cons_knapsack.c
Go to the documentation of this file.
27 * @brief Constraint handler for knapsack constraints of the form \f$a^T x \le b\f$, x binary and \f$a \ge 0\f$.
35 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
79 #define CONSHDLR_ENFOPRIORITY -600000 /**< priority of the constraint handler for constraint enforcing */
80 #define CONSHDLR_CHECKPRIORITY -600000 /**< priority of the constraint handler for checking feasibility */
81 #define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
82 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
83 #define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
85 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
86 #define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
87 #define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
88 #define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
101 #define LINCONSUPGD_PRIORITY +100000 /**< priority of the constraint handler for upgrading of linear constraints */
103 #define MAX_USECLIQUES_SIZE 1000 /**< maximal number of items in knapsack where clique information is used */
104 #define MAX_ZEROITEMS_SIZE 10000 /**< maximal number of items to store in the zero list in preprocessing */
106 #define KNAPSACKRELAX_MAXDELTA 0.1 /**< maximal allowed rounding distance for scaling in knapsack relaxation */
107 #define KNAPSACKRELAX_MAXDNOM 1000LL /**< maximal allowed denominator in knapsack rational relaxation */
108 #define KNAPSACKRELAX_MAXSCALE 1000.0 /**< maximal allowed scaling factor in knapsack rational relaxation */
110 #define DEFAULT_SEPACARDFREQ 1 /**< multiplier on separation frequency, how often knapsack cuts are separated */
111 #define DEFAULT_MAXROUNDS 5 /**< maximal number of separation rounds per node (-1: unlimited) */
112 #define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
114 #define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in the root node */
115 #define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
117 #define DEFAULT_DISAGGREGATION TRUE /**< should disaggregation of knapsack constraints be allowed in preprocessing? */
119 #define DEFAULT_NEGATEDCLIQUE TRUE /**< should negated clique information be used in solving process */
121 #define MAXABSVBCOEF 1e+5 /**< maximal absolute coefficient in variable bounds used for knapsack relaxation */
122 #define USESUPADDLIFT FALSE /**< should lifted minimal cover inequalities using superadditive up-lifting be separated in addition */
124 #define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
125 #define HASHSIZE_KNAPSACKCONS 500 /**< minimal size of hash table in linear constraint tables */
127 #define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
129 #define MINGAINPERNMINCOMPARISONS 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
132 #define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
135 #define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
138 #define DEFAULT_CLIQUEEXTRACTFACTOR 0.5 /**< lower clique size limit for greedy clique extraction algorithm (relative to largest clique) */
139 #define MAXCOVERSIZEITERLEWI 1000 /**< maximal size for which LEWI are iteratively separated by reducing the feasible set */
143 #define GUBSPLITGNC1GUBS FALSE /**< should GNC1 GUB conss without F vars be split into GOC1 and GR GUB conss? */
144 #define DEFAULT_CLQPARTUPDATEFAC 1.5 /**< factor on the growth of global cliques to decide when to update a previous
146 #define DEFAULT_UPDATECLIQUEPARTITIONS FALSE /**< should clique partition information be updated when old partition seems outdated? */
147 #define MAXNCLIQUEVARSCOMP 1000000 /**< limit on number of pairwise comparisons in clique partitioning algorithm */
149 #define DEFAULT_UPGDCARDINALITY FALSE /**< if TRUE then try to update knapsack constraints to cardinality constraints */
152 /* @todo maybe use event SCIP_EVENTTYPE_VARUNLOCKED to decide for another dual-presolving run on a constraint */
165 SCIP_Longint* longints1; /**< cleared memory array, all entries are set to zero in initpre, if you use this
167 SCIP_Longint* longints2; /**< cleared memory array, all entries are set to zero in initpre, if you use this
169 SCIP_Bool* bools1; /**< cleared memory array, all entries are set to zero in initpre, if you use this
171 SCIP_Bool* bools2; /**< cleared memory array, all entries are set to zero in initpre, if you use this
173 SCIP_Bool* bools3; /**< cleared memory array, all entries are set to zero in initpre, if you use this
175 SCIP_Bool* bools4; /**< cleared memory array, all entries are set to zero in initpre, if you use this
177 SCIP_Real* reals1; /**< cleared memory array, all entries are set to zero in consinit, if you use this
189 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
191 int sepacardfreq; /**< multiplier on separation frequency, how often knapsack cuts are separated */
195 int maxsepacutsroot; /**< maximal number of cuts separated per separation round in the root node */
196 SCIP_Bool disaggregation; /**< should disaggregation of knapsack constraints be allowed in preprocessing? */
197 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
199 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
200 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
203 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
206 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
209 SCIP_Bool updatecliquepartitions; /**< should clique partition information be updated when old partition seems outdated? */
210 SCIP_Real cliqueextractfactor;/**< lower clique size limit for greedy clique extraction algorithm (relative to largest clique) */
211 SCIP_Real clqpartupdatefac; /**< factor on the growth of global cliques to decide when to update a previous
214 SCIP_Bool upgdcardinality; /**< if TRUE then try to update knapsack constraints to cardinality constraints */
215 SCIP_Bool upgradedcard; /**< whether we have already upgraded knapsack constraints to cardinality constraints */
234 int ncliqueslastnegpart;/**< number of global cliques the last time a negated clique partition was computed */
235 int ncliqueslastpart; /**< number of global cliques the last time a clique partition was computed */
239 unsigned int presolvedtiming:5; /**< max level in which the knapsack constraint is already presolved */
244 unsigned int cliquesadded:1; /**< were the cliques of the knapsack already added to clique table? */
275 };
280 {
283 GUBCONSSTATUS_BELONGSTOSET_GF = 1, /** all GUB variables are in noncovervars F (and noncovervars R) */
285 GUBCONSSTATUS_BELONGSTOSET_GNC1 = 3, /** some GUB variables are in covervars C1, others in noncovervars R or F */
287 };
292 {
302 {
309 };
377 assert(consdata->nvars == 0 || (consdata->cliquepartition != NULL && consdata->negcliquepartition != NULL));
396 /* sort all items with same weight according to their variable index, used for hash value for fast pairwise comparison of all constraints */
406 /* sort all corresponding parts of arrays for which the weights are equal by using the variable index */
418 /* we need to make sure that our clique numbers of our normal clique will be in increasing order without gaps */
425 /* if the clique number in the normal clique at position pos is greater than the last found clique number the
436 /* we need to make sure that our clique numbers of our negated clique will be in increasing order without gaps */
443 /* if the clique number in the negated clique at position pos is greater than the last found clique number the
480 assert(consdata->nvars == 0 || (consdata->cliquepartition != NULL && consdata->negcliquepartition != NULL));
484 && SCIPgetNCliques(scip) >= (int)(conshdlrdata->clqpartupdatefac * consdata->ncliqueslastpart));
488 SCIP_CALL( SCIPcalcCliquePartition(scip, consdata->vars, consdata->nvars, consdata->cliquepartition, &consdata->ncliques) );
493 /* rerun eventually if number of global cliques increased considerably since last negated partition */
495 && SCIPgetNCliques(scip) >= (int)(conshdlrdata->clqpartupdatefac * consdata->ncliqueslastnegpart));
499 SCIP_CALL( SCIPcalcNegatedCliquePartition(scip, consdata->vars, consdata->nvars, consdata->negcliquepartition, &consdata->nnegcliques) );
597 assert(consdata->nvars <= consdata->varssize);
605 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->weights, consdata->varssize, newsize) );
608 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
609 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->cliquepartition, consdata->varssize, newsize) );
610 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->negcliquepartition, consdata->varssize, newsize) );
655 {
688 if( SCIPisConsCompressionEnabled(scip) && SCIPvarGetLbGlobal(vars[v]) > SCIPvarGetUbGlobal(vars[v]) - 0.5 )
744 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
750 (*consdata)->existmultaggr = (*consdata)->existmultaggr || (SCIPvarGetStatus(var) == SCIP_VARSTATUS_MULTAGGR);
755 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(*consdata)->cliquepartition, (*consdata)->nvars) );
756 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(*consdata)->negcliquepartition, (*consdata)->nvars) );
884 SCIP_CALL( SCIPaddVarToRow(scip, consdata->row, consdata->vars[i], (SCIP_Real)consdata->weights[i]) );
916 SCIPdebugMsg(scip, "adding relaxation of knapsack constraint <%s> (capacity %" SCIP_LONGINT_FORMAT "): ",
936 /* skip deactivated, redundant, or local linear constraints (the NLP does not allow for local rows at the moment) */
969 /** checks knapsack constraint for feasibility of given solution: returns TRUE iff constraint is feasible */
975 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
979 {
987 SCIPdebugMsg(scip, "checking knapsack constraint <%s> for feasibility of solution %p (lprows=%u)\n",
1001 /* increase age of constraint; age is reset to zero, if a violation was found only in case we are in
1073 * @note in case you provide the solitems or nonsolitems array you also have to provide the counter part, as well
1080 * @todo If only the objective is relevant, it is easy to change the code to use only one slice with O(capacity) space.
1081 * There are recursive methods (see the book by Kellerer et al.) that require O(capacity) space, but it remains
1083 * Dembo and Hammer (see Kellerer et al. Section 5.1.3, page 126) found a method that relies on a fast probing method.
1391 /* If the greedy solution is optimal by comparing to the LP solution, we take this solution. This happens if:
1393 * - the greedy solution has an objective that is at least the LP value rounded down in case that all profits are integer, too. */
1394 greedyupperbound = greedysolvalue + myprofits[j] * (SCIP_Real) (capacity - greedysolweight)/((SCIP_Real) myweights[j]);
1440 assert(sizeof(size_t) >= sizeof(int)); /*lint !e506*/ /* no following conversion should be messed up */
1442 /* this condition checks whether we will try to allocate a correct number of bytes and do not have an overflow, while
1445 if( intcap < 0 || (intcap > 0 && (((size_t)nmyitems) > (SIZE_MAX / (size_t)intcap / sizeof(*optvalues)) || ((size_t)nmyitems) * ((size_t)intcap) * sizeof(*optvalues) > ((size_t)INT_MAX) )) ) /*lint !e571*/
1447 SCIPdebugMsg(scip, "Too much memory (%lu) would be consumed.\n", (unsigned long) (((size_t)nmyitems) * ((size_t)intcap) * sizeof(*optvalues))); /*lint !e571*/
1469 /* we memorize at each step the current minimal weight to later on know which value in our optvalues matrix is valid;
1470 * each value entries of the j-th row of optvalues is valid if the index is >= allcurrminweight[j], otherwise it is
1471 * invalid; a second possibility would be to clear the whole optvalues, which should be more expensive than storing
1499 /* if index d < current minweight then optvalues[IDX(j-1,d)] is not initialized, i.e. should be 0 */
1541 /* collect solution items; the first condition means that no further item can fit anymore, but this does */
1589 /** solves knapsack problem in maximization form approximately by solving the LP-relaxation of the problem using Dantzig's
1590 * method and rounding down the solution; if needed, one can provide arrays to store all selected items and all not
1636 /* partially sort indices such that all elements that are larger than the break item appear first */
1637 SCIPselectWeightedDownRealLongRealInt(tempsort, weights, profits, items, realweights, (SCIP_Real)capacity, nitems, &criticalindex);
1819 /* delete variable from GUB by swapping it replacing in by the last variable in the GUB constraint */
1824 /* decrease space allocated for the GUB constraint, if the last GUBCONSGROWVALUE+1 array entries are now empty */
1840 /** moves variable from current GUB constraint to a different existing (nonempty) GUB constraint */
1850 {
1865 SCIPdebugMsg(scip, " moving variable<%s> from GUB<%d> to GUB<%d>\n", SCIPvarGetName(vars[var]), oldgubcons, newgubcons);
1869 /* delete variable from old GUB constraint by replacing it by the last variable of the GUB constraint */
1872 /* in GUB set, update stored index of variable in old GUB constraint for the variable used for replacement;
1881 assert(gubset->gubconss[newgubcons]->gubvars[gubset->gubconss[newgubcons]->ngubvars-1] == var);
1883 /* in GUB set, update stored index of GUB of moved variable and stored index of variable in this GUB constraint */
1898 /* if empty GUB was not the last one in GUB set data structure, replace it by last GUB constraint */
1904 /* in GUB set, update stored index of GUB constraint for all variable of the GUB constraint used for replacement;
1917 /* variable should be at given new position, unless new GUB constraint replaced empty old GUB constraint
1971 /** initializes partition of knapsack variables into nonoverlapping trivial GUB constraints (GUB with one variable) */
2012 /* already updated status of variable in GUB constraint if it exceeds the capacity of the knapsack */
2014 (*gubset)->gubconss[(*gubset)->gubconssidx[i]]->gubvarsstatus[(*gubset)->gubvarsidx[i]] = GUBVARSTATUS_CAPACITYEXCEEDED;
2073 /* checks for all knapsack vars consistency of stored index of associated gubcons and corresponding index in gubvars */
2081 SCIPdebugMsg(scip, " var<%d> should be in GUB<%d> at position<%d>, but stored is var<%d> instead\n", i,
2118 /* @todo: in case we used also negated cliques for the GUB partition, this assert has to be changed */
2130 * afterwards the output array contains one value for each variable, such that two variables got the same value iff they
2132 * the first variable is always assigned to clique 0, and a variable can only be assigned to clique i if at least one of
2134 * note: in contrast to SCIPcalcCliquePartition(), variables with LP value 1 are put into trivial cliques (with one
2135 * variable) and for the remaining variables, a partition with a small number of cliques is constructed
2141 SCIP_VAR**const vars, /**< binary variables in the clique from which at most one can be set to 1 */
2144 int*const ncliques, /**< pointer to store number of cliques actually contained in the partition */
2147 {
2190 /* ignore variables with LP value 1 (will be assigned to trivial GUBs at the end) and sort remaining variables
2205 /* remaining variables are put to the front of varseq array and will be sorted by their number of cliques */
2213 /* sort variables with LP value less than 1 by nondecreasing order of the number of cliques they are in */
2274 /* if we had too many variables fill up the cliquepartition and put each variable in a separate clique */
2295 /** constructs sophisticated partition of knapsack variables into non-overlapping GUBs; current partition uses trivial GUBs */
2324 SCIP_CALL( GUBsetCalcCliquePartition(scip, vars, nvars, cliquepartition, &ncliques, solvals) );
2347 /* corresponding GUB constraint in GUB set data structure was already constructed (as initial trivial GUB);
2348 * note: no assert for gubconssidx, because it can changed due to deleting empty GUBs in GUBsetMoveVar()
2361 /* move variable to GUB constraint defined by clique partition; index of this GUB constraint is given by the
2365 assert(newgubconsidx != currentgubconsidx); /* because initially every variable is in a different GUB */
2389 /** gets a most violated cover C (\f$\sum_{j \in C} a_j > a_0\f$) for a given knapsack constraint \f$\sum_{j \in N} a_j x_j \leq a_0\f$
2390 * taking into consideration the following fixing: \f$j \in C\f$, if \f$j \in N_1 = \{j \in N : x^*_j = 1\}\f$ and
2407 SCIP_Bool modtransused, /**< should modified transformed separation problem be used to find cover */
2409 SCIP_Bool* fractional /**< pointer to store whether the LP sol for knapsack vars is fractional */
2505 /* sets whether the LP solution x* for the knapsack variables is fractional; if it is not fractional we stop
2574 /* solves (modified) transformed knapsack problem approximately by solving the LP-relaxation of the (modified)
2580 SCIP_CALL( SCIPsolveKnapsackApproximately(scip, nitems, transweights, transprofits, transcapacity, items,
2582 /*assert(checkSolveKnapsack(scip, nitems, transweights, transprofits, items, weights, solvals, modtransused));*/
2633 )
2652 /* checks if all variables before index j cannot be removed, i.e. i cannot be the next minweightidx */
2664 /** gets partition \f$(C_1,C_2)\f$ of minimal cover \f$C\f$, i.e. \f$C_1 \cup C_2 = C\f$ and \f$C_1 \cap C_2 = \emptyset\f$,
2665 * with \f$C_1\f$ not empty; chooses partition as follows \f$C_2 = \{ j \in C : x^*_j = 1 \}\f$ and \f$C_1 = C \setminus C_2\f$
2713 /** changes given partition (C_1,C_2) of minimal cover C, if |C1| = 1, by moving one and two (if possible) variables from
2725 {
2755 /** changes given partition (C_1,C_2) of feasible set C, if |C1| = 1, by moving one variable from C2 to C1 */
2765 {
2793 /** gets partition \f$(F,R)\f$ of \f$N \setminus C\f$ where \f$C\f$ is a minimal cover, i.e. \f$F \cup R = N \setminus C\f$
2794 * and \f$F \cap R = \emptyset\f$; chooses partition as follows \f$R = \{ j \in N \setminus C : x^*_j = 0 \}\f$ and
2842 /** sorts variables in F, C_2, and R according to the second level lifting sequence that will be used in the sequential
2881 * sequence 1: non-increasing absolute difference between x*_j and the value the variable is fixed to, i.e.
2928 /** categorizes GUBs of knapsack GUB partion into GOC1, GNC1, GF, GC2, and GR and computes a lifting sequence of the GUBs
2953 int* ngubconscapexceed, /**< pointer to store number of GUBs with only capacity exceeding variables */
3014 * afterwards all GUBs (except GOC1 GUBs, which we do not need to lift) are sorted by a two level lifting sequence.
3017 * GFC1: non-increasing number of variables in F and non-increasing max{x*_k : k in GFC1_j} in case of equality
3036 * furthermore, sort C1 variables as needed for initializing the minweight table (non-increasing a_j).
3137 /* stores GUBs of group GC1 (GOC1+GNC1) and part of the GUBs of group GFC1 (GNC1 GUBs) and sorts variables in these GUBs
3156 /* current C1 variable is put to the front of its GUB where C1 part is stored by non-decreasing weigth;
3163 /* the GUB was already handled (status set and stored in its group) by another variable of the GUB */
3171 /* determine the status of the current GUB constraint, GOC1 or GNC1; GUBs involving R variables are split into
3197 if( solvals[gubset->gubconss[gubconsidx]->gubvars[j]] > sortkeypairsGFC1[*ngubconsGFC1]->key2 )
3243 assert(movevarstatus == GUBVARSTATUS_BELONGSTOSET_R || movevarstatus == GUBVARSTATUS_CAPACITYEXCEEDED);
3275 /* stores GUBs of group GC2 (only trivial GUBs); sorting is not required because the C2 variables (which we loop over)
3306 /* stores remaining part of the GUBs of group GFC1 (GF GUBs) and gets GUB sorting keys corresp. to following ordering
3323 /* the GUB was already handled (status set and stored in its group) by another variable of the GUB */
3345 if( solvals[gubset->gubconss[gubconsidx]->gubvars[j]] > sortkeypairsGFC1[*ngubconsGFC1]->key2 )
3359 /* stores GUBs of group GR; sorting is not required because the R variables (which we loop over) are already sorted
3375 /* the GUB was already handled (status set and stored in its group) by another variable of the GUB */
3397 /* update number of GUBs with only capacity exceeding variables (will not be used for lifting) */
3398 (*ngubconscapexceed) = ngubconss - (ngubconsGOC1 + (*ngubconsGC2) + (*ngubconsGFC1) + (*ngubconsGR));
3476 * sum_{j in M_1} x_j + sum_{j in F} alpha_j x_j + sum_{j in M_2} alpha_j x_j + sum_{j in R} alpha_j x_j
3480 * uses sequential up-lifting for the variables in F, sequential down-lifting for the variable in M_2, and
3481 * sequential up-lifting for the variables in R; procedure can be used to strengthen minimal cover inequalities and
3544 /* sets lifting coefficient of variables in M1, sorts variables in M1 such that a_1 <= a_2 <= ... <= a_|M1|
3599 * sets z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i} } = liftrhs,
3607 * uses binary search to find z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i} }
3615 assert((*liftrhs) + 1 >= minweightslen || minweights[(*liftrhs) + 1] > capacity - fixedonesweight - weight);
3642 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
3655 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + liftcoef) );
3697 * z = max { w : 0 <= w <= |M_1| + sum_{k=1}^{i-1} alpha_{j_k}, minweights_[w] <= a_0 - fixedonesweight + a_{j_i}}
3731 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
3744 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + liftcoef) );
3792 /* uses binary search to find z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - a_{j_i} }
3826 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
3925 * sum_{j in C_1} x_j + sum_{j in F} alpha_j x_j + sum_{j in C_2} alpha_j x_j + sum_{j in R} alpha_j x_j
3928 * S = { x in {0,1}^|N| : sum_{j in N} a_j x_j <= a_0; sum_{j in Q_i} x_j <= 1, forall i in I };
4033 /* gets GOC1 and GNC1 GUBs, sets lifting coefficient of variables in C1 and calculates activity of the current
4063 assert(ngubconsGOC1 + ngubconsGFC1 + ngubconsGC2 + ngubconsGR == ngubconss - ngubconscapexceed);
4066 /* initialize the minweight tables, defined as: for i = 1,...,m with m = |I| and w = 0,...,|gubconsGC1|;
4080 /* initialize finished table; note that variables in GOC1 GUBs (includes C1 and capacity exceeding variables)
4082 * GUBs in the group GCI are sorted by non-decreasing min{ a_k : k in GC1_j } where min{ a_k : k in GC1_j } always
4118 * GUBs in the group GCI are sorted by non-decreasing min{ a_k : k in GC1_j } where min{ a_k : k in GC1_j } always
4154 * we can directly initialize minweights instead of computing it from finished and unfinished (which would be more time
4188 /* gets sum of weights of variables fixed to one, i.e. sum of weights of C2 variables GC2 GUBs */
4211 /* GNC1 GUB: update unfinished table (remove current GUB, i.e., remove min weight of C1 vars in GUB) and
4221 /* get number of C1 variables of current GNC1 GUB and put them into array of variables in GUB that
4229 /* update unfinished table by removing current GNC1 GUB, i.e, remove C1 variable with minimal weight
4230 * unfinished[w] = MAX{unfinished[w], unfinished[w+1] - weight}, "weight" is the minimal weight of current GUB
4252 /* GF GUB: no update of unfinished table (and minweight table) required because GF GUBs have no C1 variables and
4264 /* compute lifting coefficient of F and R variables in GNC1 and GF GUBs (C1 vars have already liftcoef 1) */
4290 * sets z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i} } = liftrhs,
4298 * binary search to find z = max {w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i}}
4302 assert((*liftrhs) + 1 >= minweightslen || minweights[(*liftrhs) + 1] > capacity - fixedonesweight - weight);
4342 * and finished and minweight table can be updated easily as only C1 variables need to be considered;
4351 * finished[w] = MIN{finished[w], finished[w-1] + weight}, "weight" is the minimal weight of current GUB
4352 * minweights[w] = MIN{minweights[w], minweights[w-1] + weight}, "weight" is the minimal weight of current GUB
4375 * w = |gubconsGC1| + sum_{k=1,2,..,i-1}sum_{j in Q_k} alpha_j+1,..,|C1| + sum_{k=1,2,..,i}sum_{j in Q_k} alpha_j
4383 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + sumliftcoef) );
4386 * note that instead of computing minweight table from updated finished and updated unfinished table again
4387 * (for the lifting coefficient, we had to update unfinished table and compute minweight table), we here
4388 * only need to update the minweight table and the updated finished in the same way (i.e., computing for minweight
4389 * not needed because only finished table changed at this point and the change was "adding" one weight)
4434 /* note: now the unfinished table no longer exists, i.e., it is "0, MAX, MAX, ..." and minweight equals to finished;
4448 liftvar = gubset->gubconss[liftgubconsidx]->gubvars[0]; /* C2 GUBs contain only one variable */
4456 * z = max { w : 0 <= w <= |C_1| + sum_{k=1}^{i-1} alpha_{j_k}, minweights_[w] <= a_0 - fixedonesweight + a_{j_i}}
4472 assert(left == minweightslen - 1 || minweights[left + 1] > capacity - fixedonesweight + weight);
4490 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
4501 * w = |C1| + sum_{k=1,2,...,i-1}sum_{j in Q_k} alpha_j + 1 , ... , |C1| + sum_{k=1,2,...,i}sum_{j in Q_k} alpha_j
4503 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + liftcoef) );
4565 /* uses binary search to find z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - a_{j_i} }
4605 /* minweight table and activity of current valid inequality will not change if (sum of alpha_{j_i} in GUB) = 0 */
4682 SCIP_Real* liftcoefs, /**< pointer to store lifting coefficient of vars in knapsack constraint */
4718 /* sets lifting coefficient of variables in C, sorts variables in C such that a_1 >= a_2 >= ... >= a_|C|
4796 /** separates lifted minimal cover inequalities using sequential up- and down-lifting and GUB information, if wanted, for
4842 /* gets partition (C_1,C_2) of C, i.e. C_1 & C_2 = C and C_1 cap C_2 = emptyset, with C_1 not empty; chooses partition
4847 getPartitionCovervars(scip, solvals, mincovervars, nmincovervars, varsC1, varsC2, &nvarsC1, &nvarsC2);
4850 assert(nvarsC1 >= 0); /* nvarsC1 > 0 does not always hold, because relaxed knapsack conss may already be violated */
4852 /* changes partition (C_1,C_2) of minimal cover C, if |C1| = 1, by moving one variable from C2 to C1 */
4860 /* gets partition (F,R) of N\C, i.e. F & R = N\C and F cap R = emptyset; chooses partition as follows
4864 getPartitionNoncovervars(scip, solvals, nonmincovervars, nnonmincovervars, varsF, varsR, &nvarsF, &nvarsR);
4871 /* sorts variables in F, C_2, R according to the second level lifting sequence that will be used in the sequential
4874 SCIP_CALL( getLiftingSequence(scip, solvals, weights, varsF, varsC2, varsR, nvarsF, nvarsC2, nvarsR) );
4880 * to a valid inequality sum_{j in C_1} x_j + sum_{j in N\C_1} alpha_j x_j <= |C_1| - 1 + sum_{j in C_2} alpha_j for
4884 * uses sequential up-lifting for the variables in F, sequential down-lifting for the variable in C_2 and sequential
4887 SCIP_CALL( sequentialUpAndDownLifting(scip, vars, nvars, ntightened, weights, capacity, solvals, varsC1, varsC2,
4921 /* categorizies GUBs of knapsack GUB partion into GOC1, GNC1, GF, GC2, and GR and computes a lifting sequence of
4924 SCIP_CALL( getLiftingSequenceGUB(scip, gubset, solvals, weights, varsC1, varsC2, varsF, varsR, nvarsC1,
4925 nvarsC2, nvarsF, nvarsR, gubconsGC1, gubconsGC2, gubconsGFC1, gubconsGR, &ngubconsGC1, &ngubconsGC2,
4933 * to a valid inequality sum_{j in C_1} x_j + sum_{j in N\C_1} alpha_j x_j <= |C_1| - 1 + sum_{j in C_2} alpha_j for
4935 * S = { x in {0,1}^|N| : sum_{j in N} a_j x_j <= a_0, sum_{j in Q_i} x_j <= 1, forall i in I },
4941 SCIP_CALL( sequentialUpAndDownLiftingGUB(scip, gubset, vars, nconstightened, weights, capacity, solvals, gubconsGC1,
4963 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcseq%" SCIP_LONGINT_FORMAT "", SCIPconsGetName(cons), SCIPconshdlrGetNCutsFound(SCIPconsGetHdlr(cons)));
4964 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &row, cons, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs,
4970 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcseq_%" SCIP_LONGINT_FORMAT "", SCIPsepaGetName(sepa), SCIPsepaGetNCutsFound(sepa));
4971 SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &row, sepa, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
4976 SCIP_CALL( SCIPcreateEmptyRowUnspec(scip, &row, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
4979 /* adds all variables in the knapsack constraint with calculated lifting coefficient to the cut */
5032 /** separates lifted extended weight inequalities using sequential up- and down-lifting for given knapsack problem */
5076 /* gets partition (T_1,T_2) of T, i.e. T_1 & T_2 = T and T_1 cap T_2 = emptyset, with T_1 not empty; chooses partition
5081 getPartitionCovervars(scip, solvals, feassetvars, nfeassetvars, varsT1, varsT2, &nvarsT1, &nvarsT2);
5084 /* changes partition (T_1,T_2) of feasible set T, if |T1| = 0, by moving one variable from T2 to T1 */
5087 SCIP_CALL( changePartitionFeasiblesetvars(scip, weights, varsT1, varsT2, &nvarsT1, &nvarsT2) );
5092 /* gets partition (F,R) of N\T, i.e. F & R = N\T and F cap R = emptyset; chooses partition as follows
5096 getPartitionNoncovervars(scip, solvals, nonfeassetvars, nnonfeassetvars, varsF, varsR, &nvarsF, &nvarsR);
5100 /* sorts variables in F, T_2, and R according to the second level lifting sequence that will be used in the sequential
5101 * lifting procedure (the variable removed last from the initial cover does not have to be lifted first, therefore it
5104 SCIP_CALL( getLiftingSequence(scip, solvals, weights, varsF, varsT2, varsR, nvarsF, nvarsT2, nvarsR) );
5110 * to a valid inequality sum_{j in T_1} x_j + sum_{j in N\T_1} alpha_j x_j <= |T_1| + sum_{j in T_2} alpha_j for
5114 * uses sequential up-lifting for the variables in F, sequential down-lifting for the variable in T_2 and sequential
5117 SCIP_CALL( sequentialUpAndDownLifting(scip, vars, nvars, ntightened, weights, capacity, solvals, varsT1, varsT2, varsF, varsR,
5130 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_ewseq%" SCIP_LONGINT_FORMAT "", SCIPconsGetName(cons), SCIPconshdlrGetNCutsFound(SCIPconsGetHdlr(cons)));
5131 SCIP_CALL( SCIPcreateEmptyRowConshdlr(scip, &row, SCIPconsGetHdlr(cons), name, -SCIPinfinity(scip), (SCIP_Real)liftrhs,
5137 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_ewseq_%" SCIP_LONGINT_FORMAT "", SCIPsepaGetName(sepa), SCIPsepaGetNCutsFound(sepa));
5138 SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &row, sepa, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5143 SCIP_CALL( SCIPcreateEmptyRowUnspec(scip, &row, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5146 /* adds all variables in the knapsack constraint with calculated lifting coefficient to the cut */
5199 /** separates lifted minimal cover inequalities using superadditive up-lifting for given knapsack problem */
5242 SCIP_CALL( superadditiveUpLifting(scip, vars, nvars, ntightened, weights, capacity, solvals, mincovervars,
5257 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcsup%" SCIP_LONGINT_FORMAT "", SCIPconsGetName(cons), SCIPconshdlrGetNCutsFound(SCIPconsGetHdlr(cons)));
5258 SCIP_CALL( SCIPcreateEmptyRowConshdlr(scip, &row, SCIPconsGetHdlr(cons), name, -SCIPinfinity(scip), (SCIP_Real)liftrhs,
5264 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcsup%" SCIP_LONGINT_FORMAT "", SCIPsepaGetName(sepa), SCIPsepaGetNCutsFound(sepa));
5265 SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &row, sepa, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5270 SCIP_CALL( SCIPcreateEmptyRowUnspec(scip, &row, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5273 /* adds all variables in the knapsack constraint with calculated lifting coefficient to the cut */
5285 SCIP_CALL( SCIPaddVarToRow(scip, row, vars[nonmincovervars[j]], realliftcoefs[nonmincovervars[j]]) );
5309 /** converts given cover C to a minimal cover by removing variables in the reverse order in which the variables were chosen
5310 * to be in C, i.e. in the order of non-increasing (1 - x*_j)/a_j, if the transformed separation problem was used to find
5311 * C and in the order of non-increasing (1 - x*_j), if the modified transformed separation problem was used to find C;
5347 /* allocates temporary memory; we need two arrays for the keypairs in order to be able to free them in the correct
5354 * such that (1 - x*_1)/a_1 >= ... >= (1 - x*_|C|)/a_|C|, if trans separation problem was used to find C
5355 * such that (1 - x*_1) >= ... >= (1 - x*_|C|), if modified trans separation problem was used to find C
5356 * note that all variables with x*_j = 1 are in the end of the sorted C, so they will be removed last from C
5402 assert(checkMinweightidx(weights, capacity, covervars, *ncovervars, *coverweight, minweightidx, j));
5456 /** converts given initial cover C_init to a feasible set by removing variables in the reverse order in which
5459 * non-increasing (1 - x*_j), if modified transformed separation problem was used to find C_init.
5460 * separates lifted extended weight inequalities using sequential up- and down-lifting for this feasible set
5508 * such that (1 - x*_1)/a_1 >= ... >= (1 - x*_|C|)/a_|C|, if trans separation problem was used to find C
5509 * such that (1 - x*_1) >= ... >= (1 - x*_|C|), if modified trans separation problem was used to find C
5510 * note that all variables with x*_j = 1 are in the end of the sorted C, so they will be removed last from C
5530 /* removes variables from C_init and separates lifted extended weight inequalities using sequential up- and down-lifting;
5547 SCIP_CALL( separateSequLiftedExtendedWeightInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity, solvals,
5624 SCIPdebugMsgPrint(scip, "%+" SCIP_LONGINT_FORMAT "<%s>(%g)", weights[i], SCIPvarGetName(vars[i]), solvals[i]);
5630 /* LMCI1 (lifted minimal cover inequalities using sequential up- and down-lifting) using GUB information
5652 SCIP_CALL( getCover(scip, vars, nvars, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5671 /* converts initial cover C_init to a minimal cover C by removing variables in the reverse order in which the
5672 * variables were chosen to be in C_init; note that variables with x*_j = 1 will be removed last
5674 SCIP_CALL( makeCoverMinimal(scip, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5677 /* only separate with GUB information if we have at least one nontrivial GUB (with more than one variable) */
5680 /* separates lifted minimal cover inequalities using sequential up- and down-lifting and GUB information */
5681 SCIP_CALL( separateSequLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5686 /* separates lifted minimal cover inequalities using sequential up- and down-lifting, but do not use trivial
5689 SCIP_CALL( separateSequLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5711 SCIP_CALL( getCover(scip, vars, nvars, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5722 /* converts initial cover C_init to a minimal cover C by removing variables in the reverse order in which the
5723 * variables were chosen to be in C_init; note that variables with x*_j = 1 will be removed last
5725 SCIP_CALL( makeCoverMinimal(scip, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5729 SCIP_CALL( separateSequLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5736 SCIP_CALL( separateSupLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5737 solvals, covervars, noncovervars, ncovervars, nnoncovervars, coverweight, sol, cutoff, ncuts) );
5753 SCIP_CALL( getCover(scip, vars, nvars, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5761 /* converts initial cover C_init to a feasible set by removing variables in the reverse order in which
5762 * they were chosen to be in C_init and separates lifted extended weight inequalities using sequential
5765 SCIP_CALL( getFeasibleSet(scip, cons, sepa, vars, nvars, ntightened, weights, capacity, solvals, covervars, noncovervars,
5779 /* relaxes given general linear constraint into a knapsack constraint and separates lifted knapsack cover inequalities */
5786 SCIP_Real* knapvals, /**< coefficients of the variables in the continuous knapsack constraint */
5787 SCIP_Real valscale, /**< -1.0 if lhs of row is used as rhs of c. k. constraint, +1.0 otherwise */
5819 SCIPdebugMsg(scip, "separate linear constraint <%s> relaxed to knapsack\n", cons != NULL ? SCIPconsGetName(cons) : "-");
5824 /* all variables which are of integral type can be potentially of binary type; this can be checked via the method SCIPvarIsBinary(var) */
5855 /* increase array size to avoid an endless loop in the next block; this might happen if continuous variables
5860 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->reals1, conshdlrdata->reals1size, 1) );
5867 /* next if condition should normally not be true, because it means that presolving has created more binary
5868 * variables than binary + integer variables existed at the constraint initialization method, but for example if you would
5876 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->reals1, oldsize, conshdlrdata->reals1size) );
5877 BMSclearMemoryArray(&(conshdlrdata->reals1[oldsize]), conshdlrdata->reals1size - oldsize); /*lint !e866 */
5895 * - a_j < 0: x_j = lb or x_j = b*z + d with variable lower bound b*z + d with binary variable z
5896 * - a_j > 0: x_j = ub or x_j = b*z + d with variable upper bound b*z + d with binary variable z
5933 SCIPdebugMsg(scip, " -> binary variable %+.15g<%s>(%.15g)\n", valscale * knapvals[i], SCIPvarGetName(var), SCIPgetSolVal(scip, sol, var));
5961 if( (bvlb[j] >= 0.0 && SCIPisGT(scip, bvlb[j] * SCIPvarGetLbLocal(zvlb[j]) + dvlb[j], SCIPvarGetUbLocal(var))) ||
5962 (bvlb[j] <= 0.0 && SCIPisGT(scip, bvlb[j] * SCIPvarGetUbLocal(zvlb[j]) + dvlb[j], SCIPvarGetUbLocal(var))) )
5967 bvlb[j], SCIPvarGetName(zvlb[j]), SCIPvarGetLbLocal(zvlb[j]), SCIPvarGetUbLocal(zvlb[j]), dvlb[j]);
5988 SCIPdebugMsg(scip, " -> non-binary variable %+.15g<%s>(%.15g) replaced with lower bound %.15g (rhs=%.15g)\n",
5989 valscale * knapvals[i], SCIPvarGetName(var), SCIPgetSolVal(scip, sol, var), SCIPvarGetLbGlobal(var), rhs);
5993 assert(0 <= SCIPvarGetProbindex(zvlb[bestlbtype]) && SCIPvarGetProbindex(zvlb[bestlbtype]) < nbinvars);
6007 SCIPdebugMsg(scip, " -> non-binary variable %+.15g<%s>(%.15g) replaced with variable lower bound %+.15g<%s>(%.15g) %+.15g (rhs=%.15g)\n",
6041 if( (bvub[j] >= 0.0 && SCIPisLT(scip, bvub[j] * SCIPvarGetUbLocal(zvub[j]) + dvub[j], SCIPvarGetLbLocal(var))) ||
6042 (bvub[j] <= 0.0 && SCIPisLT(scip, bvub[j] * SCIPvarGetLbLocal(zvub[j]) + dvub[j], SCIPvarGetLbLocal(var))) )
6047 bvub[j], SCIPvarGetName(zvub[j]), SCIPvarGetLbLocal(zvub[j]), SCIPvarGetUbLocal(zvub[j]), dvub[j]);
6068 SCIPdebugMsg(scip, " -> non-binary variable %+.15g<%s>(%.15g) replaced with upper bound %.15g (rhs=%.15g)\n",
6069 valscale * knapvals[i], SCIPvarGetName(var), SCIPgetSolVal(scip, sol, var), SCIPvarGetUbGlobal(var), rhs);
6073 assert(0 <= SCIPvarGetProbindex(zvub[bestubtype]) && SCIPvarGetProbindex(zvub[bestubtype]) < nbinvars);
6087 SCIPdebugMsg(scip, " -> non-binary variable %+.15g<%s>(%.15g) replaced with variable upper bound %+.15g<%s>(%.15g) %+.15g (rhs=%.15g)\n",
6101 /* calculate scalar which makes all coefficients integral in relative allowed difference in between
6104 SCIP_CALL( SCIPcalcIntegralScalar(binvals, nbinvars, -SCIPepsilon(scip), KNAPSACKRELAX_MAXDELTA,
6108 /* if coefficients cannot be made integral, we have to use a scalar of 1.0 and only round fractional coefficients down */
6133 SCIPdebugMsg(scip, " -> positive scaled binary variable %+" SCIP_LONGINT_FORMAT "<%s> (unscaled %.15g): not changed (rhs=%.15g)\n",
6143 SCIPdebugMsg(scip, " -> negative scaled binary variable %+" SCIP_LONGINT_FORMAT "<%s> (unscaled %.15g): substituted by (1 - <%s>) (rhs=%.15g)\n",
6168 SCIPdebugMsg(scip, " -> linear constraint <%s> relaxed to knapsack:", cons != NULL ? SCIPconsGetName(cons) : "-");
6172 SCIPdebugMsgPrint(scip, " %+" SCIP_LONGINT_FORMAT "<%s>(%.15g)", consvals[i], SCIPvarGetName(consvars[i]),
6176 SCIPdebugMsgPrint(scip, " <= %" SCIP_LONGINT_FORMAT " (%.15g) [act: %.15g, min: %" SCIP_LONGINT_FORMAT " max: %" SCIP_LONGINT_FORMAT "]\n",
6191 SCIP_CALL( SCIPseparateKnapsackCuts(scip, cons, sepa, consvars, nconsvars, consvals, capacity, sol, usegubs, cutoff, ncuts) );
6227 )
6252 SCIP_CALL( SCIPseparateKnapsackCuts(scip, cons, NULL, consdata->vars, consdata->nvars, consdata->weights,
6295 SCIP_CALL( consdataEnsureVarsSize(scip, consdata, consdata->nvars+1, SCIPconsIsTransformed(cons)) );
6318 if( !consdata->existmultaggr && SCIPvarGetStatus(SCIPvarGetProbvar(var)) == SCIP_VARSTATUS_MULTAGGR )
6399 /* if the clique number is equal to the number of variables we have only cliques with one element, so we don't
6410 consdata->cliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6416 /* if the old clique number was greater than the new one we have to check that before a bigger clique number
6425 consdata->cliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6428 /* if we reached the end in the for loop, it means we have deleted the last element of the clique with
6434 /* if the old clique number was smaller than the new one we have to check the front for an element with
6439 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->cliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6442 consdata->cliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6444 /* if we deleted the last element of the clique with biggest index, we have to decrease the clique number */
6448 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->cliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6463 /* if the clique number is equal to the number of variables we have only cliques with one element, so we don't
6474 consdata->negcliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6480 /* if the old clique number was greater than the new one we have to check that, before a bigger clique number
6489 consdata->negcliquepartitioned = FALSE; /* recalculate the negated clique partition after a coefficient was removed */
6492 /* if we reached the end in the for loop, it means we have deleted the last element of the clique with
6498 /* if the old clique number was smaller than the new one we have to check the front for an element with
6503 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->negcliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6506 consdata->negcliquepartitioned = FALSE; /* recalculate the negated clique partition after a coefficient was removed */
6508 /* if we deleted the last element of the clique with biggest index, we have to decrease the clique number */
6512 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->negcliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6517 /* otherwise if the old clique number is equal to the new one the cliquepartition should be ok */
6628 SCIPsortPtrPtrLongIntInt((void**)consdata->vars, (void**)consdata->eventdata, consdata->weights,
6629 consdata->cliquepartition, consdata->negcliquepartition, SCIPvarCompActiveAndNegated, consdata->nvars);
6676 /* variables var1 and var2 are opposite: subtract smaller weight from larger weight, reduce capacity,
6683 SCIP_CALL( delCoefPos(scip, cons, v) ); /* this does not affect var2, because var2 stands before var1 */
6693 SCIP_CALL( delCoefPos(scip, cons, v) ); /* this does not affect var2, because var2 stands before var1 */
6704 assert(prev == 0 || ((prev > 0) && (SCIPvarIsActive(consdata->vars[prev - 1]) || SCIPvarGetStatus(consdata->vars[prev - 1]) == SCIP_VARSTATUS_NEGATED)) );
6705 /* either that was the last pair or both, the negated and "normal" variable in front doesn't match var1, so the order is irrelevant */
6706 if( prev == 0 || (var1 != consdata->vars[prev - 1] && var1 != SCIPvarGetNegatedVar(consdata->vars[prev - 1])) )
6736 /** in case the knapsack constraint is independent of every else, solve the knapsack problem (exactly) and apply the
6765 /* constraints for which the check flag is set to FALSE, did not contribute to the lock numbers; therefore, we cannot
6766 * use the locks to decide for a dual reduction using this constraint; for example after a restart the cuts which are
6785 /* check if we can apply the dual reduction; this can be done if the knapsack has the only locks on this constraint;
6826 SCIPdebugMsg(scip, "the knapsack constraint <%s> is independent to rest of the problem\n", SCIPconsGetName(cons));
6830 SCIP_CALL( SCIPsolveKnapsackExactly(scip, consdata->nvars, consdata->weights, profits, consdata->capacity,
6843 SCIPdebugMsg(scip, "variable <%s> only locked up in knapsack constraints: dual presolve <%s>[%.15g,%.15g] >= 1.0\n",
6856 SCIPdebugMsg(scip, "variable <%s> has no down locks: dual presolve <%s>[%.15g,%.15g] <= 0.0\n",
6878 /** check if the knapsack constraint is parallel to objective function; if so update the cutoff bound and avoid that the
6910 /* check if the knapsack constraints has the same number of variables as the objective function and if the initial
6916 /* There are no variables in the ojective function and in the constraint. Thus, the constraint is redundant. Since we
6944 /* if a variable has a zero objective coefficient the knapsack constraint is not parallel to objective function */
6983 /* avoid that the knapsack constraint enters the LP since it is parallel to the objective function */
6989 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provids a cutoff bound <%g>\n",
6992 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are
6997 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provids a cutoff bound <%g>\n",
7008 /* in case the cutoff bound is worse then currently known one we avoid additionaly enforcement and
7019 /* avoid that the knapsack constraint enters the LP since it is parallel to the objective function */
7025 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provids a lower bound <%g>\n",
7035 /** sort the variables and weights w.r.t. the clique partition; thereby ensure the current order of the variables when a
7036 * weight of one variable is greater or equal another weight and both variables are in the same cliques */
7046 {
7119 /* to reach the goal that all variables of each clique will be standing next to each other we will initialize the
7120 * starting pointers for each clique by adding the number of each clique to the last clique starting pointer
7121 * e.g. clique1 has 4 elements and clique2 has 3 elements the the starting pointer for clique1 will be the pointer
7122 * to vars[0], the starting pointer to clique2 will be the pointer to vars[4] and to clique3 it will be
7160 /** deletes all fixed variables from knapsack constraint, and replaces variables with binary representatives */
7247 /* @todo maybe resolve the problem that the eliminating of the multi-aggregation leads to a non-knapsack
7248 * constraint (converting into a linear constraint), for example the multi-aggregation consist of a non-binary
7249 * variable or due to resolving now their are non-integral coefficients or a non-integral capacity
7257 * 1b) If repvar is a negated variable of a multi-aggregated variable weight * repvar should be replaced by
7258 * weight - weight * (a_1*y_1 + ... + a_n*y_n + c), for better further use here we switch the sign of weight
7261 * 2a) weight * a_i < 0 than we add -weight * a_i * y_i_neg to the constraint and adjust the capacity through
7265 * 3b) If repvar was negated we need to subtract weight * (c - 1) from capacity(note we switched the sign of
7285 SCIPerrorMessage("try to resolve a multi-aggregation with a non-integral value for weight*aggrconst = %g\n", weight*aggrconst);
7300 SCIPerrorMessage("try to resolve a multi-aggregation with a non-binary %svariable <%s> with bounds [%g,%g]\n",
7301 SCIPvarIsIntegral(aggrvars[i]) ? "integral " : "", SCIPvarGetName(aggrvars[i]), SCIPvarGetLbGlobal(aggrvars[i]), SCIPvarGetUbGlobal(aggrvars[i]));
7306 SCIPerrorMessage("try to resolve a multi-aggregation with a non-integral value for weight*aggrscalars = %g\n", weight*aggrscalars[i]);
7309 /* if the new coefficient is smaller than zero, we need to add the negated variable instead and adjust the capacity */
7314 SCIP_CALL( addCoef(scip, cons, negvar, (SCIP_Longint)(SCIPfloor(scip, -weight * aggrscalars[i] + 0.5))) );
7319 SCIP_CALL( addCoef(scip, cons, aggrvars[i], (SCIP_Longint)(SCIPfloor(scip, weight * aggrscalars[i] + 0.5))) );
7325 /* adjust the capacity with the aggregation constant and if necessary the extra weight through the negation */
7358 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have to
7382 {
7416 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7426 assert(SCIPvarIsActive(consdata->vars[i]) || SCIPvarIsNegated(consdata->vars[i]) || SCIPvarGetStatus(consdata->vars[i]) == SCIP_VARSTATUS_FIXED);
7448 * - minweightsum = sum_{negated cliques C} ( sum(wi : i \in C) - W_max(C) ), where W_max(C) is the maximal weight of C
7450 * if for i \in C (a negated clique) oneweightsum + minweightsum - wi + W_max(C) > capacity => xi = 1
7482 /* save the end positions of the cliques because start positions are moved in the following loop */
7507 /* for summing up the minimum active weights due to cliques we have to omit the biggest weights of each
7508 * clique, we can only skip this clique if this variables is not fixed to zero, otherwise we have to fix all
7553 /* we found a fixed variable to zero so all other variables in this negated clique have to be fixed to one */
7562 SCIPdebugMsg(scip, " -> fixing variable <%s> to 1, due to negated clique information\n", SCIPvarGetName(myvars[v]));
7563 SCIP_CALL( SCIPinferBinvarCons(scip, myvars[v], TRUE, cons, SCIPvarGetIndex(myvars[i]), &infeasible, &tightened) );
7594 /* reset local minweightsum for clique because all fixed to one variables are now counted in consdata->onesweightsum */
7608 SCIPdebugMsg(scip, "knapsack constraint <%s> has minimum weight sum of <%" SCIP_LONGINT_FORMAT ">\n",
7635 /* no need to process this negated clique because all variables are already fixed (which we detect from a fixed maxvar) */
7641 /* if the sum of all weights of fixed variables to one plus the minimalweightsum (minimal weight which is already
7642 * used in this knapsack due to negated cliques) plus any weight minus the second largest weight in this clique
7645 if( consdata->onesweightsum + minweightsum + (maxcliqueweight - secondmaxweights[c]) > consdata->capacity )
7655 SCIP_CALL( SCIPinferBinvarCons(scip, maxvar, FALSE, cons, cliquestartposs[c], &infeasible, &tightened) );
7669 * the gain in any of the following negated cliques (the additional term if the maximum weight variable was set to 1, and the second
7672 * - the cliques are sorted by decreasing maximum weight -> for all c' >= c: maxweights[c'] <= maxcliqueweight
7675 else if( consdata->onesweightsum + minweightsum + (maxcliqueweight - consdata->weights[nvars - 1]) <= consdata->capacity )
7681 /* there should be no variable fixed to 0 between startvarposclique + 1 and endvarposclique unless we
7697 if( maxvarfixed || consdata->onesweightsum + minweightsum - myweights[i] + maxcliqueweight > consdata->capacity )
7702 SCIPdebugMsg(scip, " -> fixing variable <%s> to 1, due to negated clique information\n", SCIPvarGetName(myvars[i]));
7725 SCIP_Bool exceedscapacity = consdata->onesweightsum + minweightsum - myweights[i] + maxcliqueweight > consdata->capacity;
7748 SCIPdebugMsg(scip, " -> cutoff - fixed weight: %" SCIP_LONGINT_FORMAT ", capacity: %" SCIP_LONGINT_FORMAT " \n",
7755 if( (SCIPgetStage(scip) == SCIP_STAGE_SOLVING || SCIPinProbing(scip)) && SCIPisConflictAnalysisApplicable(scip) )
7757 /* start conflict analysis with the fixed-to-one variables, add only as many as needed to exceed the capacity */
7788 /* if all weights of fixed variables to one plus any weight exceeds the capacity the variables have to be fixed
7798 SCIP_CALL( SCIPinferBinvarCons(scip, consdata->vars[i], FALSE, cons, i, &infeasible, &tightened) );
7812 /* sum up the weights of all unfixed variables, plus the weight sum of all variables fixed to one already */
7824 /* we summed up all (unfixed and fixed to one) weights and did not exceed the capacity, so the constraint is redundant */
7825 SCIPdebugMsg(scip, " -> knapsack constraint <%s> is redundant: weightsum=%" SCIP_LONGINT_FORMAT ", unfixedweightsum=%" SCIP_LONGINT_FORMAT ", capacity=%" SCIP_LONGINT_FORMAT "\n",
7834 /** all but one variable fit into the knapsack constraint, so we can upgrade this constraint to an logicor constraint
7857 /* if the knapsack constraint consists only of two variables, we can upgrade it to a set-packing constraint */
7860 SCIPdebugMsg(scip, "upgrading knapsack constraint <%s> to a set-packing constraint", SCIPconsGetName(cons));
7862 SCIP_CALL( SCIPcreateConsSetpack(scip, &newcons, SCIPconsGetName(cons), consdata->nvars, consdata->vars,
7868 /* if the knapsack constraint consists of at least three variables, we can upgrade it to a logicor constraint
7875 SCIPdebugMsg(scip, "upgrading knapsack constraint <%s> to a logicor constraint", SCIPconsGetName(cons));
7880 SCIP_CALL( SCIPcreateConsLogicor(scip, &newcons, SCIPconsGetName(cons), consdata->nvars, consvars,
7901 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 13 => x4, x5 always fits into the knapsack, so we can delete them
7903 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 8 and we have the cliqueinformation (x1,x2,x3) is a clique
7906 * i.e. 5x1 + 5x2 + 5x3 + 1x4 + 1x5 <= 6 and we have the cliqueinformation (x1,x2,x3) is a clique and (x4,x5) too
7913 SCIP_Longint frontsum, /**< sum of front items which fit if we try to take from the first till the last */
7949 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
7966 /* all rear items are redundant, because leaving one item in front and incl. of splitpos out the rear itmes always
8002 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8010 /* rear items can only be redundant, when the sum is smaller to the weight at splitpos and all rear items would
8011 * always fit into the knapsack, therefor the item directly after splitpos needs to be smaller than the one at
8025 SCIP_CALL( SCIPcalcCliquePartition(scip, &(consdata->vars[splitpos+1]), len, clqpart, &nclq) );
8047 /* all rear items are redundant due to clique information, if maxactduetoclq is smaller than the weight before,
8048 * so delete them and create for all clique the corresponding clique constraints and update the capacity
8058 SCIPdebugMsg(scip, "Found redundant variables in constraint <%s> due to clique information.\n", SCIPconsGetName(cons));
8075 /* we found a real clique so extract this constraint, because we do not know who this information generated so */
8081 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), capacity, c);
8133 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8152 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 13 => x4, x5 always fits into the knapsack, so we can delete them
8154 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 8 and we have the cliqueinformation (x1,x2,x3) is a clique
8157 * i.e. 5x1 + 5x2 + 5x3 + 1x4 + 1x5 <= 6 and we have the cliqueinformation (x1,x2,x3) is a clique and (x4,x5) too
8169 {
8206 /* all but one variable fit into the knapsack, so we can upgrade this constraint to a logicor */
8221 /* all but one variable fit into the knapsack, so we can upgrade this constraint to a logicor */
8277 /* if all items fit, then delete the whole constraint but create clique constraints which led to this
8289 SCIPdebugMsg(scip, "Found redundant constraint <%s> due to clique information.\n", SCIPconsGetName(cons));
8308 /* we found a real clique so extract this constraint, because we do not know who this information generated so */
8314 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), capacity, c);
8347 /** divides weights by their greatest common divisor and divides capacity by the same value, rounding down the result */
8377 assert(SCIPvarGetUbLocal(consdata->vars[i]) > 0.5); /* all fixed variables should have been removed */
8384 SCIPdebugMessage("knapsack constraint <%s>: dividing weights by %" SCIP_LONGINT_FORMAT "\n", SCIPconsGetName(cons), gcd);
8405 * 1. a) check if all two pairs exceed the capacity, then we can upgrade this constraint to a set-packing constraint
8406 * b) check if all but the smallest weight fit into the knapsack, then we can upgrade this constraint to a logicor
8409 * 2. check if besides big coefficients, that fit only by itself, for a certain amount of variables all combination of
8412 * +219y1 + 180y2 + 74x1 + 70x2 + 63x3 + 62x4 + 53x5 <= 219 <=> 3y1 + 3y2 + x1 + x2 + x3 + x4 + x5 <= 3
8414 * 3. use the duality between a^Tx <= capacity <=> a^T~x >= weightsum - capacity to tighten weights, e.g.
8431 {
8482 SCIPdebugMsg(scip, "upgrading knapsack constraint <%s> to a set-packing constraint", SCIPconsGetName(cons));
8484 SCIP_CALL( SCIPcreateConsSetpack(scip, &newcons, SCIPconsGetName(cons), consdata->nvars, consdata->vars,
8500 /* all but one variable fit into the knapsack, so we can upgrade this constraint to a logicor */
8509 /* early termination, if the pair with biggest coeffcients together does not exceed the dualcapacity */
8520 * the following is done without looking at the dualcapacity; it is enough to check whether for a certain amount of
8527 * +219y1 + 180y_2 +74x1 + 70x2 + 63x3 + 62x4 + 53x5 <= 219 <=> 3y1 + 3y2 + x1 + x2 + x3 + x4 + x5 <= 3
8579 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8589 /* a certain amount of small variables exceed the capacity, so check if this holds for all combinations of the
8605 /* if the same amount but with the smallest possible weights also exceed the capacity, it holds for all
8637 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8650 /* if the following assert fails we have either a redundant constraint or a set-packing constraint, this should
8659 * either choose x1, or all other variables (weightsum of x2 to x10 is 979 above), so we can tighten this
8700 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8736 /* any negated variable out of the first n - 1 items is enough to fulfill the constraint, so we can update it to a logicor
8759 /* we have a dual-knapsack constraint where we either need to choose one variable out of a subset (big
8766 * 3x1 + 3x2 + 2x3 + 2x4 + 2x5 + 2x6 + x7 <= 12 <=> 3~x1 + 3~x2 + 2~x3 + 2~x4 + 2~x5 + 2~x6 + ~x7 >= 3
8832 * e.g. 9x1 + 9x2 + 6x3 + 4x4 + 4x5 + 4x6 <= 27 <=> 9~x1 + 9~x2 + 6~x3 + 4~x4 + 4~x5 + 4~x6 >= 9
8859 /* we found redundant variables, which does not influence the feasibility of any integral solution, e.g.
8878 /* for performance reasons we do not update the capacity(, i.e. reduce it by reductionsum) and directly
8889 * e.g. 9x1 + 9x2 + 6x3 + 6x4 + 4x5 + 4x6 <= 29 <=> 9~x1 + 9~x2 + 6~x3 + 6~x4 + 4~x5 + 4~x6 >= 9
8894 if( weights[v] > 1 || (weights[startv] > (SCIP_Longint)nvars - v) || (startv > 0 && weights[0] == (SCIP_Longint)nvars - v + 1) )
8908 /* adjust middle sized coefficients, which when choosing also one small coefficients exceed the
8939 newcap = ((SCIP_Longint)startv - 1) * newweight + ((SCIP_Longint)v - startv) * (newweight - 1) + ((SCIP_Longint)nvars - v);
8948 assert(weights[v] == 1 && (weights[startv] == (SCIP_Longint)nvars - v) && (startv == 0 || weights[0] == (SCIP_Longint)nvars - v + 1));
8953 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8963 /* check if all rear items have the same weight as the last one, so we cannot tighten the constraint further */
9010 /* dualcapacity is odd, we can set the middle weights to dualcapacity but therefor need to multiply all
9054 /* @todo loop for "k" can be extended, same coefficient when determine next sumcoef can be left out */
9084 sumcoef = MIN(weights[nvars - 1] + weights[nvars - 5], weights[nvars - 2] + weights[nvars - 3]);
9088 sumcoef = MIN(weights[nvars - 1] + weights[nvars - 4], weights[nvars - 1] + weights[nvars - 2] + weights[nvars - 3]);
9095 /* tighten next coefficients that, pair with the current small coefficient, exceed the dualcapacity */
9103 /* @todo check for further reductions, when two times the minweight exceeds the dualcapacity */
9135 /* now check if a combination of small coefficients allows us to tighten big coefficients further */
9198 /* dualcapacity is odd, we can set the middle weights to dualcapacity but therefor need to multiply all
9256 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
9281 /** fixes variables with weights bigger than the capacity and delete redundant constraints, also sort weights */
9380 * 1. use the duality between a^Tx <= capacity <=> -a^T~x <= capacity - weightsum to tighten weights, e.g.
9388 * 2. if variables in a constraint do not affect the (in-)feasibility of the constraint, we can delete them, e.g.
9392 * 3. Tries to use gcd information an all but one weight to change this not-included weight and normalize the
9395 * 9x1 + 6x2 + 6x3 + 5x4 <= 13 => 9x1 + 6x2 + 6x3 + 6x4 <= 12 => 3x1 + 2x2 + 2x3 + 2x4 <= 4 => 4x1 + 2x2 + 2x3 + 2x4 <= 4
9501 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal weight
9524 /* determine coefficients as big as the capacity, these we do not need to take into account when calculating the
9543 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
9564 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
9575 /* if both first coefficients have a gcd of 1, both are candidates for the coefficient change */
9606 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
9648 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restweight = %" SCIP_LONGINT_FORMAT "; possible new weight of variable <%s> %" SCIP_LONGINT_FORMAT ", possible new capacity %" SCIP_LONGINT_FORMAT ", offset of coefficients as big as capacity %d\n", gcd, rest, restweight, SCIPvarGetName(vars[candpos]), newweight, consdata->capacity - rest, offsetv);
9650 /* must not change weights and capacity if one variable would be removed and we have a big coefficient,
9651 * e.g., 11x1 + 6x2 + 6x3 + 5x4 <= 11 => gcd = 6, offsetv = 1 => newweight = 0, but we would lose x1 = 1 => x4 = 0
9702 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
9751 /* we explicitly construct the complete implication graph where the knapsack variables are involved;
9756 SCIPdebugMsg(scip, "memory limit of %d bytes reached in knapsack preprocessing - abort collecting zero items\n",
9787 /** applies rule (3) of the weight tightening procedure, which can lift other variables into the knapsack:
9792 * - the weight of the variable or its negation (depending on v) can be increased as long as it has the same
9809 int* firstidxs[2]; /* first index in zeroitems for each binary variable/value pair, or zero for empty list */
9812 int* nextidxs; /* next index in zeroitems for the same binary variable, or zero for end of list */
9855 if( (!consdata->cliquepartitioned && nvars > MAX_USECLIQUES_SIZE) || consdata->ncliques > MAX_USECLIQUES_SIZE )
9864 /* we have to consider all integral variables since even integer and implicit integer variables can have binary bounds */
9885 /* next if conditions should normally not be true, because it means that presolving has created more binary variables
9886 * than binary + integer variables existed at the presolving initialization method, but for example if you would
9894 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->ints1, oldsize, conshdlrdata->ints1size) );
9895 BMSclearMemoryArray(&(conshdlrdata->ints1[oldsize]), conshdlrdata->ints1size - oldsize); /*lint !e866*/
9902 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->ints2, oldsize, conshdlrdata->ints2size) );
9903 BMSclearMemoryArray(&(conshdlrdata->ints2[oldsize]), conshdlrdata->ints2size - oldsize); /*lint !e866*/
9910 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->longints1, oldsize, conshdlrdata->longints1size) );
9911 BMSclearMemoryArray(&(conshdlrdata->longints1[oldsize]), conshdlrdata->longints1size - oldsize); /*lint !e866*/
9918 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->longints2, oldsize, conshdlrdata->longints2size) );
9919 BMSclearMemoryArray(&(conshdlrdata->longints2[oldsize]), conshdlrdata->longints2size - oldsize); /*lint !e866*/
9950 /* next if conditions should normally not be true, because it means that presolving has created more binary variables
9951 * than binary + integer variables existed at the presolving initialization method, but for example if you would
9959 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->bools1, oldsize, conshdlrdata->bools1size) );
9960 BMSclearMemoryArray(&(conshdlrdata->bools1[oldsize]), conshdlrdata->bools1size - oldsize); /*lint !e866*/
9967 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->bools2, oldsize, conshdlrdata->bools2size) );
9968 BMSclearMemoryArray(&(conshdlrdata->bools2[oldsize]), conshdlrdata->bools2size - oldsize); /*lint !e866*/
10112 /* calculate the clique partition and the maximal sum of weights using the clique information */
10118 /* next if condition should normally not be true, because it means that presolving has created more binary variables
10119 * in one constraint than binary + integer variables existed in the whole problem at the presolving initialization
10120 * method, but for example if you would transform all integers into their binary representation then it maybe happens
10127 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->bools3, oldsize, conshdlrdata->bools3size) );
10128 BMSclearMemoryArray(&(conshdlrdata->bools3[oldsize]), conshdlrdata->bools3size - oldsize); /*lint !e866*/
10162 /* next if condition should normally not be true, because it means that presolving has created more binary variables
10163 * in one constraint than binary + integer variables existed in the whole problem at the presolving initialization
10164 * method, but for example if you would transform all integers into their binary representation then it maybe happens
10171 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->bools4, oldsize, conshdlrdata->bools4size) );
10172 BMSclearMemoryArray(&conshdlrdata->bools4[oldsize], conshdlrdata->bools4size - oldsize); /*lint !e866*/
10183 /* for each binary variable xi and each fixing v, calculate the cliqueweightsum and update the weight of the
10184 * variable in the knapsack (this is sequence-dependent because the new or modified weights have to be
10210 /* mark the items that are implied to zero by setting the current variable to the current value */
10258 SCIPdebugMsg(scip, "knapsack constraint <%s>: adding lifted item %" SCIP_LONGINT_FORMAT "<%s>\n",
10295 /* if new items were added, multiple entries of the same variable are possible and we have to clean up the constraint */
10320 * - wi and capacity can be changed to have the same redundancy effect and the same results for
10321 * fixing xi to zero or one, but with a reduced wi and tightened capacity to tighten the LP relaxation
10325 * (2) increase weights from front to back(sortation is necessary) if there is no space left for another weight
10326 * - determine the four(can be adjusted) minimal weightsums of the knapsack, i.e. in increasing order
10327 * weights[nvars - 1], weights[nvars - 2], MIN(weights[nvars - 3], weights[nvars - 1] + weights[nvars - 2]),
10328 * MIN(MAX(weights[nvars - 3], weights[nvars - 1] + weights[nvars - 2]), weights[nvars - 4]), note that there
10330 * - check if summing up a minimal weightsum with a big weight exceeds the capacity, then we can increase the big
10341 * - weights wi, i in C, and capacity can be changed to have the same redundancy effect and the same results for
10342 * fixing xi, i in C, to zero or one, but with a reduced wi and tightened capacity to tighten the LP relaxation
10347 * This rule has to add the used cliques in order to ensure they are enforced - otherwise, the reduction might
10353 * - the weight of the variable or its negation (depending on v) can be increased as long as it has the same
10400 assert(consdata->weightsum > consdata->capacity); /* otherwise, the constraint is redundant */
10430 SCIPdebugMsg(scip, "knapsack constraint <%s>: changed weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT ", capacity from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10461 /* @todo loop for "k" can be extended, same coefficient when determine next sumcoef can be left out */
10517 /* tighten next coefficients that, paired with the current small coefficient, exceed the capacity */
10524 SCIPdebugMsg(scip, "in constraint <%s> changing weight %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10557 SCIPdebugMsg(scip, "in constraint <%s> changing weight %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10570 /* apply rule (2) (don't apply, if the knapsack has too many items for applying this costly method) */
10573 if( conshdlrdata->disaggregation && consdata->nvars - pos <= MAX_USECLIQUES_SIZE && consdata->nvars >= 2 &&
10575 consdata->weights[pos - 1] == consdata->capacity && (pos == consdata->nvars || consdata->weights[pos] == 1) )
10591 SCIPdebugMsg(scip, "upgrading knapsack constraint <%s> to a set-packing constraint", SCIPconsGetName(cons));
10593 SCIP_CALL( SCIPcreateConsSetpack(scip, &cliquecons, SCIPconsGetName(cons), pos, consdata->vars,
10625 SCIPdebugMsg(scip, "Disaggregating knapsack constraint <%s> due to clique information.\n", SCIPconsGetName(cons));
10651 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), consdata->capacity, c);
10673 else if( consdata->nvars <= MAX_USECLIQUES_SIZE || (consdata->cliquepartitioned && consdata->ncliques <= MAX_USECLIQUES_SIZE) )
10745 SCIPdebugMsg(scip, "knapsack constraint <%s>: weights of clique %d (maxweight: %" SCIP_LONGINT_FORMAT ") can be tightened: cliqueweightsum=%" SCIP_LONGINT_FORMAT ", capacity=%" SCIP_LONGINT_FORMAT " -> delta: %" SCIP_LONGINT_FORMAT "\n",
10775 /* check if our clique information results out of this knapsack constraint and if so check if we would loose the clique information */
10802 SCIPdebugMsg(scip, " -> change capacity from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT " (forceclique:%u)\n",
10814 SCIPdebugMsg(scip, " -> change weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10821 /* if before the weight update at least one pair of weights did not fit into the knapsack and now fits,
10822 * we have to make sure, the clique is enforced - the clique might have been constructed partially from
10823 * this constraint, and by reducing the weights, this clique information is not contained anymore in the
10836 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), consdata->capacity, i);
10896 SCIPdebugMsg(scip, "knapsack constraint <%s>: changed weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10899 consdataChgWeight(consdata, i, consdata->capacity); /* this does not destroy the weight order! */
10919 SCIPdebugMsg(scip, "knapsack constraint <%s>: changed weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10920 SCIPconsGetName(cons), SCIPvarGetName(consdata->vars[consdata->nvars-1]), weight, consdata->capacity);
10922 consdataChgWeight(consdata, consdata->nvars-1, consdata->capacity); /* this does not destroy the weight order! */
11027 /* determine maximal weights for all negated cliques and calculate minimal weightsum due to negated cliques */
11030 assert(0 <= consdata->negcliquepartition[v] && consdata->negcliquepartition[v] <= nnegcliques);
11047 /* free capacity is the rest of not used capacity if the smallest amount of weights due to negated cliques are used */
11051 SCIPdebugMsg(scip, "Try to add negated cliques in knapsack constraint handler for constraint %s; capacity = %" SCIP_LONGINT_FORMAT ", minactivity(due to neg. cliques) = %" SCIP_LONGINT_FORMAT ", freecapacity = %" SCIP_LONGINT_FORMAT ".\n",
11062 /* if we would take the biggest weight instead of another what would we gain, take weight[v] instead of
11068 gainweights[nposcliquevars] = maxweights[consdata->negcliquepartition[v]] - consdata->weights[w];
11080 SCIPsortDownLongPtrInt(gainweights,(void**) poscliquevars, gaincliquepartition, nposcliquevars);
11093 /* taking bigger weights make the knapsack redundant so we will create cliques, only take items which are not
11095 for( w = v + 1; w < nposcliquevars && !cliqueused[gaincliquepartition[w]] && gainweights[w] + lastweight > freecapacity; ++w )
11119 /* try to replace the last item in the clique by a different item to obtain a slightly different clique */
11120 for( ++w; w < nposcliquevars && !cliqueused[gaincliquepartition[w]] && beforelastweight + gainweights[w] > freecapacity; ++w )
11148 * greedily detects cliques by first sorting the items by decreasing weights (optional) and then collecting greedily
11150 * 2) looping through the remaining items and finding the largest set of preceding items to build a clique => possibly many more cliques
11160 SCIP_Real cliqueextractfactor,/**< lower clique size limit for greedy clique extraction algorithm (relative to largest clique) */
11205 /* no more cliques to be found (don't know if this can actually happen, since the knapsack could be replaced by a set-packing constraint)*/
11212 /* try to replace the last item in the clique by a different item to obtain a slightly different clique */
11213 /* loop over remaining, smaller items and compare each item backwards against larger weights, starting with the second smallest weight */
11231 /* include this item together with all items that have a weight at least as large as the compare weight in a clique */
11250 /* choose a preceding, larger weight to compare small items against. Clique size is reduced by 1 simultaneously */
11267 SCIP_Real cliqueextractfactor,/**< lower clique size limit for greedy clique extraction algorithm (relative to largest clique) */
11328 /* calculate minimal activity due to negated cliques, and determine second maximal weight in each clique */
11357 /* free capacity is the rest of not used capacity if the smallest amount of weights due to negated cliques are used */
11361 SCIPdebugMsg(scip, "Try to add cliques in knapsack constraint handler for constraint %s; capacity = %" SCIP_LONGINT_FORMAT ", minactivity(due to neg. cliques) = %" SCIP_LONGINT_FORMAT ", freecapacity = %" SCIP_LONGINT_FORMAT ".\n",
11364 /* create negated cliques out of negated cliques, if we do not take the smallest weight of a cliques ... */
11387 SCIP_CALL( greedyCliqueAlgorithm(scip, poscliquevars, gainweights, nposcliquevars, freecapacity, FALSE, cliqueextractfactor, cutoff, nbdchgs) );
11395 SCIP_CALL( greedyCliqueAlgorithm(scip, consdata->vars, consdata->weights, nvars, consdata->capacity, TRUE, cliqueextractfactor, cutoff, nbdchgs) );
11416 /** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
11496 /** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
11508 {
11565 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
11596 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
11660 for( c = (consdata0->presolvedtiming == SCIP_PRESOLTIMING_EXHAUSTIVE ? firstchange : 0); c < chkind; ++c )
11680 if( consdata0->presolvedtiming >= SCIP_PRESOLTIMING_EXHAUSTIVE && consdata1->presolvedtiming >= SCIP_PRESOLTIMING_EXHAUSTIVE ) /*lint !e574*/
11714 SCIPdebugMsg(scip, "preprocess knapsack constraint pair <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
11751 /* if cons1 is possible contained in cons0 (consdata0->weights[v0] / quotient) must be greater equals consdata1->weights[v1] */
11752 if( iscons1incons0contained && SCIPisLT(scip, ((SCIP_Real) consdata0->weights[v0]) / quotient, (SCIP_Real) consdata1->weights[v1]) )
11758 /* if cons0 is possible contained in cons1 (consdata0->weight[v0] / quotient) must be less equals consdata1->weight[v1] */
11759 else if( iscons0incons1contained && SCIPisGT(scip, ((SCIP_Real) consdata0->weights[v0]) / quotient, (SCIP_Real) consdata1->weights[v1]) )
11787 /* neither one constraint was contained in another or we checked all variables of one constraint against the
11797 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
11808 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
11830 )
11841 SCIPdebugMsg(scip, "knapsack enforcement of %d/%d constraints for %s solution\n", nusefulconss, nconss,
11847 maxncuts = (SCIPgetDepth(scip) == 0 ? conshdlrdata->maxsepacutsroot : conshdlrdata->maxsepacuts);
11915 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
11917 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
11937 /* if the right hand side is non-infinite, we have to negate all variables with negative coefficient;
11938 * otherwise, we have to negate all variables with positive coefficient and multiply the row with -1
11972 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
12002 SCIPdebugMsg(scip, "upgrading constraint <%s> to knapsack constraint\n", SCIPconsGetName(cons));
12004 /* create the knapsack constraint (an automatically upgraded constraint is always unmodifiable) */
12006 SCIP_CALL( createNormalizedKnapsack(scip, upgdcons, SCIPconsGetName(cons), nvars, vars, vals, lhs, rhs,
12039 /** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
12072 /* all variables which are of integral type can be binary; this can be checked via the method SCIPvarIsBinary(var) */
12081 /** deinitialization method of constraint handler (called before transformed problem is freed) */
12100 /** presolving initialization method of constraint handler (called when presolving is about to begin) */
12114 /* all variables which are of integral type can be binary; this can be checked via the method SCIPvarIsBinary(var) */
12143 /** presolving deinitialization method of constraint handler (called after presolving has been finished) */
12157 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
12203 /** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
12281 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
12282 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
12285 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
12294 /** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
12344 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
12372 SCIP_CALL( separateCons(scip, conss[i], NULL, sepacardinality, conshdlrdata->usegubs, &cutoff, &ncuts) );
12413 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
12433 SCIP_CALL( separateCons(scip, conss[i], sol, sepacardinality, conshdlrdata->usegubs, &cutoff, &ncuts) );
12494 {
12526 /* do not propagate constraints with multi-aggregated variables, which should only happen in probing mode,
12536 SCIP_CALL( propagateCons(scip, conss[i], &cutoff, &redundant, &nfixedvars, conshdlrdata->negatedclique) );
12583 newchanges = (nrounds == 0 || nnewfixedvars > 0 || nnewaggrvars > 0 || nnewchgbds > 0 || nnewupgdconss > 0);
12635 SCIP_CALL( propagateCons(scip, cons, &cutoff, &redundant, nfixedvars, (presoltiming & SCIP_PRESOLTIMING_MEDIUM)) );
12658 /* check again for redundancy (applyFixings() might have decreased weightsum due to fixed-to-zero vars) */
12661 SCIPdebugMsg(scip, " -> knapsack constraint <%s> is redundant: weightsum=%" SCIP_LONGINT_FORMAT ", capacity=%" SCIP_LONGINT_FORMAT "\n",
12673 SCIP_CALL( simplifyInequalities(scip, cons, nfixedvars, ndelconss, nchgcoefs, nchgsides, naddconss, &cutoff) );
12690 SCIP_CALL( tightenWeights(scip, cons, presoltiming, nchgcoefs, nchgsides, naddconss, ndelconss, &cutoff) );
12696 if( conshdlrdata->dualpresolving && SCIPallowStrongDualReds(scip) && (presoltiming & SCIP_PRESOLTIMING_MEDIUM) != 0 )
12698 /* in case the knapsack constraints is independent of everything else, solve the knapsack and apply the
12716 if( !cutoff && conshdlrdata->presolusehashing && (presoltiming & SCIP_PRESOLTIMING_MEDIUM) != 0 )
12718 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
12719 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &cutoff, ndelconss) );
12722 if( (*ndelconss != oldndelconss) || (*nchgsides != oldnchgsides) || (*nchgcoefs != oldnchgcoefs) || (*naddconss != oldnaddconss) )
12727 if( !cutoff && firstchange < nconss && conshdlrdata->presolpairwise && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 )
12742 npaircomparisons += ((SCIPconsGetData(cons)->presolvedtiming < SCIP_PRESOLTIMING_EXHAUSTIVE) ? (SCIP_Longint) c : ((SCIP_Longint) c - (SCIP_Longint) firstchange));
12748 if( (*ndelconss != oldndelconss) || (*nchgsides != oldnchgsides) || (*nchgcoefs != oldnchgcoefs) )
12750 if( ((SCIP_Real) (*ndelconss - oldndelconss) + ((SCIP_Real) (*nchgsides - oldnchgsides))/2.0 +
12751 ((SCIP_Real) (*nchgcoefs - oldnchgcoefs))/10.0) / ((SCIP_Real) npaircomparisons) < MINGAINPERNMINCOMPARISONS )
12761 /* @todo upgrade to cardinality constraints: the code below relies on disabling the checking of the knapsack
12762 * constraint in the original problem, because the upgrade ensures that at most the given number of continuous
12763 * variables has a nonzero value, but not that the binary variables corresponding to the continuous variables with
12764 * value zero are set to zero as well. This can cause problems if the user accesses the values of the binary
12765 * variables (as the MIPLIB solution checker does), or the transformed problem is freed and the original problem
12766 * (possibly with some user modifications) is re-optimized. Until there is a way to force the binary variables to 0
12768 /* upgrade to cardinality constraints - only try to upgrade towards the end of presolving, since the process below is quite expensive */
12769 if ( ! cutoff && conshdlrdata->upgdcardinality && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) && ! conshdlrdata->upgradedcard )
12787 * - First, determine for each binary variable the number of cardinality constraints that can be upgraded to a
12788 * knapsack constraint and contain this variable; this number has to coincide with the number of variable up
12789 * locks; otherwise it would be infeasible to delete the knapsack constraints after the constraint update.
12823 /* check whether all variables are of the form 0 <= x_v <= u_v y_v for y_v \in \{0,1\} and zero objective */
12905 /* for each variable: check whether the number of cardinality constraints that can be upgraded to a
12910 if ( SCIPvarGetNLocksUpType(vars[v], SCIP_LOCKTYPE_MODEL) != SCIPhashmapGetImageInt(varhash, vars[v]) )
12920 SCIPdebugMessage("Upgrading knapsack constraint <%s> to cardinality constraint ...\n", SCIPconsGetName(cons));
12924 SCIP_CALL( SCIPcreateConsCardinality(scip, &cardcons, SCIPconsGetName(cons), nvars, cardvars, (int) consdata->capacity, vars, cardweights,
12927 SCIPconsIsLocal(cons), SCIPconsIsDynamic(cons), SCIPconsIsRemovable(cons), SCIPconsIsStickingAtNode(cons)) );
12942 /* We need to disable the original knapsack constraint, since it might happen that the binary variables
12943 * are 1 although the continuous variables are 0. Thus, the knapsack constraint might be violated,
13009 /* according to negated cliques the minweightsum and all variables which are fixed to one which led to a fixing of
13010 * another negated clique variable to one, the inferinfo was chosen to be the negative of the position in the
13017 /* locate the inference variable and calculate the capacity that has to be used up to conclude infervar == 0;
13018 * inferinfo stores the position of the inference variable (but maybe the variables were resorted)
13031 /* add fixed-to-one variables up to the point, that their weight plus the weight of the conflict variable exceeds
13049 /* NOTE: It might be the case that capsum < consdata->capacity. This is due the fact that the fixing of the variable
13050 * to zero can included negated clique information. A negated clique means, that at most one of the clique
13051 * variables can be zero. These information can be used to compute a minimum activity of the constraint and
13054 * Even if capsum < consdata->capacity we still reported a complete reason since the minimum activity is based
13055 * on global variable bounds. It might even be the case that we reported to many variables which are fixed to
13093 }
13186 -SCIPinfinity(scip), (SCIP_Real) SCIPgetCapacityKnapsack(sourcescip, sourcecons), varmap, consmap,
13187 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
13293 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
13325 /** constraint method of constraint handler which returns the number of variables (if possible) */
13370 case SCIP_EVENTTYPE_VARFIXED: /* the variable should be removed from the constraint in presolving */
13377 /* if the variable was aggregated or multiaggregated, we must signal to propagation that we are no longer merged */
13384 (SCIPvarGetStatus(var) == SCIP_VARSTATUS_NEGATED && SCIPvarGetStatus(SCIPvarGetNegatedVar(var)) == SCIP_VARSTATUS_AGGREGATED) )
13388 case SCIP_EVENTTYPE_IMPLADDED: /* further preprocessing might be possible due to additional implications */
13422 SCIP_CALL( SCIPincludeEventhdlrBasic(scip, &(conshdlrdata->eventhdlr), EVENTHDLR_NAME, EVENTHDLR_DESC,
13457 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolKnapsack,CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
13459 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropKnapsack, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
13462 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpKnapsack, consSepasolKnapsack, CONSHDLR_SEPAFREQ,
13469 /* include the linear constraint to knapsack constraint upgrade in the linear constraint handler */
13470 SCIP_CALL( SCIPincludeLinconsUpgrade(scip, linconsUpgdKnapsack, LINCONSUPGD_PRIORITY, CONSHDLR_NAME) );
13476 "multiplier on separation frequency, how often knapsack cuts are separated (-1: never, 0: only at root)",
13477 &conshdlrdata->sepacardfreq, TRUE, DEFAULT_SEPACARDFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
13480 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cuts",
13484 "lower clique size limit for greedy clique extraction algorithm (relative to largest clique)",
13485 &conshdlrdata->cliqueextractfactor, TRUE, DEFAULT_CLIQUEEXTRACTFACTOR, 0.0, 1.0, NULL, NULL) );
13532 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
13536 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
13558 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
13587 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
13589 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
13615 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
13629 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
13630 * method SCIPcreateConsKnapsack(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
13634 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
13644 )
13756 /** gets the array of variables in the knapsack constraint; the user must not modify this array! */
13779 /** gets the array of weights in the knapsack constraint; the user must not modify this array! */
13854 /** returns the linear relaxation of the given knapsack constraint; may return NULL if no LP row was yet created;
13883 SCIP_Bool* infeasible /**< pointer to return whether the problem was detected to be infeasible */
13898 nconss = onlychecked ? SCIPconshdlrGetNCheckConss(conshdlr) : SCIPconshdlrGetNActiveConss(conshdlr);
void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
void SCIPsortPtrInt(void **ptrarray, int *intarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4212
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONS *cons, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1422
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:99
Definition: cons_knapsack.c:280
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1693
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:572
Definition: type_result.h:42
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_knapsack.c:6563
Definition: type_result.h:46
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:6605
static SCIP_RETCODE getCover(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int *ncovervars, int *nnoncovervars, SCIP_Longint *coverweight, SCIP_Bool *found, SCIP_Bool modtransused, int *ntightened, SCIP_Bool *fractional)
Definition: cons_knapsack.c:2402
SCIP_Bool SCIPvarsHaveCommonClique(SCIP_VAR *var1, SCIP_Bool value1, SCIP_VAR *var2, SCIP_Bool value2, SCIP_Bool regardimplics)
Definition: var.c:11465
SCIP_RETCODE SCIPsolveKnapsackExactly(SCIP *scip, int nitems, SCIP_Longint *weights, SCIP_Real *profits, SCIP_Longint capacity, int *items, int *solitems, int *nonsolitems, int *nsolitems, int *nnonsolitems, SCIP_Real *solval, SCIP_Bool *success)
Definition: cons_knapsack.c:1097
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5203
SCIP_RETCODE SCIPcacheRowExtensions(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1635
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2128
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:780
public methods for SCIP parameter handling
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3296
SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:17693
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:595
SCIP_RETCODE SCIPgetBinvarRepresentative(SCIP *scip, SCIP_VAR *var, SCIP_VAR **repvar, SCIP_Bool *negated)
Definition: scip_var.c:1597
static SCIP_RETCODE GUBsetCalcCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques, SCIP_Real *solvals)
Definition: cons_knapsack.c:2147
static SCIP_DECL_CONSRESPROP(consRespropKnapsack)
Definition: cons_knapsack.c:12990
SCIP_RETCODE SCIPcreateEmptyRowUnspec(SCIP *scip, SCIP_ROW **row, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1482
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:793
Definition: struct_scip.h:68
static SCIP_RETCODE GUBsetMoveVar(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars, int var, int oldgubcons, int newgubcons)
Definition: cons_knapsack.c:1850
SCIP_RETCODE SCIPhashmapSetImageInt(SCIP_HASHMAP *hashmap, void *origin, int image)
Definition: misc.c:3307
static SCIP_RETCODE addNegatedCliques(SCIP *const scip, SCIP_CONS *const cons, SCIP_Bool *const cutoff, int *const nbdchgs)
Definition: cons_knapsack.c:10959
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1992
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2497
public methods for memory management
Definition: type_conflict.h:59
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:354
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:886
static SCIP_DECL_HASHKEYVAL(hashKeyValKnapsackcons)
Definition: cons_knapsack.c:11471
SCIP_RETCODE SCIPflushRowExtensions(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1658
#define SCIPallocClearBufferArray(scip, ptr, num)
Definition: scip_mem.h:126
void SCIPsortDownLongPtrPtrIntInt(SCIP_Longint *longarray, void **ptrarray1, void **ptrarray2, int *intarray1, int *intarray2, int len)
public methods for implications, variable bounds, and cliques
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool sepacuts, SCIP_Bool usegubs, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:6227
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:825
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:18074
SCIP_RETCODE SCIPvarGetProbvarBinary(SCIP_VAR **var, SCIP_Bool *negated)
Definition: var.c:12300
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1613
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3354
public methods for conflict handler plugins and conflict analysis
SCIP_RETCODE SCIPseparateKnapsackCuts(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_SOL *sol, SCIP_Bool usegubs, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5571
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:317
#define SCIPallocClearBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:97
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1758
static void updateWeightSums(SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Longint weightdelta)
Definition: cons_knapsack.c:635
Definition: type_result.h:58
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1701
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1317
SCIP_RETCODE SCIPgetNegatedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **negvars)
Definition: scip_var.c:1560
SCIP_RETCODE SCIPaddConflictBinvar(SCIP *scip, SCIP_VAR *var)
Definition: scip_conflict.c:556
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:497
SCIP_CLIQUE ** SCIPvarGetCliques(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:18264
static SCIP_RETCODE getLiftingSequenceGUB(SCIP *scip, SCIP_GUBSET *gubset, SCIP_Real *solvals, SCIP_Longint *weights, int *varsC1, int *varsC2, int *varsF, int *varsR, int nvarsC1, int nvarsC2, int nvarsF, int nvarsR, int *gubconsGC1, int *gubconsGC2, int *gubconsGFC1, int *gubconsGR, int *ngubconsGC1, int *ngubconsGC2, int *ngubconsGFC1, int *ngubconsGR, int *ngubconscapexceed, int *maxgubvarssize)
Definition: cons_knapsack.c:2940
Definition: type_set.h:46
SCIP_RETCODE SCIPsetConshdlrDeactive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDEACTIVE((*consdeactive)))
Definition: scip_cons.c:687
static SCIP_RETCODE separateSequLiftedMinimalCoverInequality(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *mincovervars, int *nonmincovervars, int nmincovervars, int nnonmincovervars, SCIP_SOL *sol, SCIP_GUBSET *gubset, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:4808
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:104
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Longint weight)
Definition: cons_knapsack.c:6269
static SCIP_DECL_CONSINITLP(consInitlpKnapsack)
Definition: cons_knapsack.c:12304
Definition: struct_var.h:207
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1470
SCIP_RETCODE SCIPparseVarName(SCIP *scip, const char *str, SCIP_VAR **var, char **endptr)
Definition: scip_var.c:533
SCIP_RETCODE SCIPsetConshdlrInitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITPRE((*consinitpre)))
Definition: scip_cons.c:486
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_knapsack.c:6890
static SCIP_RETCODE separateSupLiftedMinimalCoverInequality(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *mincovervars, int *nonmincovervars, int nmincovervars, int nnonmincovervars, SCIP_Longint mincoverweight, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5209
static SCIP_RETCODE dualWeightsTightening(SCIP *scip, SCIP_CONS *cons, int *ndelconss, int *nchgcoefs, int *nchgsides, int *naddconss)
Definition: cons_knapsack.c:8431
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_knapsack.c:781
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, SCIP_Bool *redundant, int *nfixedvars, SCIP_Bool usenegatedclique)
Definition: cons_knapsack.c:7382
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:832
Definition: cons_knapsack.c:290
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4554
SCIP_RETCODE SCIPhashmapCreate(SCIP_HASHMAP **hashmap, BMS_BLKMEM *blkmem, int mapsize)
Definition: misc.c:3024
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:175
Definition: cons_knapsack.c:282
Definition: cons_knapsack.c:299
static SCIP_RETCODE insertZerolist(SCIP *scip, int **liftcands, int *nliftcands, int **firstidxs, SCIP_Longint **zeroweightsums, int **zeroitems, int **nextidxs, int *zeroitemssize, int *nzeroitems, int probindex, SCIP_Bool value, int knapsackidx, SCIP_Longint knapsackweight, SCIP_Bool *memlimitreached)
Definition: cons_knapsack.c:9720
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1988
static SCIP_RETCODE separateSequLiftedExtendedWeightInequality(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *feassetvars, int *nonfeassetvars, int nfeassetvars, int nnonfeassetvars, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5042
SCIP_RETCODE SCIPsolveKnapsackApproximately(SCIP *scip, int nitems, SCIP_Longint *weights, SCIP_Real *profits, SCIP_Longint capacity, int *items, int *solitems, int *nonsolitems, int *nsolitems, int *nnonsolitems, SCIP_Real *solval)
Definition: cons_knapsack.c:1601
static void consdataChgWeight(SCIP_CONSDATA *consdata, int item, SCIP_Longint newweight)
Definition: cons_knapsack.c:835
SCIP_RETCODE SCIPhashmapInsertInt(SCIP_HASHMAP *hashmap, void *origin, int image)
Definition: misc.c:3142
Definition: type_expr.h:62
SCIP_Longint SCIPconshdlrGetNCutsFound(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4861
static void getPartitionNoncovervars(SCIP *scip, SCIP_Real *solvals, int *noncovervars, int nnoncovervars, int *varsF, int *varsR, int *nvarsF, int *nvarsR)
Definition: cons_knapsack.c:2806
public methods for problem variables
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:323
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5320
SCIP_VAR ** SCIPgetVarsKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13765
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:229
SCIP_Real SCIPgetDualsolKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13811
Definition: type_result.h:49
void SCIPselectWeightedDownRealLongRealInt(SCIP_Real *realarray1, SCIP_Longint *longarray, SCIP_Real *realarray3, int *intarray, SCIP_Real *weights, SCIP_Real capacity, int len, int *medianpos)
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:132
void SCIPsortDownRealInt(SCIP_Real *realarray, int *intarray, int len)
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:445
Definition: struct_sepa.h:46
SCIP_RETCODE SCIPaddCoefKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Longint weight)
Definition: cons_knapsack.c:13663
Constraint handler for the set partitioning / packing / covering constraints .
public methods for SCIP variables
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:756
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:618
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1480
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:901
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:802
static SCIP_RETCODE GUBsetGetCliquePartition(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars, SCIP_Real *solvals)
Definition: cons_knapsack.c:2305
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:208
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:943
public methods for numerical tolerances
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2246
Definition: cons_knapsack.c:289
static SCIP_DECL_CONSDELETE(consDeleteKnapsack)
Definition: cons_knapsack.c:12242
public methods for querying solving statistics
Definition: struct_sol.h:73
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_knapsack.c:11830
Definition: cons_knapsack.c:309
SCIP_Bool SCIPhashmapExists(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3373
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4259
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:301
public methods for the branch-and-bound tree
static SCIP_DECL_HASHGETKEY(hashGetKeyKnapsackcons)
Definition: cons_knapsack.c:11418
static SCIP_RETCODE GUBconsDelVar(SCIP *scip, SCIP_GUBCONS *gubcons, int var, int gubvarsidx)
Definition: cons_knapsack.c:1813
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1242
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6921
static SCIP_RETCODE stableSort(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR **vars, SCIP_Longint *weights, int *cliquestartposs, SCIP_Bool usenegatedclique)
Definition: cons_knapsack.c:7046
SCIP_RETCODE SCIPsetConshdlrInitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITSOL((*consinitsol)))
Definition: scip_cons.c:438
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:105
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool printreason, SCIP_Bool *violated)
Definition: cons_knapsack.c:979
Definition: struct_misc.h:137
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:7170
SCIP_Bool SCIPisCutEfficacious(SCIP *scip, SCIP_SOL *sol, SCIP_ROW *cut)
Definition: scip_cut.c:117
public methods for managing constraints
SCIP_RETCODE SCIPchgCapacityKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_Longint capacity)
Definition: cons_knapsack.c:13711
Constraint handler for knapsack constraints of the form , x binary and .
void SCIPsortDownPtrInt(void **ptrarray, int *intarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:341
static SCIP_DECL_HASHKEYEQ(hashKeyEqKnapsackcons)
Definition: cons_knapsack.c:11428
static SCIP_DECL_CONSEXITSOL(consExitsolKnapsack)
Definition: cons_knapsack.c:12213
static void getPartitionCovervars(SCIP *scip, SCIP_Real *solvals, int *covervars, int ncovervars, int *varsC1, int *varsC2, int *nvarsC1, int *nvarsC2)
Definition: cons_knapsack.c:2676
Definition: type_result.h:44
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nfixedvars, int *ndelconss, int *nchgcoefs, int *nchgsides, int *naddconss, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:9408
Definition: struct_cons.h:46
void SCIPsortIntInt(int *intarray1, int *intarray2, int len)
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:458
Definition: struct_cons.h:126
static SCIP_DECL_CONSDELVARS(consDelvarsKnapsack)
Definition: cons_knapsack.c:13127
static SCIP_RETCODE catchEvents(SCIP *scip, SCIP_CONS *cons, SCIP_CONSDATA *consdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_knapsack.c:545
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3474
public methods for event handler plugins and event handlers
SCIP_RETCODE SCIPcleanupConssKnapsack(SCIP *scip, SCIP_Bool onlychecked, SCIP_Bool *infeasible)
Definition: cons_knapsack.c:13888
SCIP_RETCODE SCIPgetSolVals(SCIP *scip, SCIP_SOL *sol, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_sol.c:1398
static void GUBsetSwapVars(SCIP *scip, SCIP_GUBSET *gubset, int var1, int var2)
Definition: cons_knapsack.c:1941
Constraint handler for logicor constraints (equivalent to set covering, but algorithms are suited fo...
SCIP_RETCODE SCIPreleaseNlRow(SCIP *scip, SCIP_NLROW **nlrow)
Definition: scip_nlp.c:1025
static SCIP_RETCODE sequentialUpAndDownLiftingGUB(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars, int ngubconscapexceed, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *gubconsGC1, int *gubconsGC2, int *gubconsGFC1, int *gubconsGR, int ngubconsGC1, int ngubconsGC2, int ngubconsGFC1, int ngubconsGR, int alpha0, int *liftcoefs, SCIP_Real *cutact, int *liftrhs, int maxgubvarssize)
Definition: cons_knapsack.c:3942
static SCIP_DECL_CONSINITPRE(consInitpreKnapsack)
Definition: cons_knapsack.c:12110
SCIP_CONS * SCIPfindOrigCons(SCIP *scip, const char *name)
Definition: scip_prob.c:2898
Definition: cons_knapsack.c:277
Definition: type_result.h:45
SCIP_Bool SCIPisEfficacious(SCIP *scip, SCIP_Real efficacy)
Definition: scip_cut.c:135
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4437
SCIP_RETCODE SCIPsetConsChecked(SCIP *scip, SCIP_CONS *cons, SCIP_Bool check)
Definition: scip_cons.c:1292
static SCIP_DECL_CONSENFORELAX(consEnforelaxKnapsack)
Definition: cons_knapsack.c:12464
static SCIP_DECL_CONSACTIVE(consActiveKnapsack)
Definition: cons_knapsack.c:13093
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:366
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4202
static SCIP_Longint safeAddMinweightsGUB(SCIP_Longint val1, SCIP_Longint val2)
Definition: cons_knapsack.c:3871
Definition: type_var.h:53
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1960
SCIP_RETCODE SCIPcreateConsKnapsack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_knapsack.c:13569
Definition: type_set.h:52
Definition: type_retcode.h:42
public methods for problem copies
static void GUBconsFree(SCIP *scip, SCIP_GUBCONS **gubcons)
Definition: cons_knapsack.c:1760
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:819
SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:17705
static SCIP_DECL_CONSENFOPS(consEnfopsKnapsack)
Definition: cons_knapsack.c:12473
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2627
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:285
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:806
Definition: type_result.h:51
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:703
void SCIPsortPtrPtrIntInt(void **ptrarray1, void **ptrarray2, int *intarray1, int *intarray2, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
SCIP_RETCODE SCIPcreateConsBasicKnapsack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Longint *weights, SCIP_Longint capacity)
Definition: cons_knapsack.c:13644
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:250
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:641
static SCIP_RETCODE createRelaxation(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:873
static SCIP_RETCODE getLiftingSequence(SCIP *scip, SCIP_Real *solvals, SCIP_Longint *weights, int *varsF, int *varsC2, int *varsR, int nvarsF, int nvarsC2, int nvarsR)
Definition: cons_knapsack.c:2854
public methods for constraint handler plugins and constraints
Definition: type_retcode.h:43
SCIP_Longint SCIPgetCapacityKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13685
static SCIP_DECL_CONSPRESOL(consPresolKnapsack)
Definition: cons_knapsack.c:12563
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num, SCIP_Bool transformed)
Definition: cons_knapsack.c:597
SCIP_RETCODE SCIPcreateConsSetpack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_setppc.c:9279
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_knapsack.c:6349
public data structures and miscellaneous methods
SCIP_BOUNDTYPE * SCIPvarGetImplTypes(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:18211
static SCIP_RETCODE enlargeMinweights(SCIP *scip, SCIP_Longint **minweightsptr, int *minweightslen, int *minweightssize, int newlen)
Definition: cons_knapsack.c:3443
static SCIP_DECL_CONSINITSOL(consInitsolKnapsack)
Definition: cons_knapsack.c:12196
static SCIP_RETCODE calcCliquepartition(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONSDATA *consdata, SCIP_Bool normalclique, SCIP_Bool negatedclique)
Definition: cons_knapsack.c:477
static SCIP_RETCODE superadditiveUpLifting(SCIP *scip, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int ncovervars, int nnoncovervars, SCIP_Longint coverweight, SCIP_Real *liftcoefs, SCIP_Real *cutact)
Definition: cons_knapsack.c:4677
SCIP_RETCODE SCIPincludeConshdlrKnapsack(SCIP *scip)
Definition: cons_knapsack.c:13416
Definition: type_var.h:55
static SCIP_RETCODE greedyCliqueAlgorithm(SCIP *const scip, SCIP_VAR **items, SCIP_Longint *weights, int nitems, SCIP_Longint capacity, SCIP_Bool sorteditems, SCIP_Real cliqueextractfactor, SCIP_Bool *const cutoff, int *const nbdchgs)
Definition: cons_knapsack.c:11161
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2482
static SCIP_DECL_CONSEXITPRE(consExitpreKnapsack)
Definition: cons_knapsack.c:12153
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Longint *weights, SCIP_Longint capacity)
Definition: cons_knapsack.c:655
Definition: struct_lp.h:201
static SCIP_RETCODE eventdataCreate(SCIP *scip, SCIP_EVENTDATA **eventdata, SCIP_CONS *cons, SCIP_Longint weight)
Definition: cons_knapsack.c:345
SCIP_RETCODE SCIPcalcCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques)
Definition: scip_var.c:7256
public methods for LP management
SCIP_RETCODE SCIPcreateEmptyRowSepa(SCIP *scip, SCIP_ROW **row, SCIP_SEPA *sepa, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1453
static SCIP_RETCODE GUBsetCreate(SCIP *scip, SCIP_GUBSET **gubset, int nvars, SCIP_Longint *weights, SCIP_Longint capacity)
Definition: cons_knapsack.c:1981
public methods for cuts and aggregation rows
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:400
SCIP_RETCODE SCIPcreateNlRow(SCIP *scip, SCIP_NLROW **nlrow, const char *name, SCIP_Real constant, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:921
Definition: type_var.h:54
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8276
Definition: cons_knapsack.c:281
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4351
static void normalizeWeights(SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_knapsack.c:8357
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:779
Constraint handler for linear constraints in their most general form, .
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2558
SCIP_RETCODE SCIPcreateConsLogicor(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_logicor.c:5307
static SCIP_RETCODE prepareCons(SCIP *scip, SCIP_CONS *cons, int *nfixedvars, int *ndelconss, int *nchgcoefs)
Definition: cons_knapsack.c:9291
SCIP_Real * SCIPvarGetImplBounds(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:18225
static SCIP_RETCODE deleteRedundantVars(SCIP *scip, SCIP_CONS *cons, SCIP_Longint frontsum, int splitpos, int *nchgcoefs, int *nchgsides, int *naddconss)
Definition: cons_knapsack.c:7918
static SCIP_RETCODE changePartitionCovervars(SCIP *scip, SCIP_Longint *weights, int *varsC1, int *varsC2, int *nvarsC1, int *nvarsC2)
Definition: cons_knapsack.c:2725
int SCIPconshdlrGetNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4631
static SCIP_RETCODE dropEvents(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_knapsack.c:572
public methods for the LP relaxation, rows and columns
static SCIP_RETCODE dualPresolving(SCIP *scip, SCIP_CONS *cons, int *nfixedvars, int *ndelconss, SCIP_Bool *deleted)
Definition: cons_knapsack.c:6748
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17813
public methods for nonlinear relaxation
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3696
static SCIP_RETCODE upgradeCons(SCIP *scip, SCIP_CONS *cons, int *ndelconss, int *naddconss)
Definition: cons_knapsack.c:7846
static SCIP_DECL_CONSSEPALP(consSepalpKnapsack)
Definition: cons_knapsack.c:12321
Definition: type_set.h:45
methods for sorting joint arrays of various types
SCIP_VAR ** SCIPvarGetImplVars(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:18196
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:510
static SCIP_RETCODE sequentialUpAndDownLifting(SCIP *scip, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *varsM1, int *varsM2, int *varsF, int *varsR, int nvarsM1, int nvarsM2, int nvarsF, int nvarsR, int alpha0, int *liftcoefs, SCIP_Real *cutact, int *liftrhs)
Definition: cons_knapsack.c:3493
public methods for branching rule plugins and branching
static SCIP_RETCODE createNormalizedKnapsack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_knapsack.c:11896
static SCIP_DECL_LINCONSUPGD(linconsUpgdKnapsack)
Definition: cons_knapsack.c:11991
Definition: struct_misc.h:89
static SCIP_RETCODE GUBconsCreate(SCIP *scip, SCIP_GUBCONS **gubcons)
Definition: cons_knapsack.c:1739
public methods for managing events
general public methods
static SCIP_RETCODE GUBsetCheck(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars)
Definition: cons_knapsack.c:2062
SCIP_RETCODE SCIPcreateConsCardinality(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, int cardval, SCIP_VAR **indvars, SCIP_Real *weights, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_cardinality.c:3357
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:484
static SCIP_DECL_CONSGETNVARS(consGetNVarsKnapsack)
Definition: cons_knapsack.c:13335
public methods for solutions
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:390
SCIP_CONS ** SCIPconshdlrGetCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4574
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *ndelconss)
Definition: cons_knapsack.c:11508
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1267
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:414
Definition: type_lp.h:57
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:660
public methods for the probing mode
constraint handler for cardinality constraints
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1119
static SCIP_Bool checkMinweightidx(SCIP_Longint *weights, SCIP_Longint capacity, int *covervars, int ncovervars, SCIP_Longint coverweight, int minweightidx, int j)
Definition: cons_knapsack.c:2633
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:534
Definition: cons_knapsack.c:279
public methods for message output
static SCIP_DECL_CONSDEACTIVE(consDeactiveKnapsack)
Definition: cons_knapsack.c:13105
Definition: type_var.h:97
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:857
static SCIP_DECL_CONSGETVARS(consGetVarsKnapsack)
Definition: cons_knapsack.c:13313
Definition: cons_knapsack.c:291
SCIP_RETCODE SCIPcalcNegatedCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques)
Definition: scip_var.c:7475
static SCIP_RETCODE GUBconsAddVar(SCIP *scip, SCIP_GUBCONS *gubcons, int var)
Definition: cons_knapsack.c:1778
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_knapsack.c:532
SCIP_RETCODE SCIPvarsGetProbvarBinary(SCIP_VAR ***vars, SCIP_Bool **negatedarr, int nvars)
Definition: var.c:12268
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:848
Definition: struct_implics.h:75
Definition: struct_nlp.h:64
int SCIPgetNVarsKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13742
int SCIPconshdlrGetNCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4617
public methods for message handling
static SCIP_DECL_CONSSEPASOL(consSepasolKnapsack)
Definition: cons_knapsack.c:12395
static SCIP_RETCODE tightenWeights(SCIP *scip, SCIP_CONS *cons, SCIP_PRESOLTIMING presoltiming, int *nchgcoefs, int *nchgsides, int *naddconss, int *ndelconss, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:10370
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2212
static SCIP_DECL_CONSENFOLP(consEnfolpKnapsack)
Definition: cons_knapsack.c:12455
static SCIP_RETCODE removeZeroWeights(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:6539
Definition: cons_knapsack.c:278
Definition: type_retcode.h:54
SCIP_RETCODE SCIPcalcIntegralScalar(SCIP_Real *vals, int nvals, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Real *intscalar, SCIP_Bool *success)
Definition: misc.c:9468
Definition: type_set.h:53
static SCIP_RETCODE makeCoverMinimal(SCIP *scip, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int *ncovervars, int *nnoncovervars, SCIP_Longint *coverweight, SCIP_Bool modtransused)
Definition: cons_knapsack.c:5323
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:471
void SCIPsortPtrPtrLongIntInt(void **ptrarray1, void **ptrarray2, SCIP_Longint *longarray, int *intarray1, int *intarray2, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:111
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:881
void SCIPsortDownRealIntLong(SCIP_Real *realarray, int *intarray, SCIP_Longint *longarray, int len)
static SCIP_RETCODE getFeasibleSet(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int *ncovervars, int *nnoncovervars, SCIP_Longint *coverweight, SCIP_Bool modtransused, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5472
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, int *ndelconss)
Definition: cons_knapsack.c:11632
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_knapsack.c:519
public methods for separators
Definition: type_retcode.h:44
static SCIP_RETCODE eventdataFree(SCIP *scip, SCIP_EVENTDATA **eventdata)
Definition: cons_knapsack.c:363
static SCIP_RETCODE detectRedundantVars(SCIP *scip, SCIP_CONS *cons, int *ndelconss, int *nchgcoefs, int *nchgsides, int *naddconss)
Definition: cons_knapsack.c:8169
SCIP_RETCODE SCIPsetConshdlrActive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSACTIVE((*consactive)))
Definition: scip_cons.c:664
Definition: type_retcode.h:52
int SCIPhashmapGetImageInt(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3231
SCIP_RETCODE SCIPcreateEmptyRowConshdlr(SCIP *scip, SCIP_ROW **row, SCIP_CONSHDLR *conshdlr, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1391
SCIP_Real SCIPgetDualfarkasKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13837
Definition: objbenders.h:43
SCIP_Longint * SCIPgetWeightsKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13788
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:462
SCIP_ROW * SCIPgetRowKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13865
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyKnapsack)
Definition: cons_knapsack.c:12032
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:230
public methods for global and local (sub)problems
Definition: type_var.h:52
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9032
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1361
static SCIP_RETCODE changePartitionFeasiblesetvars(SCIP *scip, SCIP_Longint *weights, int *varsC1, int *varsC2, int *nvarsC1, int *nvarsC2)
Definition: cons_knapsack.c:2765
static SCIP_RETCODE tightenWeightsLift(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:9806
void SCIPsortDownLongPtr(SCIP_Longint *longarray, void **ptrarray, int len)
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPinferBinvarCons(SCIP *scip, SCIP_VAR *var, SCIP_Bool fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5723
static SCIP_RETCODE addCliques(SCIP *const scip, SCIP_CONS *const cons, SCIP_Real cliqueextractfactor, SCIP_Bool *const cutoff, int *const nbdchgs)
Definition: cons_knapsack.c:11272
Definition: type_result.h:48
Definition: struct_event.h:204
SCIP_RETCODE SCIPgetNegatedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **negvar)
Definition: scip_var.c:1527
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5788
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
static void computeMinweightsGUB(SCIP_Longint *minweights, SCIP_Longint *finished, SCIP_Longint *unfinished, int minweightslen)
Definition: cons_knapsack.c:3890
methods for selecting (weighted) k-medians
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:275
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1217
void SCIPsortDownLongPtrInt(SCIP_Longint *longarray, void **ptrarray, int *intarray, int len)
memory allocation routines