7983 * and also add the binary to binary implication also for non-successive variables for which the same argument
7990 * c) the constraint has a finite right hand side and a finite minactivity then add the variables as a negated
7991 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7996 * and also add the binary to binary implication also for non-successive variables for which the
8001 * e.g. -4 x1 -3 x2 - 2 x3 + 2 x4 <= -4 would lead to the (negated) clique (~x1, ~x2) and the binary to binary
8004 * d) the constraint has a finite left hand side and a finite maxactivity then add the variables as a negated
8005 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
8010 * and also add the binary to binary implication also for non-successive variables for which the same argument
8017 * 2. if the linear constraint represents a set-packing or set-partitioning constraint, the whole constraint is added
8025 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
8069 * for now we only add binary to non-binary implications, and this is only done for the binary variable with the
8070 * maximal absolute contribution and also only if this variable would force all other variables to their bound
8078 /* @todo we might extract implications/cliques if SCIPvarIsBinary() variables exist and we have integer variables
8101 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8103 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8104 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8108 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8171 /* if the right hand side and the minimal activity are finite and changing the variable with the biggest
8172 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8175 if( finiterhs && finiteminact && SCIPisEQ(scip, QUAD_TO_DBL(consdata->glbminactivity), consdata->rhs - maxabscontrib) )
8187 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8194 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8206 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8212 /* if the left hand side and the maximal activity are finite and changing the variable with the biggest
8213 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8216 if( finitelhs && finitemaxact && SCIPisEQ(scip, QUAD_TO_DBL(consdata->glbmaxactivity), consdata->lhs - maxabscontrib) )
8228 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8235 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8247 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8256 SCIPdebugMsg(scip, "extracted %d implications from constraint %s which led to %d bound changes, %scutoff detetcted\n", nimpls, SCIPconsGetName(cons), *nchgbds - oldnchgbds, *cutoff ? "" : "no ");
8261 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8310 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8312 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8313 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8317 /* 1. we wheck whether some variables do not fit together into this constraint and add the corresponding clique
8320 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8357 /* setppc constraints will be handled later; we need at least two binary variables with same sign to extract
8392 #ifdef SCIP_DISABLED_CODE /* assertion should only hold when constraints were fully propagated and boundstightened */
8393 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8431 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8468 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8541 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8542 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8582 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8593 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), NULL, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8621 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8701 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8720 SCIP_CALL( SCIPaddClique(scip, &(binvars[j+1]), values, i - j, FALSE, &infeasible, &nbdchgs) );
8742 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8753 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), values, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8783 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8860 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8899 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8945 /* check if all variables are binary, if the coefficients are +1 or -1, and if the right hand side is equal
8946 * to 1 - number of negative coefficients, or if the left hand side is equal to number of positive coefficients - 1
8977 SCIP_CALL( SCIPaddClique(scip, vars, values, nvars, SCIPisEQ(scip, consdata->lhs, consdata->rhs), &infeasible, &nbdchgs) );
9045 SCIPdebugMsg(scip, "rounding sides=[%.15g,%.15g] of linear constraint <%s> with integral coefficients and variables only "
9079 /** tightens coefficients of binary, integer, and implicit integer variables due to activity bounds in presolving:
9086 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9095 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9103 * A deviation of only one from their bound makes the lhs/rhs feasible (i.e., redundant), even if all other
9104 * variables are set to their "worst" bound. If all variables which are not surely non-redundant cannot make
9105 * the lhs/rhs redundant, even if they are set to their "best" bound, they can be removed from the constraint.
9106 * E.g., for binary variables and an inequality x_1 +x_2 +10y_1 +10y_2 >= 5, setting either of the y_i to one
9107 * suffices to fulfill the inequality, whereas the x_i do not contribute to feasibility and can be removed.
9109 * @todo use also some tightening procedures for (knapsack) constraints with non-integer coefficients, see
9122 SCIP_Real minactivity; /* minimal value w.r.t. the variable's local bounds for the constraint's
9124 SCIP_Real maxactivity; /* maximal value w.r.t. the variable's local bounds for the constraint's
9162 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9185 SCIPisGE(scip, minactivity + val, consdata->lhs) && SCIPisLE(scip, maxactivity - val, consdata->rhs) )
9205 lval -= otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9211 rval += otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9226 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9243 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9248 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9257 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9292 SCIPisGE(scip, minactivity - val, consdata->lhs) && SCIPisLE(scip, maxactivity + val, consdata->rhs) )
9312 lval += otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9318 rval -= otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9333 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9350 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9355 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9364 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9407 /* if the lhs is finite, we will check in the following whether the not non-redundant variables can make lhs feasible;
9408 * this is not valid, if the minactivity is -\infty (aggrlhs would be minus infinity in the following computation)
9409 * or if huge values contributed to the minactivity, because the minactivity is then just a relaxation
9410 * (<= the exact minactivity), and we might falsely claim variables to be redundant in the following
9413 if( !SCIPisInfinity(scip, -consdata->lhs) && (SCIPisInfinity(scip, -minactivity) || minactisrelax) )
9416 /* if the rhs is finite, we will check in the following whether the not non-redundant variables can make rhs feasible;
9417 * this is not valid, if the maxactivity is \infty (aggrrhs would be infinity in the following computation)
9418 * or if huge values contributed to the maxactivity, because the maxactivity is then just a relaxation
9419 * (>= the exact maxactivity), and we might falsely claim variables to be redundant in the following
9422 if( !SCIPisInfinity(scip, consdata->rhs) && (SCIPisInfinity(scip, maxactivity) || maxactisrelax) )
9426 * surely non-redundant variables are all those where a deviation from the bound makes the lhs/rhs redundant
9431 /* check if the constraint contains variables which are redundant. The reasoning is the following:
9432 * Each non-redundant variable can make the lhs/rhs feasible with a deviation of only one in the bound.
9464 SCIPisLT(scip, minactivity + val, consdata->lhs) || SCIPisGT(scip, maxactivity - val, consdata->rhs) )
9468 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9478 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9481 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9492 SCIPisLT(scip, minactivity - val, consdata->lhs) || SCIPisGT(scip, maxactivity + val, consdata->rhs) )
9494 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9504 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9507 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9515 /* the following update step is needed in every iteration cause otherwise it is possible that the surely none-
9517 * e.g. y_1 + 16y_2 >= 25, y1 with bounds [9,12], y2 with bounds [0,2], minactivity would be 9, it follows that
9518 * y_2 is surely not redundant and y_1 is redundant so we would first delete y1 and without updating the sides
9526 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9533 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9545 /** processes equality with only one variable by fixing the variable and deleting the constraint */
9601 /** processes equality with exactly two variables by aggregating one of the variables and deleting the constraint */
9632 SCIP_CALL( SCIPaggregateVars(scip, consdata->vars[0], consdata->vars[1], consdata->vals[0], consdata->vals[1],
9659 /** calculates the new lhs and rhs of the constraint after the given variable is aggregated out */
9707 /** processes equality with more than two variables by multi-aggregating one of the variables and converting the equality
9708 * into an inequality; if multi-aggregation is not possible, tries to identify one continuous or integer variable that
9711 * @todo Check whether a more clever way of avoiding aggregation of variables containing implicitly integer variables
9767 SCIPdebugMsg(scip, "linear constraint <%s>: try to multi-aggregate equality\n", SCIPconsGetName(cons));
9771 * maxnlocksstay: maximal sum of lock numbers if the constraint does not become redundant after the aggregation
9772 * maxnlocksremove: maximal sum of lock numbers if the constraint can be deleted after the aggregation
9779 /* If the constraint becomes redundant, 3 non-zeros are removed, and we get 1 additional non-zero for each
9780 * constraint the variable appears in. Thus, the variable must appear in at most 3 other constraints.
9786 /* If the constraint becomes redundant, 4 non-zeros are removed, and we get 2 additional non-zeros for each
9787 * constraint the variable appears in. Thus, the variable must appear in at most 2 other constraints.
9793 /* If the constraint is redundant but has more than 4 variables, we can only accept one other constraint. */
9844 assert(!SCIPconsIsChecked(cons) || SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) >= 1); /* because variable is locked in this equality */
9889 /* check, if variable is used in too many other constraints, even if this constraint could be deleted */
9890 nlocks = SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL);
9938 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
9941 /* do not perform the multi-aggregation due to numerics, if we have huge contributions in the residual
9948 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9953 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
9956 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity)
9960 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9971 /* if the constraint does not become redundant, only accept the variable if it does not appear in
9990 /* if all coefficients and variables are integral, the right hand side must also be integral */
10003 /* check whether the the infimum and the supremum of the multi-aggregation can be get infinite */
10040 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
10041 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
10044 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
10048 /* if the slack variable is of integer type, and the constraint itself may take fractional values,
10092 SCIPdebugMsg(scip, "linear constraint <%s>: multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(slackvar));
10098 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g], nlocks=%d, maxnlocks=%d, removescons=%u\n",
10099 aggrconst, SCIPvarGetName(slackvar), SCIPvarGetLbGlobal(slackvar), SCIPvarGetUbGlobal(slackvar),
10113 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
10123 SCIPdebugMsg(scip, "linear constraint <%s>: redundant after multi-aggregation\n", SCIPconsGetName(cons));
10140 /* upgrade continuous variable to an implicit one, if the absolute value of the coefficient is one */
10144 SCIPdebugMsg(scip, "linear constraint <%s>: converting continuous variable <%s> to implicit integer variable\n",
10149 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10155 /* aggregate continuous variable to an implicit one, if the absolute value of the coefficient is unequal to one */
10156 /* @todo check if the aggregation coefficient should be in some range(, which is not too big) */
10170 SCIP_CALL( SCIPcreateVar(scip, &newvar, newvarname, -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
10171 SCIP_VARTYPE_IMPLINT, SCIPvarIsInitial(var), SCIPvarIsRemovable(var), NULL, NULL, NULL, NULL, NULL) );
10186 SCIPdebugMsg(scip, "linear constraint <%s>: aggregating continuous variable <%s> to newly created implicit integer variable <%s>, aggregation factor = %g\n",
10190 SCIP_CALL( SCIPaggregateVars(scip, var, newvar, absval, -1.0, 0.0, &infeasible, &redundant, &aggregated) );
10194 SCIPdebugMsg(scip, "infeasible aggregation of variable <%s> to implicit variable <%s>, domain is empty\n",
10213 /* we do not have any event on vartype changes, so we need to manually force this constraint to be presolved
10225 /* this seems to help for rococo instances, but does not for rout (where all coefficients are +/- 1.0)
10238 SCIPdebugMsg(scip, "linear constraint <%s>: converting integer variable <%s> to implicit integer variable\n",
10243 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10254 /** checks if the given variables and their coefficient are equal (w.r.t. scaling factor) to the objective function */
10292 /* if a variable has a zero objective coefficient the linear constraint is not a subset of the objective
10330 /** check if the linear equality constraint is equal to a subset of the objective function; if so we can remove the
10359 /* check if the linear equality constraints does not have more variables than the objective function */
10365 (nvars == nobjvars && (!conshdlrdata->detectcutoffbound || !conshdlrdata->detectlowerbound)) )
10371 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10383 SCIPdebugMsg(scip, "linear equality constraint <%s> == %g (offset %g) is a subset of the objective function\n",
10403 /** updates the cutoff if the given primal bound (which is implied by the given constraint) is better */
10413 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are still
10431 /* we cannot disable the enforcement and propagation on ranged rows, because the cutoffbound could only have
10436 /* in case the cutoff bound is worse then the currently known one, we additionally avoid enforcement and
10447 /** check if the linear constraint is parallel to objective function; if so update the cutoff bound and avoid that the
10478 /* check if the linear inequality constraints has the same number of variables as the objective function and if the
10487 /* There are no variables in the objective function and in the constraint. Thus, the constraint is redundant or proves
10488 * infeasibility. Since we have a pure feasibility problem, we do not want to set a cutoff or lower bound.
10493 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10511 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10523 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10532 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10545 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10557 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10566 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10629 /** returns whether the linear sum of all variables/coefficients except the given one divided by the given value is always
10648 if( v != pos && (!SCIPvarIsIntegral(consdata->vars[v]) || !SCIPisIntegral(scip, consdata->vals[v]/val)) )
10655 /** check if \f$lhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$,
10656 * check if \f$rhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$
10678 *minval = (side - maxresactivity)/val;
10700 /** applies dual presolving for variables that are locked only once in a direction, and this locking is due to a
10733 * otherwise we would have to check for variables with nlocks == 0, and these are already processed by the
10745 /* search for a single-locked variable which can be multi-aggregated; if a valid continuous variable was found, we
10752 /* We only want to multi-aggregate variables, if they appear in maximal one additional constraint,
10754 * - If there are only two variables in the constraint from which the multi-aggregation arises, no fill-in will be
10756 * - If there are three variables in the constraint, multi-aggregation in three additional constraints will remove
10757 * six nonzeros (three from the constraint and the three entries of the multi-aggregated variable) and add
10759 * - If there at most four variables in the constraint, multi-aggregation in two additional constraints will remove
10760 * six nonzeros (four from the constraint and the two entries of the multi-aggregated variable) and add
10772 /* if this constraint has both sides, it also provides a lock for the other side and thus we can allow one more lock */
10804 isint = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
10810 /* better do not multi-aggregate binary variables, since most plugins rely on their binary variables to be either
10828 * - fix x_i to the smallest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10832 * - fix x_i to the largest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10836 * - fix x_i to the largest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10840 * - fix x_i to the smallest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10842 * but: all this is only applicable, if the aggregated value is inside x_i's bounds for all possible values
10847 && ((val > 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10849 || (val < 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10852 && ((val > 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10854 || (val < 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10868 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
10881 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10896 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10904 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10916 /* check again if lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10917 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10924 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10927 if( !isint || (SCIPisIntegral(scip, consdata->lhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10941 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10956 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10963 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10972 /* check again if rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10973 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10979 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10982 if( !isint || (SCIPisIntegral(scip, consdata->rhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
11020 (SCIPvarGetType(bestvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(bestvar) == SCIP_VARTYPE_INTEGER));
11028 SCIPdebugMsg(scip, "linear constraint <%s> (dual): multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(bestvar));
11101 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g]\n", aggrconst, SCIPvarGetName(bestvar),
11118 /* @todo if multi-aggregate makes them numerical trouble, avoid them if the coefficients differ to much, see
11121 SCIP_CALL( SCIPmultiaggregateVar(scip, bestvar, naggrs, aggrvars, aggrcoefs, aggrconst, &infeasible, &aggregated) );
11123 /* if the multi-aggregate bestvar is integer, we need to convert implicit integers to integers because
11132 /* If the multi-aggregation was not infeasible, then setting implicit integers to integers should not
11145 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
11146 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
11147 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
11156 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
11385 /** sorting method for constraint data, compares two variables on given indices, continuous variables will be sorted to
11386 * the end and for all other variables the sortation will be in non-increasing order of their absolute value of the
11419 /* for all non-continuous variables, the variables are sorted after decreasing absolute coefficients */
11425 * 1. lhs <= a^Tx <= rhs, x binary, lhs > 0, forall a_i >= lhs, a_i <= rhs, and forall pairs a_i + a_j > rhs,
11521 /** tries to simplify coefficients and delete variables in constraints of the form lhs <= a^Tx <= rhs
11525 * for one-sided constraints there are several different coefficient reduction steps which will be applied
11527 * 1. We try to determine parts of the constraint which will not change anything on (in-)feasibility of the constraint
11533 * e.g. 5.2x1 + 5.1x2 + 3x3 <= 8.3 => will be changed to 5x1 + 5x2 + 3x3 <= 8 if all x are binary
11537 * e.g. 10x1 + 5y2 + 5x3 + 3x4 <= 15 => will be changed to 2x1 + y2 + x3 + x4 <= 3 if all xi are binary and y2 is
11619 /* @todo the following might be too hard, check which steps can be applied and what code must be corrected
11626 /* @todo: change the following: due to vartype changes, the status of the normalization can be wrong, need an event
11668 /* if we have a normalized inequality (not ranged) the one side should be positive, @see normalizeCons() */
11675 /* call sorting method, order continuous variables to the end and all other variables after non-increasing absolute
11689 assert(consdata->validmaxabsval ? (SCIPisFeasEQ(scip, consdata->maxabsval, REALABS(vals[0])) || SCIPvarGetType(vars[nvars - 1]) == SCIP_VARTYPE_CONTINUOUS) : TRUE);
11699 if( SCIPisEQ(scip, REALABS(vals[0]), 1.0) && ((hasrhs && SCIPisIntegral(scip, rhs)) || (haslhs && SCIPisIntegral(scip, lhs))) )
11727 /* we now determine coefficients as large as the side of the constraint to retrieve a better reduction where we
11731 * c1: +5x1 + 5x2 + 3x3 + 3x4 + x5 >= 5 (x5 is redundant and does not change (in-)feasibility of this constraint)
11732 * c2: +4x1 + 4x2 + 3x3 + 3x4 + x5 >= 4 (gcd (without the coefficient of x5) after the large coefficients is 3
11733 * c3: +30x1 + 29x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 30 (gcd (without the coefficient of x2) after the large coefficients is 7
11738 * c2: +6x1 + 6x2 + 3x3 + 3x4 + 3x5 >= 6 (will be changed to c2: +2x1 + 2x2 + x3 + x4 + x5 >= 2)
11739 * c3: +28x1 + 28x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 28 (will be changed to c3: +4x1 + 4x2 + 2x3 + 2z1 + x5 + x6 <= 4)
11742 /* if the minimal activity is negative and we found more than one variable with a coefficient bigger than the left
11745 * e.g. 7x1 + 7x2 - 4x3 - 4x4 >= 7 => xi = 1 for all i is not a solution, but if we would do a change on the
11746 * coefficients due to the gcd on the "small" coefficients we would get 8x1 + 8x2 - 4x3 - 4x4 >= 8 were xi = 1
11757 /* if we have integer variable with "side"-coefficients but also with a lower bound greater than 0 we stop this
11769 /* easy and quick fix: if all coefficients were equal to the side, we cannot apply further simplifications */
11770 /* todo find numerically stable normalization conditions to scale this cons to have coefficients almost equal to 1 */
11782 /* all but one variable are processed or the next variable is continuous we cannot perform the extra coefficient
11809 /* find and remove redundant variables which do not interact with the (in-)feasibility of this constraint
11900 rredundant = hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd);
11901 lredundant = haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd;
11930 SCIPdebugMsg(scip, "stopped at pos %d (of %d), subactivities [%g, %g], redundant = %u, hasrhs = %u, siderest = %g, gcd = %" SCIP_LONGINT_FORMAT ", offset position for 'side' coefficients = %d\n",
11935 numericsok = REALABS(maxact) < MAXACTVAL && REALABS(maxactsub) < MAXACTVAL && REALABS(minact) < MAXACTVAL &&
11938 rredundant = hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd);
11939 lredundant = haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd;
11990 assert((hasrhs && SCIPisFeasLE(scip, tmpmaxactsub, siderest) && tmpminactsub > siderest - gcd) ||
11994 SCIPdebugMsg(scip, "removing %d last variables from constraint <%s>, because they never change anything on the feasibility of this constraint\n",
12095 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12182 /* new coeffcient must not be zero if we would loose the implication that a variable needs to be 0 if
12208 if( (!notchangable && hasrhs && ((!SCIPisFeasIntegral(scip, rhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(rhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd))) ||
12209 ( haslhs && (!SCIPisFeasIntegral(scip, lhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(lhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd)) )
12262 /* @todo we still can remove continuous variables if they are redundant due to the non-integrality argument */
12278 /* check if the non-integrality part of all integral variables is smaller than the non-inegrality part of the right
12279 * hand side or bigger than the left hand side respectively, so we can make all of them integral
12283 if( (hasrhs && !SCIPisFeasIntegral(scip, rhs)) || (haslhs && !SCIPisFeasIntegral(scip, lhs)) )
12328 /* if we exceed the fractional part of the right hand side, we cannot tighten the coefficients
12421 /* the fractional part on each variable need to exceed the fractional part on the left hand side */
12522 /* maximal absolute value of coefficients in constraint is one, so we cannot tighten it further */
12539 if( SCIPisEQ(scip, REALABS(vals[nvars - 1]), 1.0) && SCIPisEQ(scip, REALABS(vals[nvars - 2]), 1.0) )
12544 /* calculate greatest common divisor over all integer variables; note that the onlybin flag needs to be recomputed
12566 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12567 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12588 /* we need at least one binary variable and a gcd greater than 1 to try to perform further coefficient changes */
12597 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
12605 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12606 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12623 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12634 /* if we have only binary variables and both first coefficients have a gcd of 1, both are candidates for
12668 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
12676 /* check again, if we have a normalized inequality (not ranged) the one side should be positive,
12732 assert(SCIPisZero(scip, newcoef) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(newcoef) + feastol)) == gcd);
12734 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restcoef = %" SCIP_LONGINT_FORMAT "; changing coef of variable <%s> to %g and %s by %" SCIP_LONGINT_FORMAT "\n", gcd, rest, restcoef, SCIPvarGetName(vars[candpos]), newcoef, hasrhs ? "reduced rhs" : "increased lhs", hasrhs ? rest : (rest > 0 ? gcd - rest : 0));
12765 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
12773 /** tries to aggregate an (in)equality and an equality in order to decrease the number of variables in the (in)equality:
12775 * where a = val1[v] and b = -val0[v] for common variable v which removes most variable weight;
12777 * the variable weight is a weighted sum over all included variables, where each binary variable weighs BINWEIGHT,
12778 * each integer or implicit integer variable weighs INTWEIGHT and each continuous variable weighs CONTWEIGHT
12787 int* diffidx0minus1, /**< array with indices of variables in cons0, that don't appear in cons1 */
12788 int* diffidx1minus0, /**< array with indices of variables in cons1, that don't appear in cons0 */
12791 int diffidx0minus1weight, /**< variable weight sum of variables in cons0, that don't appear in cons1 */
12792 int diffidx1minus0weight, /**< variable weight sum of variables in cons1, that don't appear in cons0 */
12793 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
12807 SCIP_Bool commonvarlindependent; /* indicates whether coefficient vector of common variables in linearly dependent */
12833 SCIPdebugMsg(scip, "try aggregation of <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
12869 /* count the number of variables in the potential new constraint a * consdata0 + b * consdata1 */
12894 * v's common coefficient in cons1 / v's common coefficient in cons0 should be constant, i.e., equal 0's common coefficient in cons1 / 0's common coefficient in cons0
12962 /* setup best* variables that were not setup above because we are in the commonvarlindependent case */
12967 SCIPdebugMsg(scip, "aggregate linear constraints <%s> := %.15g*<%s> + %.15g*<%s> -> nvars: %d -> %d, weight: %d -> %d\n",
12998 /* if we recognized linear dependency of the common coefficients, then the aggregation coefficient should be 0.0 for every common variable */
13051 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, SCIPconsGetName(cons0), newnvars, newvars, newvals, newlhs, newrhs,
13072 if( consdataGetMaxAbsval(SCIPconsGetData(newcons)) <= maxaggrnormscale * consdataGetMaxAbsval(consdata0) )
13107 /** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
13191 assert(consdata->indexsorted);
13204 /** returns the key for deciding which of two parallel constraints should be kept (smaller key should be kept);
13205 * prefers non-upgraded constraints and as second criterion the constraint with the smallest position
13219 return (((unsigned int)consdata->upgraded)<<31) + (unsigned int)SCIPconsGetPos(cons); /*lint !e571*/
13229 SCIP_CONS** querycons, /**< pointer to linear constraint used to look for duplicates in the hash table;
13242 while( (parallelcons = (SCIP_CONS*)SCIPhashtableRetrieve(hashtable, (void*)(*querycons))) != NULL )
13284 /** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
13345 /* get constraints from current hash table with same variables as cons0 and with coefficients equal
13346 * to the ones of cons0 when both are scaled such that maxabsval is 1.0 and the coefficient of the
13381 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
13412 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with equal coefficients into single ranged row\n",
13426 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with negated coefficients into single ranged row\n",
13438 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13450 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13455 /* ensure that lhs <= rhs holds without tolerances as we only allow such rows to enter the LP */
13495 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
13509 uint64_t negsignature0;
13559 for( c = (cons0changed ? 0 : firstchange); c < chkind && !(*cutoff) && conss[chkind] != NULL; ++c )
13598 /* SCIPdebugMsg(scip, "preprocess linear constraint pair <%s>[chgd:%d, upgd:%d] and <%s>[chgd:%d, upgd:%d]\n",
13625 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13626 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13628 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13629 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13631 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13632 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13634 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13635 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13650 * - if lhs0 >= lhs1 and for each variable v and each solution value x_v val0[v]*x_v <= val1[v]*x_v,
13652 * - if rhs0 <= rhs1 and for each variable v and each solution value x_v val0[v]*x_v >= val1[v]*x_v,
13654 * - if val0[v] == -val1[v] for all variables v, the two inequalities can be replaced by a single
13656 * - if at least one constraint is an equality, count the weighted number of common variables W_c
13657 * and the weighted number of variable in the difference sets W_0 = w(V_0 \ V_1), W_1 = w(V_1 \ V_0),
13658 * where the weight of each variable depends on its type, such that aggregations in order to remove the
13660 * - if W_c > W_1, try to aggregate consdata0 := a * consdata0 + b * consdata1 in order to decrease the
13661 * variable weight in consdata0, where a = +/- val1[v] and b = -/+ val0[v] for common v which leads to
13662 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13664 * - if W_c > W_0, try to aggregate consdata1 := a * consdata1 + b * consdata0 in order to decrease the
13665 * variable weight in consdata1, where a = +/- val0[v] and b = -/+ val1[v] for common v which leads to
13666 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13800 /* the coefficients in both rows are either equal or negated: create a new constraint with same coefficients and
13803 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with %s coefficients into single ranged row\n",
13822 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13863 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13875 /* check for domination: remove dominated sides, but don't touch equalities as long as they are not totally
13878 if( cons1dominateslhs && (!cons0isequality || cons1dominatesrhs || SCIPisInfinity(scip, consdata0->rhs) ) )
13889 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13902 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13909 else if( cons0dominateslhs && (!cons1isequality || cons0dominatesrhs || SCIPisInfinity(scip, consdata1->rhs)) )
13920 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13932 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13939 if( cons1dominatesrhs && (!cons0isequality || cons1dominateslhs || SCIPisInfinity(scip, -consdata0->lhs)) )
13950 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13963 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13970 else if( cons0dominatesrhs && (!cons1isequality || cons0dominateslhs || SCIPisInfinity(scip, -consdata1->lhs)) )
13981 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13993 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
14010 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
14025 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
14047 SCIP_CALL( aggregateConstraints(scip, cons0, cons1, commonidx0, commonidx1, diffidx0minus1, diffidx1minus0,
14062 if( !aggregated && cons0isequality && !consdata1->upgraded && commonidxweight > diffidx0minus1weight )
14065 SCIP_CALL( aggregateConstraints(scip, cons1, cons0, commonidx1, commonidx0, diffidx1minus0, diffidx0minus1,
14097 SCIP_Bool singletonstuffing, /**< should stuffing of singleton continuous variables be performed? */
14098 SCIP_Bool singlevarstuffing, /**< should single variable stuffing be performed, which tries to fulfill
14144 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
14155 /* we want to have a <= constraint, if the rhs is infinite, we implicitly multiply the constraint by -1,
14183 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14217 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14314 if( tryfixing && nsingletons > 0 && (SCIPisGT(scip, rhs, maxcondactivity) || SCIPisLE(scip, rhs, mincondactivity)) )
14376 /* @note: we could in theory tighten the bound of the first singleton variable which does not fall into the above case,
14377 * since it cannot be fully fixed. However, this is not needed and should be done by activity-based bound tightening
14378 * anyway after all other continuous singleton columns were fixed; doing it here may introduce numerical
14409 SCIPdebugMsg(scip, "### stuffing fixed %d variables and changed %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds);
14423 * setting all variables to their upper bound (giving us the maximal activity of the constraint) is worst w.r.t.
14424 * feasibility of the constraint. On the other hand, this gives the best objective function contribution of the
14425 * variables contained in the constraint. The maximal activity should be larger than the rhs, otherwise the constraint
14427 * Now we are searching for a variable x_k with maximal ratio c_k / a_k (note that all these ratios are negative), so
14428 * that by reducing the value of this variable we reduce the activity of the constraint while having the smallest
14429 * objective deterioration per activity unit. If x_k has no downlocks, is continuous, and can be reduced enough to
14430 * render the constraint feasible, and ALL other variables have only the one uplock installed by the current constraint,
14431 * we can reduce the upper bound of x_k such that the maxactivity equals the rhs and fix all other variables to their
14433 * Note that the others variables may have downlocks from other constraints, which we do not need to care
14434 * about since we are setting them to the highest possible value. Also, they may be integer or binary, because the
14435 * computed ratio is still a lower bound on the change in the objective caused by reducing those variable to reach
14436 * constraint feasibility. On the other hand, uplocks on x_k from other constraint do no interfer with the method.
14437 * With a slight adjustment, the procedure even works for integral x_k. If (maxactivity - rhs)/val is integral,
14438 * the variable gets an integral value in order to fulfill the constraint tightly, and we can just apply the procedure.
14439 * If (maxactivity - rhs)/val is fractional, we need to check, if overfulfilling the constraint by setting x_k to
14440 * ceil((maxactivity - rhs)/val) is still better than setting x_k to ceil((maxactivity - rhs)/val) - 1 and
14441 * filling the remaining gap in the constraint with the next-best variable. For this, we check that
14443 * c_k * floor((maxactivity - rhs)/val) + c_j * ((maxactivity - rhs) - (floor((maxactivity - rhs)/val) * val))/a_j.
14445 * If there are variables with a_i < 0 and c_i > 0, they are negated to obtain the above form, variables with same
14472 /* if both objective and constraint push the variable to the same direction, we can do nothing here */
14494 if( ratio > bestratio || ((ratio == bestratio) && downlocks == 0 && (bestdownlocks > 0 /*lint !e777*/
14559 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14560 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/-val) )
14587 SCIPdebugMsg(scip, "tighten the lower bound of <%s> from %g to %g (ub=%g)\n", SCIPvarGetName(var), lb, lb + bounddelta, ub);
14596 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14597 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/val))
14624 SCIPdebugMsg(scip, "tighten the upper bound of <%s> from %g to %g (lb=%g)\n", SCIPvarGetName(var), ub, ub - bounddelta, lb);
14639 SCIPdebugMsg(scip, "cons <%s>: %g <=\n", SCIPconsGetName(cons), factor > 0 ? consdata->lhs : -consdata->rhs);
14642 SCIPdebugMsg(scip, "%+g <%s>([%g,%g],%g,[%d,%d],%s)\n", factor * vals[v], SCIPvarGetName(vars[v]),
14675 SCIPdebug( SCIPdebugMsg(scip, "### new stuffing fixed %d vars, tightened %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds); )
14709 * redlb[v] == k : if x_v >= k, we can always round x_v down to x_v == k without violating any constraint
14710 * redub[v] == k : if x_v <= k, we can always round x_v up to x_v == k without violating any constraint
14723 * This is because then, the value of the variable is either determined by one of its bounds or
14745 /* copy the variable array since this array might change during the curse of this algorithm */
14767 /* Initialize isimplint array: variable may be implicit integer if rounded to their best bound they are integral.
14783 isimplint[v] = (SCIPisInfinity(scip, -lb) || SCIPisIntegral(scip, lb)) && (SCIPisInfinity(scip, ub) || SCIPisIntegral(scip, ub));
14799 /* we only need to consider constraints that have been locked (i.e., checked constraints or constraints that are
14833 assert(0 <= contv && contv < ncontvars); /* variable should be active due to applyFixings() */
14885 consdataGetGlbActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
14895 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastglbminactivity) )
14899 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastglbmaxactivity) )
14905 assert(0 <= arrayindex && arrayindex < nvars); /* variable should be active due to applyFixings() */
14974 /* there is more than one continuous variable or the integer variables have fractional coefficients:
14992 /* there is exactly one continuous variable and the integer variables have integral coefficients:
14993 * this is the interesting case, and we have to check whether the coefficient is +/-1 and the corresponding
15046 * if variable is cost neutral and only upper bounded non-positively or negative largest bound to make
15049 if( ( SCIPisPositive(scip, obj) || SCIPisPositive(scip, SCIPvarGetUbGlobal(var)) || !SCIPisInfinity(scip, -SCIPvarGetLbGlobal(var)) )
15056 /* if x_v >= redlb[v], we can always round x_v down to x_v == redlb[v] without violating any constraint
15059 SCIPdebugMsg(scip, "variable <%s> only locked down in linear constraints: dual presolve <%s>[%.15g,%.15g] <= %.15g\n",
15075 * if variable is cost neutral and only lower bounded non-negatively or positive smallest bound to make
15078 if( ( SCIPisPositive(scip, -obj) || SCIPisPositive(scip, -SCIPvarGetLbGlobal(var)) || !SCIPisInfinity(scip, SCIPvarGetUbGlobal(var)) )
15085 /* if x_v <= redub[v], we can always round x_v up to x_v == redub[v] without violating any constraint
15088 SCIPdebugMsg(scip, "variable <%s> only locked up in linear constraints: dual presolve <%s>[%.15g,%.15g] >= %.15g\n",
15116 /* we can only conclude implicit integrality if the variable appears in no other constraint */
15126 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
15132 SCIPdebugMsg(scip, "dual presolve: converting continuous variable <%s>[%g,%g] to implicit integer\n",
15178 SCIPdebugMsg(scip, "Enforcement method of linear constraints for %s solution\n", sol == NULL ? "LP" : "relaxation");
15217 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
15242 /** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
15292 /** deinitialization method of constraint handler (called before transformed problem is freed) */
15335 return !(SCIPisEQ(scip, lhs, rhs) || SCIPisInfinity(scip, -lhs) || SCIPisInfinity(scip, rhs) );
15352 * iterates through all linear constraints and stores relevant statistics in the linear constraint statistics \p linconsstats.
15354 * @note only constraints are iterated that belong to the linear constraint handler. If the problem has been presolved already,
15355 * constraints that were upgraded to more special types such as, e.g., varbound constraints, will not be shown correctly anymore.
15356 * Similarly, if specialized constraints were created through the API, these are currently not present.
15377 }
15442 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_SINGLETON, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15462 /* precedence constraints have the same coefficient, but with opposite sign for the same variable type */
15481 /* is constraint of type SCIP_CONSTYPE_{SETPARTITION, SETPACKING, SETCOVERING, CARDINALITY, INVKNAPSACK}? */
15493 /* scan through variables and detect if all variables are binary and have a coefficient +/-1 */
15569 /* if both sides are infinite at this point, no further classification is necessary for this constraint */
15620 SCIPlinConsStatsIncTypeCount(linconsstats, matched ? SCIP_LINCONSTYPE_BINPACKING : SCIP_LINCONSTYPE_KNAPSACK, 1);
15623 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15655 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15680 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_MIXEDBINARY, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15689 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_GENERAL, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15696 /** presolving deinitialization method of constraint handler (called after presolving has been finished) */
15717 ngoodconss = 0;
15742 SCIPstatisticMessage("below threshold: %d / %d ratio= %g\n", ngoodconss, nallconss, (100.0 * ngoodconss / nallconss));
15758 /* this is no problem reduction, because the upgraded constraint was added to the problem before, and the
15759 * (redundant) linear constraint was only kept in order to support presolving the the linear constraint handler
15765 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
15790 /** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
15830 "(restart) converted %d cuts from the global cut pool into linear constraints\n", ncutsadded);
15831 /* an extra blank line should be printed separately since the buffer message handler only handles up to one
15949 SCIP_CALL( consdataCreate(scip, &targetdata, sourcedata->nvars, sourcedata->vars, sourcedata->vals, sourcedata->lhs, sourcedata->rhs) );
15952 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
15962 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
15963 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
15966 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
15972 /** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
16025 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
16048 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, NULL, separatecards, conshdlrdata->separateall, &ncuts, &cutoff) );
16091 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
16106 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, sol, TRUE, conshdlrdata->separateall, &ncuts, &cutoff) );
16182 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
16234 SCIPinfoMessage(scip, NULL, "activity invalid due to positive and negative infinity contributions\n");
16236 SCIPinfoMessage(scip, NULL, "violation: left hand side is violated by %.15g\n", consdata->lhs - activity);
16238 SCIPinfoMessage(scip, NULL, "violation: right hand side is violated by %.15g\n", activity - consdata->rhs);
16269 /* check, if we want to tighten variable's bounds (in probing, we always want to tighten the bounds) */
16283 && ((tightenboundsfreq == 0 && depth == 0) || (tightenboundsfreq >= 1 && (depth % tightenboundsfreq == 0)));
16291 && ((rangedrowfreq == 0 && depth == 0) || (rangedrowfreq >= 1 && (depth % rangedrowfreq == 0)));
16419 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16432 /* apply presolving as long as possible on the single constraint (however, abort after a certain number of rounds
16475 SCIP_CALL( tightenBounds(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars, &cutoff, nchgbds) );
16485 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
16487 if( SCIPisFeasGT(scip, minactivity, consdata->rhs) || SCIPisFeasLT(scip, maxactivity, consdata->lhs) )
16489 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16494 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
16496 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16505 else if( !SCIPisInfinity(scip, -consdata->lhs) && SCIPisGE(scip, minactivity, consdata->lhs) )
16507 SCIPdebugMsg(scip, "linear constraint <%s> left hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16515 SCIPdebugMsg(scip, "linear constraint <%s> right hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16544 /* reduce big-M coefficients, that make the constraint redundant if the variable is on a bound */
16587 SCIP_CALL( extractCliques(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars,
16615 SCIP_CALL( convertEquality(scip, cons, conshdlrdata, &cutoff, nfixedvars, naggrvars, ndelconss) );
16619 if( !cutoff && SCIPconsIsActive(cons) && conshdlrdata->dualpresolving && SCIPallowStrongDualReds(scip) )
16621 SCIP_CALL( dualPresolve(scip, conshdlrdata, cons, &cutoff, nfixedvars, naggrvars, ndelconss) );
16634 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16641 (conshdlrdata->singletonstuffing || conshdlrdata->singlevarstuffing) && SCIPallowStrongDualReds(scip) )
16673 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && (conshdlrdata->presolusehashing || conshdlrdata->presolpairwise) && !SCIPisStopped(scip) )
16679 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
16680 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &firstchange, &cutoff,
16723 npaircomparisons += (SCIPconsGetData(conss[c])->changed) ? c : (c - firstchange); /*lint !e776*/
16726 SCIP_CALL( preprocessConstraintPairs(scip, usefulconss, firstchange, c, conshdlrdata->maxaggrnormscale,
16732 if( ((*ndelconss - oldndelconss) + (*nchgsides - oldnchgsides)/2.0 + (*nchgcoefs - oldnchgcoefs)/10.0) / ((SCIP_Real) npaircomparisons) < conshdlrdata->mingainpernmincomp )
16745 /* before upgrading, check whether we can apply some additional dual presolving, because a variable only appears
16749 && *nfixedvars == oldnfixedvars && *naggrvars == oldnaggrvars && *nchgbds == oldnchgbds && *ndelconss == oldndelconss
16760 * only upgrade constraints, if no reductions were found in this round (otherwise, the linear constraint handler
16761 * may find additional reductions before giving control away to other (less intelligent?) constraint handlers)
16763 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) )
16776 /* only upgrade completely presolved constraints, that changed since the last upgrading call */
16803 * delete upgraded equalities, if we don't need it anymore for aggregation and redundancy checking
16819 else if( *nfixedvars > oldnfixedvars || *naggrvars > oldnaggrvars || *nchgbds > oldnchgbds || *ndelconss > oldndelconss
16837 SCIP_CALL( resolvePropagation(scip, cons, infervar, intToInferInfo(inferinfo), boundtype, bdchgidx, result) );
16864 {
16943 SCIP_CALL( SCIPcopyConsLinear(scip, cons, sourcescip, consname, nvars, sourcevars, sourcecoefs,
16944 SCIPgetLhsLinear(sourcescip, sourcecons), SCIPgetRhsLinear(sourcescip, sourcecons), varmap, consmap,
16945 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
16955 * There should only be one operator, except for ranged rows for which exactly two operators '<=' must be present.
17012 /* assign the found operator to the first or second pointer and check for violations of the linear constraint grammar */
17093 /* find operators in the line first, all other remaining parsing depends on occurence of the operators '<=', '>=', '==',
17106 /* assign the strings for parsing the left hand side, right hand side, and the linear variable sum */
17147 SCIPerrorMessage("Parsing has wrong operator character '%c', should be one of <=>[", *firstop);
17183 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17192 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17193 assert(!*success || requsize <= coefssize); /* if successful, then should have had enough space now */
17203 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17236 /** constraint method of constraint handler which returns the number of variables (if possible) */
17318 /* bound change can turn the constraint infeasible or redundant only if it was a tightening */
17323 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17336 if( (val > 0.0 ? !SCIPisInfinity(scip, consdata->rhs) : !SCIPisInfinity(scip, -consdata->lhs)) )
17340 if( (val > 0.0 ? !SCIPisInfinity(scip, -consdata->lhs) : !SCIPisInfinity(scip, consdata->rhs)) )
17379 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17388 /* there is only one lock left: we may multi-aggregate the variable as slack of an equation */
17419 /* if the variable is binary but not fixed it had to become binary due to this global change */
17420 if( SCIPvarIsBinary(var) && SCIPisGT(scip, SCIPvarGetUbGlobal(var), SCIPvarGetLbGlobal(var)) )
17432 /* for presolving it only matters if a variable type changed from continuous to some kind of integer */
17433 consdata->presolved = (consdata->presolved && SCIPeventGetOldtype(event) < SCIP_VARTYPE_CONTINUOUS);
17435 /* the ordering is preserved if the type changes from something different to binary to binary but SCIPvarIsBinary() is true */
17436 consdata->indexsorted = (consdata->indexsorted && SCIPeventGetNewtype(event) == SCIP_VARTYPE_BINARY && SCIPvarIsBinary(var));
17476 /* create array of variables and coefficients: sum_{i \in P} x_i - sum_{i \in N} x_i >= 1 - |N| */
17508 (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "cf%" SCIP_LONGINT_FORMAT, SCIPgetNConflictConssApplied(scip));
17509 SCIP_CALL( SCIPcreateConsLinear(scip, &cons, consname, nbdchginfos, vars, vals, lhs, SCIPinfinity(scip),
17512 /* try to automatically convert a linear constraint into a more specific and more specialized constraint */
17556 * (unless the expression is a variable or a constant or a constant*variable, but these are simplified away in cons_nonlinear)
17567 lhs = SCIPisInfinity(scip, -SCIPgetLhsNonlinear(cons)) ? -SCIPinfinity(scip) : (SCIPgetLhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17568 rhs = SCIPisInfinity(scip, SCIPgetRhsNonlinear(cons)) ? SCIPinfinity(scip) : (SCIPgetRhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17584 SCIP_CALL( addCoef(scip, upgdconss[0], SCIPgetVarExprVar(SCIPexprGetChildren(expr)[i]), SCIPgetCoefsExprSum(expr)[i]) );
17587 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original nonlinear constraint */
17619 SCIP_CALL( SCIPincludeConflicthdlrBasic(scip, &conflicthdlr, CONFLICTHDLR_NAME, CONFLICTHDLR_DESC, CONFLICTHDLR_PRIORITY,
17649 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolLinear, CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
17651 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropLinear, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
17654 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpLinear, consSepasolLinear, CONSHDLR_SEPAFREQ,
17662 SCIP_CALL( SCIPincludeConsUpgradeNonlinear(scip, upgradeConsNonlinear, NONLINCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17668 "multiplier on propagation frequency, how often the bounds are tightened (-1: never, 0: only at root)",
17669 &conshdlrdata->tightenboundsfreq, TRUE, DEFAULT_TIGHTENBOUNDSFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17704 "maximal allowed relative gain in maximum norm for constraint aggregation (0.0: disable constraint aggregation)",
17705 &conshdlrdata->maxaggrnormscale, TRUE, DEFAULT_MAXAGGRNORMSCALE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17708 "maximum activity delta to run easy propagation on linear constraint (faster, but numerically less stable)",
17709 &conshdlrdata->maxeasyactivitydelta, TRUE, DEFAULT_MAXEASYACTIVITYDELTA, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17712 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cardinality cuts",
17716 "should all constraints be subject to cardinality cut generation instead of only the ones with non-zero dual value?",
17736 "should single variable stuffing be performed, which tries to fulfill constraints using the cheapest variable?",
17739 "constraints/" CONSHDLR_NAME "/sortvars", "apply binaries sorting in decr. order of coeff abs value?",
17743 "should the violation for a constraint with side 0.0 be checked relative to 1.0 (FALSE) or to the maximum absolute value in the activity (TRUE)?",
17747 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
17751 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
17759 "should presolving and propagation try to improve bounds, detect infeasibility, and extract sub-constraints from ranged rows and equations?",
17772 &conshdlrdata->rangedrowfreq, TRUE, DEFAULT_RANGEDROWFREQ, 1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17780 &conshdlrdata->maxmultaggrquot, TRUE, DEFAULT_MAXMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17784 &conshdlrdata->maxdualmultaggrquot, TRUE, DEFAULT_MAXDUALMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17832 (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "constraints/linear/upgrade/%s", conshdlrname);
17833 (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "enable linear upgrading for constraint handler <%s>", conshdlrname);
17844 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17873 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
17875 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
17894 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
17910 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
17918 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
17932 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17942 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17958 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17968 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
18011 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18021 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
18028 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
18029 * method SCIPcreateConsLinear(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
18033 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
18062 SCIP_Real* sourcecoefs, /**< coefficient array of the linear constraint, or NULL if all coefficients are one */
18065 SCIP_HASHMAP* varmap, /**< a SCIP_HASHMAP mapping variables of the source SCIP to corresponding
18067 SCIP_HASHMAP* consmap, /**< a hashmap to store the mapping of source constraints to the corresponding
18077 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup? */
18078 SCIP_Bool stickingatnode, /**< should the constraint always be kept at the node where it was added, even
18103 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18124 /* transform source variable to active variables of the source SCIP since only these can be mapped to variables of
18129 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, nvars, &constant, &requiredsize, TRUE) );
18136 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, requiredsize, &constant, &requiredsize, TRUE) );
18157 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18160 SCIP_CALL( SCIPgetVarCopy(sourcescip, scip, var, &vars[v], varmap, consmap, global, &success) );
18174 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18204 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
18226 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
18234 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
18255 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18265 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18281 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18291 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18341 /** changes coefficient of variable in linear constraint; deletes the variable if coefficient is zero; adds variable if
18344 * @note This method may only be called during problem creation stage for an original constraint and variable.
18346 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18370 if( SCIPgetStage(scip) > SCIP_STAGE_PROBLEM || !SCIPconsIsOriginal(cons) || !SCIPvarIsOriginal(var) )
18372 SCIPerrorMessage("method may only be called during problem creation stage for original constraints and variables\n");
18390 /* decrease i by one since otherwise we would skip the coefficient which has been switched to position i */
18412 * @note This method may only be called during problem creation stage for an original constraint and variable.
18414 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18435 )
18542 /** gets the array of variables in the linear constraint; the user must not modify this array! */
18566 /** gets the array of coefficient values in the linear constraint; the user must not modify this array! */
18592 * @note if the solution contains values at infinity, this method will return SCIP_INVALID in case the activity
18706 /** returns the linear relaxation of the given linear constraint; may return NULL if no LP row was yet created;
18732 /** tries to automatically convert a linear constraint into a more specific and more specialized constraint */
18775 /* we cannot upgrade a modifiable linear constraint, since we don't know what additional coefficients to expect */
18797 /* check, if the constraint was already upgraded and will be deleted anyway after preprocessing */
18806 SCIPerrorMessage("cannot upgrade linear constraint that is already stored as row in the LP\n");
18818 /* normalizeCons() can only detect infeasibility when scaling with the gcd. in that case, the scaling was
18823 * TODO: this needs to be fixed on master by changing the API and passing a pointer to whether the constraint is
18941 SCIPdebugMsg(scip, " +bin=%d -bin=%d +int=%d -int=%d +impl=%d -impl=%d +cont=%d -cont=%d +1=%d -1=%d +I=%d -I=%d +F=%d -F=%d possum=%.15g negsum=%.15g integral=%u\n",
18953 nposbin, nnegbin, nposint, nnegint, nposimpl, nnegimpl, nposimplbin, nnegimplbin, nposcont, nnegcont,
18964 SCIPdebugMsg(scip, " -> upgraded to constraint type <%s>\n", SCIPconshdlrGetName(SCIPconsGetHdlr(*upgdcons)));
18976 SCIP_Bool* infeasible /**< pointer to return whether the problem was detected to be infeasible */
18991 nconss = onlychecked ? SCIPconshdlrGetNCheckConss(conshdlr) : SCIPconshdlrGetNActiveConss(conshdlr);
void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4212
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONS *cons, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1422
SCIP_Real SCIPgetActivityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18614
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:99
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1693
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:572
Definition: type_result.h:42
Definition: type_result.h:46
Definition: struct_cons.h:289
static SCIP_RETCODE tightenVarBounds(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:6835
static void consdataCalcMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1462
static SCIP_DECL_CONSDEACTIVE(consDeactiveLinear)
Definition: cons_linear.c:15877
Definition: type_cons.h:86
Definition: struct_var.h:108
SCIP_RETCODE SCIPincludeConshdlrLinear(SCIP *scip)
Definition: cons_linear.c:17622
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:871
static SCIP_RETCODE consCatchEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:735
static SCIP_RETCODE chgCoefPos(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Real newval)
Definition: cons_linear.c:4037
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5203
static SCIP_Real consdataGetFeasibility(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3179
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2128
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:780
public methods for SCIP parameter handling
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3296
SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:17693
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:595
SCIP_RETCODE SCIPincludeConsUpgradeNonlinear(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nlconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_nonlinear.c:11080
Definition: type_var.h:49
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:18054
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:793
Definition: struct_scip.h:68
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1992
static void calculateMinvalAndMaxval(SCIP *scip, SCIP_Real side, SCIP_Real val, SCIP_Real minresactivity, SCIP_Real maxresactivity, SCIP_Real *minval, SCIP_Real *maxval)
Definition: cons_linear.c:10678
static void consdataUpdateSignatures(SCIP_CONSDATA *consdata, int pos)
Definition: cons_linear.c:3200
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2497
static void consdataUpdateActivities(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_Real val, SCIP_BOUNDTYPE boundtype, SCIP_Bool global, SCIP_Bool checkreliability)
Definition: cons_linear.c:1629
public methods for memory management
Definition: type_conflict.h:59
static void consdataRecomputeMaxActivityDelta(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1567
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:354
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:886
static SCIP_Bool checkEqualObjective(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real *scale, SCIP_Real *offset)
Definition: cons_linear.c:10275
static SCIP_RETCODE fixVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars)
Definition: cons_linear.c:7906
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1143
static SCIP_RETCODE convertUnaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *ndelconss)
Definition: cons_linear.c:9566
static SCIP_RETCODE tightenVarLb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5445
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:825
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:18074
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1613
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3354
SCIP_RETCODE SCIPcleanupConssLinear(SCIP *scip, SCIP_Bool onlychecked, SCIP_Bool *infeasible)
Definition: cons_linear.c:18992
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:404
public methods for conflict handler plugins and conflict analysis
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:317
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1758
static SCIP_RETCODE consDropAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:840
void SCIPlinConsStatsIncTypeCount(SCIP_LINCONSSTATS *linconsstats, SCIP_LINCONSTYPE linconstype, int increment)
Definition: cons.c:7984
Definition: type_result.h:58
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1701
Definition: type_cons.h:82
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1317
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1221
static void consdataUpdateActivitiesGlbUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2091
SCIP_Bool SCIPisUpdateUnreliable(SCIP *scip, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: scip_numerics.c:1328
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:497
Definition: type_set.h:46
SCIP_RETCODE SCIPsetConshdlrDeactive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDEACTIVE((*consdeactive)))
Definition: scip_cons.c:687
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:104
static SCIP_Real consdataGetMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2320
static SCIP_RETCODE linconsupgradeCreate(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority)
Definition: cons_linear.c:525
void SCIPsortDownRealPtr(SCIP_Real *realarray, void **ptrarray, int len)
Definition: struct_var.h:207
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1439
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1470
static void consdataRecomputeMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1330
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:869
static SCIP_RETCODE normalizeCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4268
SCIP_RETCODE SCIPconvertCutsToConss(SCIP *scip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, int *ncutsadded)
Definition: scip_copy.c:2068
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:832
static void consdataGetGlbActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *glbminactivity, SCIP_Real *glbmaxactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2897
Definition: type_cons.h:88
Definition: type_message.h:54
static void permSortConsdata(SCIP_CONSDATA *consdata, int *perm, int nvars)
Definition: cons_linear.c:3354
Definition: cons_linear.c:370
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4554
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:4645
static SCIP_DECL_HASHGETKEY(hashGetKeyLinearcons)
Definition: cons_linear.c:13120
static void consdataInvalidateActivities(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1231
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:324
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:175
static void consdataGetGlbActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2959
static SCIP_Bool conshdlrdataHasUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_DECL_LINCONSUPGD((*linconsupgd)), const char *conshdlrname)
Definition: cons_linear.c:606
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1988
SCIP_Real SCIPvarGetNegationConstant(SCIP_VAR *var)
Definition: var.c:17738
SCIP_ROW * SCIPgetRowLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18728
SCIP_RETCODE SCIPaddConflictUb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:419
Definition: type_var.h:62
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_SOL *sol, SCIP_Bool separatecards, SCIP_Bool separateall, int *ncuts, SCIP_Bool *cutoff)
Definition: cons_linear.c:7668
static SCIP_Bool consdataIsResidualIntegral(SCIP *scip, SCIP_CONSDATA *consdata, int pos, SCIP_Real val)
Definition: cons_linear.c:10652
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, SCIP_Real maxaggrnormscale, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides, int *nchgcoefs)
Definition: cons_linear.c:13509
Definition: cons_linear.c:368
Definition: type_expr.h:62
Definition: type_cons.h:80
void SCIPlinConsStatsReset(SCIP_LINCONSSTATS *linconsstats)
Definition: cons.c:7952
public methods for problem variables
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:323
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5320
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:229
SCIP_Real SCIPselectSimpleValue(SCIP_Real lb, SCIP_Real ub, SCIP_Longint maxdnom)
Definition: misc.c:9735
Definition: type_result.h:49
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:132
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:445
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, int *firstchange, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides)
Definition: cons_linear.c:13307
static SCIP_RETCODE aggregateConstraints(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1, int *commonidx0, int *commonidx1, int *diffidx0minus1, int *diffidx1minus0, int nvarscommon, int commonidxweight, int diffidx0minus1weight, int diffidx1minus0weight, SCIP_Real maxaggrnormscale, int *nchgcoefs, SCIP_Bool *aggregated, SCIP_Bool *infeasible)
Definition: cons_linear.c:12800
defines macros for basic operations in double-double arithmetic giving roughly twice the precision of...
static SCIP_RETCODE rangedRowPropagation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds, int *naddconss)
Definition: cons_linear.c:5850
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:4613
SCIP_RETCODE SCIPdelCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_linear.c:18435
static SCIP_RETCODE consDropEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:774
public methods for SCIP variables
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:756
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:618
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:120
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
static SCIP_Real consdataGetMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2336
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1480
SCIP_Real SCIPgetRhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18475
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:802
static SCIP_RETCODE tightenSides(SCIP *scip, SCIP_CONS *cons, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:9010
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18206
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:208
Definition: type_cons.h:85
static SCIP_RETCODE addConflictFixedVars(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos)
Definition: cons_linear.c:5114
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:943
SCIP_RETCODE SCIPparseVarsLinearsum(SCIP *scip, const char *str, SCIP_VAR **vars, SCIP_Real *vals, int *nvars, int varssize, int *requiredsize, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:704
SCIP_RETCODE SCIPaddConflictLb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:352
public methods for numerical tolerances
Definition: struct_conflict.h:49
static SCIP_RETCODE rangedRowSimplify(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:11448
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2246
public functions to work with algebraic expressions
public methods for querying solving statistics
Definition: struct_sol.h:73
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4259
Definition: type_cons.h:73
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:301
public methods for the branch-and-bound tree
Definition: type_cons.h:75
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:9305
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1128
static void linconsupgradeFree(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade)
Definition: cons_linear.c:546
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1242
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8176
static SCIP_RETCODE analyzeConflict(SCIP *scip, SCIP_CONS *cons, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:5323
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool checkrelmaxabs, SCIP_Bool *violated)
Definition: cons_linear.c:7285
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6921
SCIP_RETCODE SCIPsetConshdlrInitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITSOL((*consinitsol)))
Definition: scip_cons.c:438
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10470
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:105
SCIP_RETCODE SCIPmultiaggregateVar(SCIP *scip, SCIP_VAR *var, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: scip_var.c:8535
Definition: struct_misc.h:137
public methods for managing constraints
Constraint handler for knapsack constraints of the form , x binary and .
static SCIP_RETCODE updateCutoffbound(SCIP *scip, SCIP_CONS *cons, SCIP_Real primalbound)
Definition: cons_linear.c:10424
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:341
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:11560
static SCIP_RETCODE tightenVarUb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newub, SCIP_Real oldub, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5375
static void getMaxActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *maxactivity, SCIP_Bool *isrelax, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2517
Definition: type_retcode.h:45
SCIP_Bool SCIPisSumRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1247
Definition: type_result.h:44
Definition: struct_cons.h:46
SCIP_Real SCIPgetDualsolLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18670
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:458
SCIP_RETCODE SCIPaddConsLocal(SCIP *scip, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition: scip_prob.c:3393
SCIP_Bool SCIPdoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8598
Definition: struct_cons.h:126
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3474
public methods for event handler plugins and event handlers
SCIP_RETCODE SCIPinferVarFixCons(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5432
SCIP_RETCODE SCIPupgradeConsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_CONS **upgdcons)
Definition: cons_linear.c:18752
SCIP_RETCODE SCIPreleaseNlRow(SCIP *scip, SCIP_NLROW **nlrow)
Definition: scip_nlp.c:1025
Definition: type_lp.h:56
SCIP_RETCODE SCIPgetProbvarSum(SCIP *scip, SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: scip_var.c:1794
Definition: type_cons.h:81
static void consdataCalcMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1438
SCIP_RETCODE SCIPaddVarImplication(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6780
static SCIP_RETCODE chgRhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:3623
Definition: type_result.h:45
static SCIP_RETCODE conshdlrdataEnsureLinconsupgradesSize(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, int num)
Definition: cons_linear.c:465
static void consdataUpdateDelCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2164
static SCIP_RETCODE consdataSort(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3430
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4437
SCIP_RETCODE SCIPsetConsChecked(SCIP *scip, SCIP_CONS *cons, SCIP_Bool check)
Definition: scip_cons.c:1292
static void consdataUpdateAddCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2114
static int inferInfoGetProprule(INFERINFO inferinfo)
Definition: cons_linear.c:413
static SCIP_RETCODE consdataTightenCoefs(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:9132
static SCIP_RETCODE aggregateVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars)
Definition: cons_linear.c:11237
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:366
Definition: type_var.h:51
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4202
SCIP_EXPR * SCIPgetExprNonlinear(SCIP_CONS *cons)
Definition: cons_nonlinear.c:12268
Definition: type_var.h:53
static SCIP_RETCODE addConflictReasonVars(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5179
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1960
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_linear.c:3916
static SCIP_RETCODE resolvePropagation(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, INFERINFO inferinfo, SCIP_BOUNDTYPE boundtype, SCIP_BDCHGIDX *bdchgidx, SCIP_RESULT *result)
Definition: cons_linear.c:5230
SCIP_RETCODE SCIPgetIntParam(SCIP *scip, const char *name, int *value)
Definition: scip_param.c:269
static SCIP_RETCODE checkPartialObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10353
static SCIP_RETCODE conshdlrdataIncludeUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_LINCONSUPGRADE *linconsupgrade)
Definition: cons_linear.c:636
Definition: type_set.h:52
Definition: type_retcode.h:42
public methods for problem copies
static void consdataGetActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Real *maxactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2616
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:819
static SCIP_RETCODE tightenVarBoundsEasy(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5515
SCIP_RETCODE SCIPgetProbvarLinearSum(SCIP *scip, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize, SCIP_Bool mergemultiples)
Definition: scip_var.c:1738
SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:17705
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2627
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:285
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:806
static void getMinActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Bool *isrelax, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2416
Definition: type_result.h:51
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:703
Definition: type_cons.h:72
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:225
static SCIP_Bool isFiniteNonnegativeIntegral(SCIP *scip, SCIP_Real x)
Definition: cons_linear.c:15359
static SCIP_RETCODE scaleCons(SCIP *scip, SCIP_CONS *cons, SCIP_Real scalar)
Definition: cons_linear.c:4116
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:250
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:641
static SCIP_DECL_HASHKEYVAL(hashKeyValLinearcons)
Definition: cons_linear.c:13191
public methods for constraint handler plugins and constraints
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool tightenbounds, SCIP_Bool rangedrowpropagation, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7758
SCIP_Real SCIPgetDualfarkasLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18698
static void consdataUpdateChgCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldval, SCIP_Real newval, SCIP_Bool checkreliability)
Definition: cons_linear.c:2221
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:4513
Definition: struct_expr.h:104
static SCIP_RETCODE consdataPrint(SCIP *scip, SCIP_CONSDATA *consdata, FILE *file)
Definition: cons_linear.c:1120
void SCIPhashtablePrintStatistics(SCIP_HASHTABLE *hashtable, SCIP_MESSAGEHDLR *messagehdlr)
Definition: misc.c:2754
static SCIP_RETCODE retrieveParallelConstraints(SCIP_HASHTABLE *hashtable, SCIP_CONS **querycons, SCIP_CONS **parallelconss, int *nparallelconss)
Definition: cons_linear.c:13246
public data structures and miscellaneous methods
static SCIP_RETCODE chgLhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:3497
SCIP_Bool SCIPisSumGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:718
SCIP_RETCODE SCIPchgRowRhs(SCIP *scip, SCIP_ROW *row, SCIP_Real rhs)
Definition: scip_lp.c:1607
Definition: type_var.h:64
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_linear.c:4209
static void consdataRecomputeGlbMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1411
static SCIP_Real consdataGetActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3111
constraint handler for nonlinear constraints specified by algebraic expressions
static void conshdlrdataFree(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata)
Definition: cons_linear.c:584
Definition: type_var.h:63
Definition: type_var.h:55
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2482
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:4601
Definition: struct_lp.h:201
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_linear.c:7569
methods for debugging
public methods for LP management
SCIP_RETCODE SCIPhashtableSafeInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2529
static SCIP_RETCODE presolStuffing(SCIP *scip, SCIP_CONS *cons, SCIP_Bool singletonstuffing, SCIP_Bool singlevarstuffing, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds)
Definition: cons_linear.c:14113
SCIP_RETCODE SCIPchgRowLhs(SCIP *scip, SCIP_ROW *row, SCIP_Real lhs)
Definition: scip_lp.c:1583
public methods for cuts and aggregation rows
static void consdataUpdateActivitiesGlbLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2068
Definition: type_cons.h:77
Definition: type_set.h:50
static SCIP_Real consdataComputePseudoActivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1277
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:400
SCIP_Real SCIPbdchginfoGetNewbound(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:18493
Definition: type_cons.h:87
static void consdataCalcActivities(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2354
SCIP_RETCODE SCIPcreateVar(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:114
SCIP_RETCODE SCIPcreateNlRow(SCIP *scip, SCIP_NLROW **nlrow, const char *name, SCIP_Real constant, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:921
Definition: type_var.h:50
Definition: type_var.h:54
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8276
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4351
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:779
Constraint handler for linear constraints in their most general form, .
SCIP_Longint SCIPgetNConflictConssApplied(SCIP *scip)
Definition: scip_solvingstats.c:1153
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2558
SCIP_RETCODE SCIPchgRhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:18520
SCIP_Bool SCIPisSumRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1273
Definition: type_set.h:51
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2144
static void findOperators(const char *str, char **firstoperator, char **secondoperator, SCIP_Bool *success)
Definition: cons_linear.c:16977
SCIP_RETCODE SCIPvarGetOrigvarSum(SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:12764
SCIP_Real SCIPgetFeasibilityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18642
SCIP_RETCODE SCIPinferVarLbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5501
SCIP_RETCODE SCIPclassifyConstraintTypesLinear(SCIP *scip, SCIP_LINCONSSTATS *linconsstats)
Definition: cons_linear.c:15377
int SCIPconshdlrGetNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4631
public methods for the LP relaxation, rows and columns
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17813
static void consdataGetReliableResidualActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *cancelvar, SCIP_Real *resactivity, SCIP_Bool isminresact, SCIP_Bool useglobalbounds)
Definition: cons_linear.c:2665
static void consdataRecomputeMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1357
SCIP_RETCODE SCIPwriteVarsLinearsum(SCIP *scip, FILE *file, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Bool type)
Definition: scip_var.c:343
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3696
static SCIP_DECL_CONSENFORELAX(consEnforelaxLinear)
Definition: cons_linear.c:16152
Definition: type_set.h:45
methods for sorting joint arrays of various types
SCIP_Bool SCIPconsIsLockedType(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8483
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_linear.c:17865
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:510
static SCIP_RETCODE conshdlrdataCreate(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:560
public methods for branching rule plugins and branching
static void consdataCalcSignatures(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3225
Definition: type_cons.h:76
Definition: struct_misc.h:89
public methods for managing events
static SCIP_RETCODE analyzeConflictRangedRow(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5792
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:668
general public methods
Definition: type_cons.h:83
void SCIPsort(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:5450
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:484
Definition: type_cons.h:84
static void consdataGetActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2746
static SCIP_RETCODE fullDualPresolve(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:14704
public methods for solutions
SCIP_RETCODE SCIPgetVarCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR *sourcevar, SCIP_VAR **targetvar, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *success)
Definition: scip_copy.c:711
SCIP_VAR ** SCIPgetVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18562
SCIP_RETCODE SCIPinferVarUbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5615
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:390
SCIP_CONS ** SCIPconshdlrGetCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4574
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1267
static void consdataCheckNonbinvar(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1491
static SCIP_RETCODE consCatchAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:808
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:414
Definition: type_lp.h:57
public methods for conflict analysis handlers
static SCIP_RETCODE extractCliques(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, int *nfixedvars, int *nchgbds, SCIP_Bool *cutoff)
Definition: cons_linear.c:8041
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:660
public methods for the probing mode
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1119
Definition: type_cons.h:78
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyLinear)
Definition: cons_linear.c:15247
SCIP_RETCODE SCIPincludeConflicthdlrBasic(SCIP *scip, SCIP_CONFLICTHDLR **conflicthdlrptr, const char *name, const char *desc, int priority, SCIP_DECL_CONFLICTEXEC((*conflictexec)), SCIP_CONFLICTHDLRDATA *conflicthdlrdata)
Definition: scip_conflict.c:108
const char * SCIPconflicthdlrGetName(SCIP_CONFLICTHDLR *conflicthdlr)
Definition: conflict.c:772
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:534
public methods for message output
Definition: type_result.h:52
Definition: type_var.h:97
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:857
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:618
static SCIP_RETCODE convertBinaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9622
SCIP_RETCODE SCIPaggregateVars(SCIP *scip, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *redundant, SCIP_Bool *aggregated)
Definition: scip_var.c:8401
static SCIP_RETCODE tightenBounds(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7107
SCIP_RETCODE SCIPaddVarsToRow(SCIP *scip, SCIP_ROW *row, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_lp.c:1727
static void getNewSidesAfterAggregation(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *slackvar, SCIP_Real slackcoef, SCIP_Real *newlhs, SCIP_Real *newrhs)
Definition: cons_linear.c:9680
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:848
SCIP_Bool SCIPisScalingIntegral(SCIP *scip, SCIP_Real val, SCIP_Real scalar)
Definition: scip_numerics.c:606
Definition: struct_nlp.h:64
static SCIP_RETCODE convertEquality(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10597
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4672
int SCIPconshdlrGetNCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4617
public methods for message handling
static SCIP_RETCODE consPrintConsSol(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, FILE *file)
Definition: cons_linear.c:1159
static unsigned int getParallelConsKey(SCIP_CONS *cons)
Definition: cons_linear.c:13227
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2212
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:3751
static SCIP_DECL_CONFLICTEXEC(conflictExecLinear)
Definition: cons_linear.c:17473
Definition: type_retcode.h:54
SCIP_Real SCIPgetRowSolFeasibility(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2167
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num)
Definition: cons_linear.c:490
Definition: type_set.h:53
Definition: cons_linear.c:350
static SCIP_DECL_NONLINCONSUPGD(upgradeConsNonlinear)
Definition: cons_linear.c:17559
Definition: cons_linear.c:364
static void consdataRecomputeGlbMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1384
SCIP_Real * SCIPgetValsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18586
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:471
static SCIP_RETCODE convertLongEquality(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9734
SCIP_RETCODE SCIPchgLhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:18499
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:111
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:881
SCIP_Bool SCIPconsIsMarkedPropagate(SCIP_CONS *cons)
Definition: cons.c:8299
Definition: type_cons.h:74
static SCIP_Bool isRangedRow(SCIP *scip, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:15346
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:701
SCIP_RETCODE SCIPsetConshdlrActive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSACTIVE((*consactive)))
Definition: scip_cons.c:664
SCIP_RETCODE SCIPaddConflict(SCIP *scip, SCIP_NODE *node, SCIP_CONS *cons, SCIP_NODE *validnode, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_prob.c:3228
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_linear.c:15171
Definition: type_retcode.h:52
static SCIP_DECL_CONSGETNVARS(consGetNVarsLinear)
Definition: cons_linear.c:17257
Definition: objbenders.h:43
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:462
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:230
public methods for global and local (sub)problems
Definition: type_var.h:52
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9032
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1361
SCIP_RETCODE SCIPaddObjoffset(SCIP *scip, SCIP_Real addval)
Definition: scip_prob.c:1268
int SCIPgetNVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18538
SCIP_Real SCIPgetLhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18451
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
static SCIP_RETCODE dualPresolve(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10723
static SCIP_RETCODE addConflictBounds(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:4932
SCIP_Longint SCIPcalcSmaComMul(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9284
Definition: cons_linear.c:366
Definition: type_result.h:48
Definition: struct_event.h:204
static void consdataUpdateActivitiesLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2018
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5788
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPchgCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18367
static void consdataUpdateActivitiesUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2043
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata)
Definition: cons_linear.c:1079
Definition: type_cons.h:79
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:275
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1217
memory allocation routines
Definition: type_var.h:71