cons_linear.c
Go to the documentation of this file.
17 * @brief Constraint handler for linear constraints in their most general form, \f$lhs <= a^T x <= rhs\f$.
47 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
92 #define CONSHDLR_ENFOPRIORITY -1000000 /**< priority of the constraint handler for constraint enforcing */
93 #define CONSHDLR_CHECKPRIORITY -1000000 /**< priority of the constraint handler for checking feasibility */
94 #define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
95 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
96 #define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
98 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
99 #define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
100 #define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
101 #define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
103 #define CONSHDLR_PRESOLTIMING (SCIP_PRESOLTIMING_FAST | SCIP_PRESOLTIMING_EXHAUSTIVE) /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
113 #define DEFAULT_TIGHTENBOUNDSFREQ 1 /**< multiplier on propagation frequency, how often the bounds are tightened */
114 #define DEFAULT_MAXROUNDS 5 /**< maximal number of separation rounds per node (-1: unlimited) */
115 #define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
117 #define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in root node */
118 #define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
119 #define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
120 #define DEFAULT_NMINCOMPARISONS 200000 /**< number for minimal pairwise presolving comparisons */
121 #define DEFAULT_MINGAINPERNMINCOMP 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
123 #define DEFAULT_SORTVARS TRUE /**< should variables be sorted after presolve w.r.t their coefficient absolute for faster
125 #define DEFAULT_CHECKRELMAXABS FALSE /**< should the violation for a constraint with side 0.0 be checked relative
127 #define DEFAULT_MAXAGGRNORMSCALE 0.0 /**< maximal allowed relative gain in maximum norm for constraint aggregation
129 #define DEFAULT_MAXEASYACTIVITYDELTA 1e6 /**< maximum activity delta to run easy propagation on linear constraint
131 #define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
133 #define DEFAULT_SEPARATEALL FALSE /**< should all constraints be subject to cardinality cut generation instead of only
135 #define DEFAULT_AGGREGATEVARIABLES TRUE /**< should presolving search for redundant variables in equations */
136 #define DEFAULT_SIMPLIFYINEQUALITIES TRUE /**< should presolving try to simplify inequalities */
138 #define DEFAULT_SINGLETONSTUFFING TRUE /**< should stuffing of singleton continuous variables be performed? */
139 #define DEFAULT_SINGLEVARSTUFFING FALSE /**< should single variable stuffing be performed, which tries to fulfill
141 #define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
144 #define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
147 #define DEFAULT_DETECTPARTIALOBJECTIVE TRUE/**< should presolving try to detect subsets of constraints parallel to the
150 #define DEFAULT_RANGEDROWARTCONS TRUE /**< should presolving and propagation extract sub-constraints from ranged rows and equations? */
154 #define DEFAULT_MULTAGGRREMOVE FALSE /**< should multi-aggregations only be performed if the constraint can be
159 #define MAXSCALEDCOEFINTEGER 0 /**< maximal coefficient value after scaling if all variables are of integral
163 #define MAXVALRECOMP 1e+06 /**< maximal abolsute value we trust without recomputing the activity */
164 #define MINVALRECOMP 1e-05 /**< minimal abolsute value we trust without recomputing the activity */
167 #define QUADCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of quadratic constraints */
168 #define NONLINCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of nonlinear constraints */
170 /* @todo add multi-aggregation of variables that are in exactly two equations (, if not numerically an issue),
182 SCIP_Real minactivity; /**< minimal value w.r.t. the variable's local bounds for the constraint's
184 SCIP_Real maxactivity; /**< maximal value w.r.t. the variable's local bounds for the constraint's
190 SCIP_Real glbminactivity; /**< minimal value w.r.t. the variable's global bounds for the constraint's
192 SCIP_Real glbmaxactivity; /**< maximal value w.r.t. the variable's global bounds for the constraint's
194 SCIP_Real lastglbminactivity; /**< last global minimal activity which was computed by complete summation
196 SCIP_Real lastglbmaxactivity; /**< last global maximal activity which was computed by complete summation
198 SCIP_Real maxactdelta; /**< maximal activity contribution of a single variable, or SCIP_INVALID if invalid */
199 SCIP_VAR* maxactdeltavar; /**< variable with maximal activity contribution, or NULL if invalid */
206 int minactivityneginf; /**< number of coefficients contributing with neg. infinite value to minactivity */
207 int minactivityposinf; /**< number of coefficients contributing with pos. infinite value to minactivity */
208 int maxactivityneginf; /**< number of coefficients contributing with neg. infinite value to maxactivity */
209 int maxactivityposinf; /**< number of coefficients contributing with pos. infinite value to maxactivity */
210 int minactivityneghuge; /**< number of coefficients contributing with huge neg. value to minactivity */
211 int minactivityposhuge; /**< number of coefficients contributing with huge pos. value to minactivity */
212 int maxactivityneghuge; /**< number of coefficients contributing with huge neg. value to maxactivity */
213 int maxactivityposhuge; /**< number of coefficients contributing with huge pos. value to maxactivity */
214 int glbminactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbminactivity */
215 int glbminactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbminactivity */
216 int glbmaxactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbmaxactivity */
217 int glbmaxactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbmaxactivity */
218 int glbminactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbminactivity */
219 int glbminactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbminactivity */
220 int glbmaxactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbmaxactivity */
221 int glbmaxactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbmaxactivity */
228 unsigned int rangedrowpropagated:2; /**< did we perform ranged row propagation on this constraint?
240 unsigned int changed:1; /**< was constraint changed since last aggregation round in preprocessing? */
243 unsigned int upgraded:1; /**< is the constraint upgraded and will it be removed after preprocessing? */
248 unsigned int binvarssorted:1; /**< are binary variables sorted w.r.t. the absolute of their coefficient? */
250 unsigned int hascontvar:1; /**< does the constraint contain at least one continuous variable? */
251 unsigned int hasnonbinvar:1; /**< does the constraint contain at least one non-binary variable? */
252 unsigned int hasnonbinvalid:1; /**< is the information stored in hasnonbinvar and hascontvar valid? */
253 unsigned int checkabsolute:1; /**< should the constraint be checked w.r.t. an absolute feasibilty tolerance? */
268 SCIP_LINCONSUPGRADE** linconsupgrades; /**< linear constraint upgrade methods for specializing linear constraints */
269 SCIP_Real maxaggrnormscale; /**< maximal allowed relative gain in maximum norm for constraint aggregation
271 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
273 SCIP_Real mingainpernmincomp; /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise comparison round */
274 SCIP_Real maxeasyactivitydelta;/**< maximum activity delta to run easy propagation on linear constraint
278 int tightenboundsfreq; /**< multiplier on propagation frequency, how often the bounds are tightened */
285 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
286 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
287 SCIP_Bool separateall; /**< should all constraints be subject to cardinality cut generation instead of only
289 SCIP_Bool aggregatevariables; /**< should presolving search for redundant variables in equations */
290 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
292 SCIP_Bool singletonstuffing; /**< should stuffing of singleton continuous variables be performed? */
293 SCIP_Bool singlevarstuffing; /**< should single variable stuffing be performed, which tries to fulfill
296 SCIP_Bool checkrelmaxabs; /**< should the violation for a constraint with side 0.0 be checked relative
298 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
301 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
304 SCIP_Bool detectpartialobjective;/**< should presolving try to detect subsets of constraints parallel to
306 SCIP_Bool rangedrowpropagation;/**< should presolving and propagation try to improve bounds, detect
309 SCIP_Bool rangedrowartcons; /**< should presolving and propagation extract sub-constraints from ranged rows and equations?*/
312 SCIP_Bool multaggrremove; /**< should multi-aggregations only be performed if the constraint can be
335 PROPRULE_1_RANGEDROW = 3, /**< fixed variables and gcd of all left variables tighten bounds of a
338 };
350 } asbits;
352 } val;
415 /** constructs an inference information out of a propagation rule and a position number, returns info as int */
447 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->linconsupgrades, conshdlrdata->linconsupgradessize, newsize) );
449 }
476 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
509 }
544 (*conshdlrdata)->eventhdlr = eventhdlr;
566 SCIPfreeBlockMemoryArrayNull(scip, &(*conshdlrdata)->linconsupgrades, (*conshdlrdata)->linconsupgradessize);
590 {
592 SCIPwarningMessage(scip, "Try to add already known upgrade message %p for constraint handler %s.\n", linconsupgd, conshdlrname);
615 SCIP_CALL( conshdlrdataEnsureLinconsupgradesSize(scip, conshdlrdata, conshdlrdata->nlinconsupgrades+1) );
620 conshdlrdata->linconsupgrades[i] = conshdlrdata->linconsupgrades[i-1];
633 /** installs rounding locks for the given variable associated to the given coefficient in the linear constraint */
666 /** removes rounding locks for the given variable associated to the given coefficient in the linear constraint */
908 if( SCIPisConsCompressionEnabled(scip) && SCIPisEQ(scip, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var)) )
950 /* due to compressed copying, we may have fixed variables contributing to the left and right hand side */
1021 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
1093 SCIP_CALL( SCIPwriteVarsLinearsum(scip, file, consdata->vars, consdata->vals, consdata->nvars, TRUE) );
1126 SCIPmessageFPrintInfo(SCIPgetMessagehdlr(scip), file, " [%s] <%s>: ", SCIPconshdlrGetName(SCIPconsGetHdlr(cons)), SCIPconsGetName(cons));
1246 {
1248 bound = (SCIPvarGetBestBoundType(consdata->vars[i]) == SCIP_BOUNDTYPE_LOWER) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1294 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1296 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1321 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbLocal(consdata->vars[i]) : SCIPvarGetLbLocal(consdata->vars[i]);
1323 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1348 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbGlobal(consdata->vars[i]) : SCIPvarGetUbGlobal(consdata->vars[i]);
1350 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1375 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbGlobal(consdata->vars[i]) : SCIPvarGetLbGlobal(consdata->vars[i]);
1377 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1441 /** checks the type of all variables of the constraint and sets hasnonbinvar and hascontvar flags accordingly */
1536 {
1590 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1642 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1644 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1698 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1700 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1768 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1796 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1821 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1827 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1830 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1836 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1839 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1854 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1860 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1863 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1869 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1872 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1924 /* update the activity, if the current value is valid and there was a change in the finite part */
1973 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1982 consdataUpdateActivities(scip, consdata, var, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, FALSE, checkreliability);
1984 assert(!SCIPisInfinity(scip, -consdata->minactivity) && !SCIPisInfinity(scip, consdata->minactivity));
1985 assert(!SCIPisInfinity(scip, -consdata->maxactivity) && !SCIPisInfinity(scip, consdata->maxactivity));
1998 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2007 consdataUpdateActivities(scip, consdata, var, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, FALSE, checkreliability);
2009 assert(!SCIPisInfinity(scip, -consdata->minactivity) && !SCIPisInfinity(scip, consdata->minactivity));
2010 assert(!SCIPisInfinity(scip, -consdata->maxactivity) && !SCIPisInfinity(scip, consdata->maxactivity));
2022 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2030 consdataUpdateActivities(scip, consdata, NULL, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, TRUE, checkreliability);
2032 assert(!SCIPisInfinity(scip, -consdata->glbminactivity) && !SCIPisInfinity(scip, consdata->glbminactivity));
2033 assert(!SCIPisInfinity(scip, -consdata->glbmaxactivity) && !SCIPisInfinity(scip, consdata->glbmaxactivity));
2045 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2053 consdataUpdateActivities(scip, consdata, NULL, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, TRUE, checkreliability);
2055 assert(!SCIPisInfinity(scip, -consdata->glbminactivity) && !SCIPisInfinity(scip, consdata->glbminactivity));
2056 assert(!SCIPisInfinity(scip, -consdata->glbmaxactivity) && !SCIPisInfinity(scip, consdata->glbmaxactivity));
2060 /** updates minimum and maximum activity and maximum absolute value for coefficient addition */
2067 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2103 consdataUpdateActivitiesLb(scip, consdata, var, 0.0, SCIPvarGetLbLocal(var), val, checkreliability);
2104 consdataUpdateActivitiesUb(scip, consdata, var, 0.0, SCIPvarGetUbLocal(var), val, checkreliability);
2105 consdataUpdateActivitiesGlbLb(scip, consdata, 0.0, SCIPvarGetLbGlobal(var), val, checkreliability);
2106 consdataUpdateActivitiesGlbUb(scip, consdata, 0.0, SCIPvarGetUbGlobal(var), val, checkreliability);
2110 /** updates minimum and maximum activity for coefficient deletion, invalidates maximum absolute value if necessary */
2117 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2160 consdataUpdateActivitiesLb(scip, consdata, var, SCIPvarGetLbLocal(var), 0.0, val, checkreliability);
2161 consdataUpdateActivitiesUb(scip, consdata, var, SCIPvarGetUbLocal(var), 0.0, val, checkreliability);
2162 consdataUpdateActivitiesGlbLb(scip, consdata, SCIPvarGetLbGlobal(var), 0.0, val, checkreliability);
2163 consdataUpdateActivitiesGlbUb(scip, consdata, SCIPvarGetUbGlobal(var), 0.0, val, checkreliability);
2167 /** updates minimum and maximum activity for coefficient change, invalidates maximum absolute value if necessary */
2175 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2255 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
2261 /* @todo do something more clever here, e.g. if oldval * newval >= 0, do the update directly */
2360 /** gets minimal activity for constraint and given values of counters for infinite and huge contributions
2361 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2374 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2378 SCIP_Bool* issettoinfinity /**< pointer to store whether minactivity was set to infinity or calculated */
2405 /* if we have neg. huge contributions, we only know that -infty is a relaxation of the minactivity */
2412 /* we do not need a good relaxation and we have positve huge contributions, so we just return -infty as activity */
2443 * times the minimum value counting as "huge" plus finite (and non-huge) part of minactivity - delta
2461 /** gets maximal activity for constraint and given values of counters for infinite and huge contributions
2462 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2475 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2479 SCIP_Bool* issettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2506 /* if we have pos. huge contributions, we only know that +infty is a relaxation of the maxactivity */
2513 /* we do not need a good relaxation and we have positve huge contributions, so we just return +infty as activity */
2544 * times the minimum value counting as "huge" plus the finite (and non-huge) part of maxactivity minus delta
2571 SCIP_Bool* minisrelax, /**< pointer to store whether the returned minactivity is just a relaxation,
2574 SCIP_Bool* maxisrelax /**< pointer to store whether the returned maxactivity is just a relaxation,
2700 SCIP_Bool* minisrelax, /**< pointer to store whether the returned residual minactivity is just a
2703 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned residual maxactivity is just a
2706 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2707 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2708 )
2755 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2756 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2793 consdata->minactivityposhuge, consdata->minactivityneghuge, absval * minactbound, FALSE, goodrelax,
2797 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2798 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2835 consdata->maxactivityposhuge, consdata->maxactivityneghuge, absval * maxactbound, FALSE, goodrelax,
2847 SCIP_Real* glbminactivity, /**< pointer to store the minimal activity, or NULL, if not needed */
2848 SCIP_Real* glbmaxactivity, /**< pointer to store the maximal activity, or NULL, if not needed */
2849 SCIP_Bool* minisrelax, /**< pointer to store whether the returned minactivity is just a relaxation,
2852 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned maxactivity is just a relaxation,
2855 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2856 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2911 SCIP_Real* minresactivity, /**< pointer to store the minimal residual activity, or NULL, if not needed */
2912 SCIP_Real* maxresactivity, /**< pointer to store the maximal residual activity, or NULL, if not needed */
2913 SCIP_Bool* minisrelax, /**< pointer to store whether the returned residual minactivity is just a
2916 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned residual maxactivity is just a
2919 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2920 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2921 )
2962 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2963 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2969 getMinActivity(scip, consdata, consdata->glbminactivityposinf - 1, consdata->glbminactivityneginf,
2977 getMinActivity(scip, consdata, consdata->glbminactivityposinf, consdata->glbminactivityneginf - 1,
3010 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
3011 * and contribution of variable set to zero that has to be subtracted from finite part of activity
3017 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf, consdata->glbmaxactivityneginf - 1,
3025 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf - 1, consdata->glbmaxactivityneginf,
3092 else if( (SCIPisInfinity(scip, solval) && negsign) || (SCIPisInfinity(scip, -solval) && !negsign) )
3099 SCIPdebugMsg(scip, "activity of linear constraint: %.15g, %d positive infinity values, %d negative infinity values \n", activity, nposinf, nneginf);
3141 }
3188 /** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3207 )
3325 /* count binary variables and permute variables such that binaries appear first in the sorted vars array */
3374 assert((v >= consdata->nbinvars && !SCIPvarIsBinary(vars[v])) || (v < consdata->nbinvars && SCIPvarIsBinary(vars[v])));
3471 /* the left hand side switched from -infinity to a non-infinite value -> install rounding locks */
3496 /* the left hand side switched from a non-infinite value to -infinity -> remove rounding locks */
3517 /* check whether the left hand side is increased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3599 /* the right hand side switched from infinity to a non-infinite value -> install rounding locks */
3624 /* the right hand side switched from a non-infinite value to infinity -> remove rounding locks */
3645 /* check whether the right hand side is decreased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3803 && (SCIPvarCompare(consdata->vars[consdata->nvars-2], consdata->vars[consdata->nvars-1]) <= 0);
3849 var = consdata->vars[pos];
3890 consdata->sorted = consdata->sorted && (pos + 2 >= consdata->nvars || (SCIPvarCompare(consdata->vars[pos], consdata->vars[pos + 1]) <= 0));
3894 /* if at most one variable is left, the activities should be recalculated (to correspond exactly to the bounds
3906 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4050 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4058 SCIPwarningMessage(scip, "coefficient %.15g of variable <%s> in linear constraint <%s> scaled to zero (scalar: %.15g)\n",
4080 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4092 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasCeil, we subtract 0.5 before ceiling up
4154 * Apply the following rules in the given order, until the sign of the factor is determined. Later rules only apply,
4159 * 4. the number of positive coefficients must not be smaller than the number of negative coefficients
4162 * Try to identify a rational representation of the fractional coefficients, and multiply all coefficients
4252 SCIPdebugMsg(scip, "divide linear constraint with %g, because all coefficients are in absolute value the same\n", maxabsval);
4294 epsilon = SCIPepsilon(scip) * 0.9; /* slightly decrease epsilon to be safe in rational conversion below */
4303 maxmult = MIN(maxmult, (SCIP_Longint) (MAXSCALEDCOEFINTEGER / MAX(maxabsval, 1.0))); /*lint !e835*/
4329 /* 3. the absolute value of the right hand side must be greater than that of the left hand side */
4338 /* 4. the number of positive coefficients must not be smaller than the number of negative coefficients */
4391 /* it might be that we have really big coefficients, but all are integral, in that case we want to divide them by
4411 SCIPdebugMsg(scip, "scale linear constraint with %" SCIP_LONGINT_FORMAT " to make coefficients integral\n", scm);
4460 /* since the lhs/rhs is not respected for gcd calculation it can happen that we detect infeasibility */
4463 if( SCIPisEQ(scip, consdata->lhs, consdata->rhs) && !SCIPisFeasIntegral(scip, consdata->rhs / gcd) )
4475 SCIPdebugMsg(scip, "divide linear constraint by greatest common divisor %" SCIP_LONGINT_FORMAT "\n", gcd);
4548 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4759 if( SCIPisEQ(scip, lhssubtrahend, consdata->lhs) && SCIPisFeasGE(scip, REALABS(lhssubtrahend), 1.0) )
4775 if( SCIPisEQ(scip, rhssubtrahend, consdata->rhs ) && SCIPisFeasGE(scip, REALABS(rhssubtrahend), 1.0) )
4790 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have
4809 /** for each variable in the linear constraint, except the inferred variable, adds one bound to the conflict analysis'
4810 * candidate store (bound depends on sign of coefficient and whether the left or right hand side was the reason for the
4811 * inference variable's bound change); the conflict analysis can be initialized with the linear constraint being the
4819 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
4848 /* for each variable, add the bound to the conflict queue, that is responsible for the minimal or maximal
4849 * residual value, depending on whether the left or right hand side is responsible for the bound change:
4854 /* if the variable is integral we only need to add reason bounds until the propagation could be applied */
4867 /* calculate the minimal and maximal global activity of all other variables involved in the constraint */
4872 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, &minresactivity, NULL,
4875 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, NULL, &maxresactivity,
4889 if( (reasonisrhs && !isminsettoinfinity && !minisrelax) || (!reasonisrhs && !ismaxsettoinfinity && !maxisrelax) ) /*lint !e644*/
4896 /* calculate the residual capacity that would be left, if the variable would be set to one more / one less
4951 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound */
4953 rescap -= vals[i] * (SCIPgetVarLbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetLbGlobal(vars[i]));
4957 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound */
4959 rescap -= vals[i] * (SCIPgetVarUbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetUbGlobal(vars[i]));
4979 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound is responsible */
4984 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound is responsible */
4992 /** for each variable in the linear ranged row constraint, except the inferred variable, adds the bounds of all fixed
4993 * variables to the conflict analysis' candidate store; the conflict analysis can be initialized
4994 * with the linear constraint being the conflict detecting constraint by using NULL as inferred variable
5001 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5033 if( !SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetLbGlobal(vars[v])) )
5039 if( !SCIPisEQ(scip, SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetUbGlobal(vars[v])) )
5049 if( SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE)) )
5051 /* add all bounds of fixed variables which lead to the boundchange of the given inference variable */
5108 /** resolves a propagation on the given variable by supplying the variables needed for applying the corresponding
5119 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5120 SCIP_RESULT* result /**< pointer to store the result of the propagation conflict resolving call */
5161 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5162 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5171 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5172 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5181 /* the bound of the variable was tightened, because some variables were already fixed and the leftover only allow
5193 SCIPerrorMessage("invalid inference information %d in linear constraint <%s> at position %d for %s bound of variable <%s>\n",
5204 /** analyzes conflicting bounds on given constraint, and adds conflict constraint to problem */
5213 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5219 /* add the conflicting bound for each variable of infeasible constraint to conflict candidate queue */
5247 + consdata->maxactivityposinf
5268 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5292 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
5293 SCIPconsGetName(cons), SCIPvarGetName(var), lb, oldub, consdata->vals[pos], consdata->minactivity, consdata->maxactivity, consdata->lhs, consdata->rhs, newub);
5298 SCIP_CALL( SCIPinferVarUbCons(scip, var, newub, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5337 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5361 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
5362 SCIPconsGetName(cons), SCIPvarGetName(var), oldlb, ub, consdata->vals[pos], consdata->minactivity, consdata->maxactivity, consdata->lhs, consdata->rhs, newlb);
5367 SCIP_CALL( SCIPinferVarLbCons(scip, var, newlb, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5403 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5466 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5478 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5515 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5527 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5563 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5575 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5611 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5623 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5655 /** analyzes conflicting bounds on given ranged row constraint, and adds conflict constraint to problem */
5678 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5684 /* add the conflicting fixed variables of this ranged row constraint to conflict candidate queue */
5698 * Check ranged rows for possible solutions, possibly detect infeasibility, fix variables due to having only one possible
5699 * solution, tighten bounds if having only two possible solutions or add constraints which propagate a subset of
5784 addartconss = conshdlrdata->rangedrowartcons && SCIPgetDepth(scip) < 1 && !SCIPinProbing(scip) && !SCIPinRepropagation(scip);
5789 /* we are not allowed to add artificial constraints during propagation; if nothing changed on this constraint since
5790 * the last rangedrowpropagation, we can stop; otherwise, we mark this constraint to be rangedrowpropagated without
5808 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5837 * coefficient so that all variables in this group will have a gcd greater than 1, this group will be implicitly
5840 * the second group will contain all left unfixed variables and will be saved as infcheckvars with corresponding
5841 * coefficients as infcheckvals, the order of these variables should be the same as in the consdata object
5844 /* find first integral variables with integral coefficient greater than 1, thereby collecting all other unfixed
5854 /* partition the variables, do not change the order of collection, because it might be used later on */
5858 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5886 while( v < consdata->nvars && SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) );
5900 assert(!SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])));
5901 assert(SCIPisIntegral(scip, consdata->vals[v]) && SCIPvarGetType(consdata->vars[v]) != SCIP_VARTYPE_CONTINUOUS && REALABS(consdata->vals[v]) > 1.5);
5908 /* go on to partition the variables, do not change the order of collection, because it might be used later on;
5912 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5925 if( !SCIPisIntegral(scip, consdata->vals[v]) || SCIPvarGetType(consdata->vars[v]) == SCIP_VARTYPE_CONTINUOUS ||
5964 /* it should not happen that all variables are of integral type and have a gcd >= 2, this should be done by
6023 SCIPdebugMsg(scip, "minactinfvarsinvalid = %u, minactinfvars = %g, maxactinfvarsinvalid = %u, maxactinfvars = %g, gcd = %lld, ninfcheckvars = %d, ncontvars = %d\n",
6024 minactinfvarsinvalid, minactinfvars, maxactinfvarsinvalid, maxactinfvars, gcd, ninfcheckvars, ncontvars);
6026 /* @todo maybe we took the wrong variables as infcheckvars we could try to exchange integer variables */
6027 /* @todo if minactinfvarsinvalid or maxactinfvarsinvalid are true, try to exchange both partitions to maybe get valid
6029 /* @todo calculate minactivity and maxactivity for all non-intcheckvars, and use this for better bounding,
6031 * that therefore the conflict variables in addConflictFixedVars() need to be extended by all variables which
6035 /* check if between left hand side and right hand side exist a feasible point, if not the constraint leads to
6040 SCIPdebugMsg(scip, "no feasible value exist, constraint <%s> lead to infeasibility", SCIPconsGetName(cons));
6045 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6062 gcdinfvars = SCIPcalcGreComDiv(gcdinfvars, (SCIP_Longint)(REALABS(infcheckvals[v]) + feastol));
6070 /* compute solutions for this ranged row, if all variables are of integral type with integral coefficients */
6127 SCIPdebugMsg(scip, "here nsols %s %d, minsolvalue = %g, maxsolvalue = %g, ninfcheckvars = %d, nunfixedvars = %d\n",
6135 SCIPdebugMsg(scip, "no solution found; constraint <%s> lead to infeasibility\n", SCIPconsGetName(cons));
6140 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6168 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6189 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6201 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6283 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6290 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6295 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals,
6347 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6368 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6390 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6402 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6509 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newlb) );
6530 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newub) );
6538 /* at least two solutions and more than one variable, so we add a new constraint which bounds the feasible
6541 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6563 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons1_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6568 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6577 /* @todo maybe add constraint for all variables which are not infcheckvars, lhs should be minvalue, rhs
6598 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6648 if( v == consdata->nvars && !SCIPisHugeValue(scip, -minact) && !SCIPisHugeValue(scip, maxact) )
6663 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons2_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6668 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6694 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
6737 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
6758 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6769 (!SCIPisUbBetter(scip, newub, lb, ub) && (!SCIPisFeasLT(scip, newub, ub) || !SCIPvarIsIntegral(var))
6776 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
6777 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6793 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6810 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6825 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6826 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6842 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6860 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6871 || (!SCIPisLbBetter(scip, newlb, lb, ub) && (!SCIPisFeasGT(scip, newlb, lb) || !SCIPvarIsIntegral(var))
6878 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6879 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6895 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6911 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6926 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g], newub=%.15g\n",
6927 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6943 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6963 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7050 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minisrelax, &maxisrelax);
7054 slack = (SCIPisInfinity(scip, consdata->rhs) || SCIPisInfinity(scip, -minactivity)) ? SCIPinfinity(scip) : (consdata->rhs - minactivity);
7055 surplus = (SCIPisInfinity(scip, -consdata->lhs) || SCIPisInfinity(scip, maxactivity)) ? SCIPinfinity(scip) : (maxactivity - consdata->lhs);
7065 /* as long as the bounds might be tightened again, try to tighten them; abort after a maximal number of rounds */
7073 for( nrounds = 0; (force || consdata->boundstightened < tightenmode) && nrounds < MAXTIGHTENROUNDS; ++nrounds ) /*lint !e574*/
7078 /* try to tighten the bounds of each variable in the constraint. During solving process, the binary variable
7104 && !SCIPisFeasEQ(scip, SCIPvarGetUbLocal(consdata->vars[v]), SCIPvarGetLbLocal(consdata->vars[v])) )
7111 SCIPdebugMessage("linear constraint <%s> found %d bound changes in round %d\n", SCIPconsGetName(cons),
7119 assert(*cutoff || SCIPisFeasEQ(scip, SCIPvarGetLbLocal(consdata->vars[0]), SCIPvarGetUbLocal(consdata->vars[0])));
7131 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
7132 SCIP_Bool checkrelmaxabs, /**< Should the violation for a constraint with side 0.0 be checked relative
7168 SCIPdebugMsg(scip, " consdata activity=%.15g (lhs=%.15g, rhs=%.15g, row=%p, checklprows=%u, rowinlp=%u, sol=%p, hascurrentnodelp=%u)\n",
7190 /* the activity of pseudo solutions may be invalid if it comprises positive and negative infinity contributions; we
7206 else if( !consdata->checkabsolute && (SCIPisFeasLT(scip, activity, consdata->lhs) || SCIPisFeasGT(scip, activity, consdata->rhs)) )
7219 /* the (much) more complicated check: we try to disregard random noise and violations of a 0.0 side which are
7268 SCIPdebugMsg(scip, " lhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7322 SCIPdebugMsg(scip, " rhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7358 ((!SCIPisInfinity(scip, -consdata->lhs) && SCIPisGT(scip, consdata->lhs-activity, SCIPfeastol(scip))) ||
7359 (!SCIPisInfinity(scip, consdata->rhs) && SCIPisGT(scip, activity-consdata->rhs, SCIPfeastol(scip)))) )
7401 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, SCIPconsGetHdlr(cons), SCIPconsGetName(cons), consdata->lhs, consdata->rhs,
7404 SCIP_CALL( SCIPaddVarsToRow(scip, consdata->row, consdata->nvars, consdata->vars, consdata->vals) );
7462 /** separates linear constraint: adds linear constraint as cut, if violated by given solution */
7470 SCIP_Bool separateall, /**< should all constraints be subject to cardinality cut generation instead of only
7492 SCIP_CALL( checkCons(scip, cons, sol, (sol != NULL), conshdlrdata->checkrelmaxabs, &violated) );
7505 /* we only want to call the knapsack cardinality cut separator for rows that have a non-zero dual solution */
7559 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7602 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7643 SCIPdebugMsg(scip, "linear constraint <%s> found %d bound changes and %d fixings\n", SCIPconsGetName(cons), *nchgbds - oldnchgbds, nfixedvars);
7653 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
7657 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (rhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7668 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (lhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7677 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
7679 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7682 /* remove the constraint locally unless it has become empty, in which case it is removed globally */
7740 SCIPdebugMsg(scip, "converting variable <%s> with fixed bounds [%.15g,%.15g] into fixed variable fixed at %.15g\n",
7777 * a) if the constraint has a finite right hand side and the negative infinity counters for the minactivity are zero
7778 * then add the variables as a clique for which all successive pairs of coefficients fullfill the following
7783 * and also add the binary to binary implication also for non-successive variables for which the same argument
7788 * e.g. 5.3 x1 + 3.6 x2 + 3.3 x3 + 2.1 x4 <= 5.5 (all x are binary) would lead to the clique (x1, x2, x3) and the
7791 * b) if the constraint has a finite left hand side and the positive infinity counters for the maxactivity are zero
7792 * then add the variables as a clique for which all successive pairs of coefficients fullfill the follwoing
7797 * and also add the binary to binary implication also for non-successive variables for which the same argument
7804 * c) the constraint has a finite right hand side and a finite minactivity then add the variables as a negated
7805 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7810 * and also add the binary to binary implication also for non-successive variables for which the
7815 * e.g. -4 x1 -3 x2 - 2 x3 + 2 x4 <= -4 would lead to the (negated) clique (~x1, ~x2) and the binary to binary
7818 * d) the constraint has a finite left hand side and a finite maxactivity then add the variables as a negated
7819 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7824 * and also add the binary to binary implication also for non-successive variables for which the same argument
7831 * 2. if the linear constraint represents a set-packing or set-partitioning constraint, the whole constraint is added
7839 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7883 * for now we only add binary to non-binary implications, and this is only done for the binary variable with the
7884 * maximal absolute contribution and also only if this variable would force all other variables to their bound
7892 /* @todo we might extract implications/cliques if SCIPvarIsBinary() variables exist and we have integer variables
7910 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
7912 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
7913 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
7917 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
7980 /* if the right hand side and the minimal activity are finite and changing the variable with the biggest
7981 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
7984 if( finiterhs && finiteminact && SCIPisEQ(scip, consdata->glbminactivity, consdata->rhs - maxabscontrib) )
7996 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8003 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8015 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8021 /* if the left hand side and the maximal activity are finite and changing the variable with the biggest
8022 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8025 if( finitelhs && finitemaxact && SCIPisEQ(scip, consdata->glbmaxactivity, consdata->lhs - maxabscontrib) )
8037 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8044 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8056 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8065 SCIPdebugMsg(scip, "extracted %d implications from constraint %s which led to %d bound changes, %scutoff detetcted\n", nimpls, SCIPconsGetName(cons), *nchgbds - oldnchgbds, *cutoff ? "" : "no ");
8070 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8119 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8121 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8122 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8126 /* 1. we wheck whether some variables do not fit together into this constraint and add the corresponding clique
8129 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8166 /* setppc constraints will be handled later; we need at least two binary variables with same sign to extract
8202 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8203 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8241 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8250 SCIP_CALL( SCIPaddClique(scip, clqvars, NULL, lastfit - i + 2, FALSE, &infeasible, &nbdchgs) );
8278 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8351 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8352 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8392 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8403 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), NULL, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8431 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8511 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8530 SCIP_CALL( SCIPaddClique(scip, &(binvars[j+1]), values, i - j, FALSE, &infeasible, &nbdchgs) );
8552 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8563 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), values, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8593 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8671 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8710 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8719 SCIP_CALL( SCIPaddClique(scip, clqvars, values, lastfit - i + 2, FALSE, &infeasible, &nbdchgs) );
8756 /* check if all variables are binary, if the coefficients are +1 or -1, and if the right hand side is equal
8757 * to 1 - number of negative coefficients, or if the left hand side is equal to number of positive coefficients - 1
8788 SCIP_CALL( SCIPaddClique(scip, vars, values, nvars, SCIPisEQ(scip, consdata->lhs, consdata->rhs), &infeasible, &nbdchgs) );
8855 SCIPdebugMsg(scip, "rounding sides=[%.15g,%.15g] of linear constraint <%s> with integral coefficients and variables only "
8889 /** tightens coefficients of binary, integer, and implicit integer variables due to activity bounds in presolving:
8896 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
8905 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
8913 * A deviation of only one from their bound makes the lhs/rhs feasible (i.e., redundant), even if all other
8914 * variables are set to their "worst" bound. If all variables which are not surely non-redundant cannot make
8915 * the lhs/rhs redundant, even if they are set to their "best" bound, they can be removed from the constraint.
8916 * E.g., for binary variables and an inequality x_1 +x_2 +10y_1 +10y_2 >= 5, setting either of the y_i to one
8917 * suffices to fulfill the inequality, whereas the x_i do not contribute to feasibility and can be removed.
8919 * @todo use also some tightening procedures for (knapsack) constraints with non-integer coefficients, see
8932 SCIP_Real minactivity; /* minimal value w.r.t. the variable's local bounds for the constraint's
8934 SCIP_Real maxactivity; /* maximal value w.r.t. the variable's local bounds for the constraint's
8970 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
8992 SCIPisGE(scip, minactivity + val, consdata->lhs) && SCIPisLE(scip, maxactivity - val, consdata->rhs) )
9009 if( !SCIPisInfinity(scip, -consdata->lhs) && consdata->minactivityneginf + consdata->minactivityneginf == 0 )
9012 lval -= otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9015 if( !SCIPisInfinity(scip,consdata->rhs) && consdata->maxactivityneginf + consdata->maxactivityneginf == 0 )
9018 rval += otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9033 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9050 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
9054 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9063 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9098 SCIPisGE(scip, minactivity - val, consdata->lhs) && SCIPisLE(scip, maxactivity + val, consdata->rhs) )
9115 if( !SCIPisInfinity(scip,-consdata->lhs) && consdata->minactivityneginf + consdata->minactivityneginf == 0 )
9118 lval += otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9121 if( !SCIPisInfinity(scip,consdata->rhs) && consdata->maxactivityneginf + consdata->maxactivityneginf == 0 )
9124 rval -= otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9139 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9156 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
9160 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9169 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9212 /* if the lhs is finite, we will check in the following whether the not non-redundant variables can make lhs feasible;
9213 * this is not valid, if the minactivity is -\infty (aggrlhs would be minus infinity in the following computation)
9214 * or if huge values contributed to the minactivity, because the minactivity is then just a relaxation
9215 * (<= the exact minactivity), and we might falsely claim variables to be redundant in the following
9218 if( !SCIPisInfinity(scip, -consdata->lhs) && (SCIPisInfinity(scip, -minactivity) || minactisrelax) )
9221 /* if the rhs is finite, we will check in the following whether the not non-redundant variables can make rhs feasible;
9222 * this is not valid, if the maxactivity is \infty (aggrrhs would be infinity in the following computation)
9223 * or if huge values contributed to the maxactivity, because the maxactivity is then just a relaxation
9224 * (>= the exact maxactivity), and we might falsely claim variables to be redundant in the following
9227 if( !SCIPisInfinity(scip, consdata->rhs) && (SCIPisInfinity(scip, maxactivity) || maxactisrelax) )
9231 * surely non-redundant variables are all those where a deviation from the bound makes the lhs/rhs redundant
9236 /* check if the constraint contains variables which are redundant. The reasoning is the following:
9237 * Each non-redundant variable can make the lhs/rhs feasible with a deviation of only one in the bound.
9269 SCIPisLT(scip, minactivity + val, consdata->lhs) || SCIPisGT(scip, maxactivity - val, consdata->rhs) )
9273 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9283 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
9285 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9296 SCIPisLT(scip, minactivity - val, consdata->lhs) || SCIPisGT(scip, maxactivity + val, consdata->rhs) )
9298 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9308 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
9310 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9318 /* the following update step is needed in every iteration cause otherwise it is possible that the surely none-
9320 * e.g. y_1 + 16y_2 >= 25, y1 with bounds [9,12], y2 with bounds [0,2], minactivity would be 9, it follows that
9321 * y_2 is surely not redundant and y_1 is redundant so we would first delete y1 and without updating the sides
9329 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9336 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9348 /* processes equality with only one variable by fixing the variable and deleting the constraint */
9404 /* processes equality with exactly two variables by aggregating one of the variables and deleting the constraint */
9435 SCIP_CALL( SCIPaggregateVars(scip, consdata->vars[0], consdata->vars[1], consdata->vals[0], consdata->vals[1],
9462 /** calculates the new lhs and rhs of the constraint after the given variable is aggregated out */
9512 /* processes equality with more than two variables by multi-aggregating one of the variables and converting the equality
9513 * into an inequality; if multi-aggregation is not possible, tries to identify one continuous or integer variable that
9516 * @todo Check whether a more clever way of avoiding aggregation of variables containing implicitly integer variables
9527 )
9572 SCIPdebugMsg(scip, "linear constraint <%s>: try to multi-aggregate equality\n", SCIPconsGetName(cons));
9576 * maxnlocksstay: maximal sum of lock numbers if the constraint does not become redundant after the aggregation
9577 * maxnlocksremove: maximal sum of lock numbers if the constraint can be deleted after the aggregation
9584 /* If the constraint becomes redundant, 3 non-zeros are removed, and we get 1 additional non-zero for each
9585 * constraint the variable appears in. Thus, the variable must appear in at most 3 other constraints.
9591 /* If the constraint becomes redundant, 4 non-zeros are removed, and we get 2 additional non-zeros for each
9592 * constraint the variable appears in. Thus, the variable must appear in at most 2 other constraints.
9598 /* If the constraint is redundant but has more than 4 variables, we can only accept one other constraint. */
9649 assert(!SCIPconsIsChecked(cons) || SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) >= 1); /* because variable is locked in this equality */
9694 /* check, if variable is used in too many other constraints, even if this constraint could be deleted */
9695 nlocks = SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL);
9743 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
9746 /* do not perform the multi-aggregation due to numerics, if we have huge contributions in the residual
9753 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9758 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
9761 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity)
9765 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9776 /* if the constraint does not become redundant, only accept the variable if it does not appear in
9795 /* if all coefficients and variables are integral, the right hand side must also be integral */
9808 /* check whether the the infimum and the supremum of the multi-aggregation can be get infinite */
9845 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
9846 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
9849 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
9853 /* if the slack variable is of integer type, and the constraint itself may take fractional values,
9897 SCIPdebugMsg(scip, "linear constraint <%s>: multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(slackvar));
9903 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g], nlocks=%d, maxnlocks=%d, removescons=%u\n",
9904 aggrconst, SCIPvarGetName(slackvar), SCIPvarGetLbGlobal(slackvar), SCIPvarGetUbGlobal(slackvar),
9918 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
9928 SCIPdebugMsg(scip, "linear constraint <%s>: redundant after multi-aggregation\n", SCIPconsGetName(cons));
9945 /* upgrade continuous variable to an implicit one, if the absolute value of the coefficient is one */
9949 SCIPdebugMsg(scip, "linear constraint <%s>: converting continuous variable <%s> to implicit integer variable\n",
9954 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
9960 /* aggregate continuous variable to an implicit one, if the absolute value of the coefficient is unequal to one */
9961 /* @todo check if the aggregation coefficient should be in some range(, which is not too big) */
9975 SCIP_CALL( SCIPcreateVar(scip, &newvar, newvarname, -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
9976 SCIP_VARTYPE_IMPLINT, SCIPvarIsInitial(var), SCIPvarIsRemovable(var), NULL, NULL, NULL, NULL, NULL) );
9991 SCIPdebugMsg(scip, "linear constraint <%s>: aggregating continuous variable <%s> to newly created implicit integer variable <%s>, aggregation factor = %g\n",
9995 SCIP_CALL( SCIPaggregateVars(scip, var, newvar, absval, -1.0, 0.0, &infeasible, &redundant, &aggregated) );
9999 SCIPdebugMsg(scip, "infeasible aggregation of variable <%s> to implicit variable <%s>, domain is empty\n",
10018 /* we do not have any event on vartype changes, so we need to manually force this constraint to be presolved
10030 /* this seems to help for rococo instances, but does not for rout (where all coefficients are +/- 1.0)
10043 SCIPdebugMsg(scip, "linear constraint <%s>: converting integer variable <%s> to implicit integer variable\n",
10048 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10059 /** checks if the given variables and their coefficient are equal (w.r.t. scaling factor) to the objective function */
10078 nvars = consdata->nvars;
10097 /* if a variable has a zero objective coefficient the linear constraint is not a subset of the objective
10135 /** check if the linear equality constraint is equal to a subset of the objective function; if so we can remove the
10164 /* check if the linear equality constraints does not have more variables than the objective function */
10170 (nvars == nobjvars && (!conshdlrdata->detectcutoffbound || !conshdlrdata->detectlowerbound)) )
10176 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10188 SCIPdebugMsg(scip, "linear equality constraint <%s> == %g (offset %g) is a subset of the objective function\n",
10204 /** updates the cutoff if the given primal bound (which is implied by the given constraint) is better */
10214 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are still
10232 /* we cannot disable the enforcement and propagation on ranged rows, because the cutoffbound could only have
10237 /* in case the cutoff bound is worse then the currently known one, we additionally avoid enforcement and
10248 /** check if the linear constraint is parallel to objective function; if so update the cutoff bound and avoid that the
10279 /* check if the linear inequality constraints has the same number of variables as the objective function and if the
10288 /* There are no variables in the ojective function and in the constraint. Thus, the constraint is redundant or proves
10289 * infeasibility. Since we have a pure feasibility problem, we do not want to set a cutoff or lower bound.
10294 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10310 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10322 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10331 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10344 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10356 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10365 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10428 /** returns whether the linear sum of all variables/coefficients except the given one divided by the given value is always
10447 if( v != pos && (!SCIPvarIsIntegral(consdata->vars[v]) || !SCIPisIntegral(scip, consdata->vals[v]/val)) )
10449 }
10475 *minval = -maxresactivity;
10499 /* applies dual presolving for variables that are locked only once in a direction, and this locking is due to a
10529 * otherwise we would have to check for variables with nlocks == 0, and these are already processed by the
10541 /* search for a single-locked variable which can be multi-aggregated; if a valid continuous variable was found, we
10548 /* We only want to multi-aggregate variables, if they appear in maximal one additional constraint,
10550 * - If there are only two variables in the constraint from which the multi-aggregation arises, no fill-in will be
10552 * - If there are three variables in the constraint, multi-aggregation in three additional constraints will remove
10553 * six nonzeros (three from the constraint and the three entries of the multi-aggregated variable) and add
10555 * - If there at most four variables in the constraint, multi-aggregation in two additional constraints will remove
10556 * six nonzeros (four from the constraint and the two entries of the multi-aggregated variable) and add
10568 /* if this constraint has both sides, it also provides a lock for the other side and thus we can allow one more lock */
10584 isint = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
10590 /* better do not multi-aggregate binary variables, since most plugins rely on their binary variables to be either
10608 * - fix x_i to the smallest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10612 * - fix x_i to the largest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10616 * - fix x_i to the largest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10620 * - fix x_i to the smallest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10622 * but: all this is only applicable, if the aggregated value is inside x_i's bounds for all possible values
10627 && ((val > 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10629 || (val < 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10632 && ((val > 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10634 || (val < 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10648 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
10661 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10676 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10684 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10696 /* check again if lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10697 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10704 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10707 if( !isint || (SCIPisIntegral(scip, consdata->lhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10721 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10736 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10743 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10752 /* check again if rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10753 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10759 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10762 if( !isint || (SCIPisIntegral(scip, consdata->rhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10800 (SCIPvarGetType(bestvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(bestvar) == SCIP_VARTYPE_INTEGER));
10808 SCIPdebugMsg(scip, "linear constraint <%s> (dual): multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(bestvar));
10881 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g]\n", aggrconst, SCIPvarGetName(bestvar),
10898 /* @todo if multi-aggregate makes them numerical trouble, avoid them if the coefficients differ to much, see
10901 SCIP_CALL( SCIPmultiaggregateVar(scip, bestvar, naggrs, aggrvars, aggrcoefs, aggrconst, &infeasible, &aggregated) );
10905 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
10906 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
10907 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
10916 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
10962 }
11146 /** sorting method for constraint data, compares two variables on given indices, continuous variables will be sorted to
11147 * the end and for all other variables the sortation will be in non-increasing order of their absolute value of the
11180 /* for all non-continuous variables, the variables are sorted after decreasing absolute coefficients */
11184 /** tries to simplify coefficients and delete variables in ranged row of the form lhs <= a^Tx <= rhs, e.g. using the greatest
11187 * 1. lhs <= a^Tx <= rhs, forall a_i >= lhs, a_i <= rhs, and forall pairs a_i + a_j > rhs then we can change this
11265 if( SCIPisGE(scip, minval, lhs) && SCIPisLE(scip, maxval, rhs) && SCIPisGT(scip, minval + secondminval, rhs) )
11284 /** tries to simplify coefficients and delete variables in constraints of the form lhs <= a^Tx <= rhs
11289 * 1. We try to determine parts of the constraint which will not change anything on (in-)feasibility of the constraint
11295 * e.g. 5.2x1 + 5.1x2 + 3x3 <= 8.3 => will be changed to 5x1 + 5x2 + 3x3 <= 8 if all x are binary
11299 * e.g. 10x1 + 5y2 + 5x3 + 3x4 <= 15 => will be changed to 2x1 + y2 + x3 + x4 <= 3 if all xi are binary and y2 is
11379 /* @todo the following might be too hard, check which steps can be applied and what code must be corrected
11386 /* @todo: change the following: due to vartype changes, the status of the normalization can be wrong, need an event
11428 /* if we have a normalized inequality (not ranged) the one side should be positive, @see normalizeCons() */
11435 /* call sorting method, order continuous variables to the end and all other variables after non-increasing absolute
11449 assert(consdata->validmaxabsval ? (SCIPisFeasEQ(scip, consdata->maxabsval, REALABS(vals[0])) || SCIPvarGetType(vars[nvars - 1]) == SCIP_VARTYPE_CONTINUOUS) : TRUE);
11459 if( SCIPisEQ(scip, REALABS(vals[0]), 1.0) && ((hasrhs && SCIPisIntegral(scip, rhs)) || (haslhs && SCIPisIntegral(scip, lhs))) )
11485 /* we now determine coefficients as large as the side of the constraint to retrieve a better reduction where we
11489 * c1: +5x1 + 5x2 + 3x3 + 3x4 + x5 >= 5 (x5 is redundant and does not change (in-)feasibility of this constraint)
11490 * c2: +4x1 + 4x2 + 3x3 + 3x4 + x5 >= 4 (gcd (without the coefficient of x5) after the large coefficients is 3
11491 * c3: +30x1 + 29x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 30 (gcd (without the coefficient of x2) after the large coefficients is 7
11496 * c2: +6x1 + 6x2 + 3x3 + 3x4 + 3x5 >= 6 (will be changed to c2: +2x1 + 2x2 + x3 + x4 + x5 >= 2)
11497 * c3: +28x1 + 28x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 28 (will be changed to c3: +4x1 + 4x2 + 2x3 + 2z1 + x5 + x6 <= 4)
11500 /* if the minimal activity is negative and we found more than one variable with a coefficient bigger than the left
11503 * e.g. 7x1 + 7x2 - 4x3 - 4x4 >= 7 => xi = 1 for all i is not a solution, but if we would do a change on the
11504 * coefficients due to the gcd on the "small" coefficients we would get 8x1 + 8x2 - 4x3 - 4x4 >= 8 were xi = 1
11515 /* if we have integer variable with "side"-coefficients but also with a lower bound greater than 0 we stop this
11527 /* easy and quick fix: if all coefficients were equal to the side, we cannot apply further simplifications */
11528 /* todo find numerically stable normalization conditions to scale this cons to have coefficients almost equal to 1 */
11540 /* all but one variable are processed or the next variable is continuous we cannot perform the extra coefficient
11567 /* find and remove redundant variables which do not interact with the (in-)feasibility of this constraint
11656 if( (offsetv == -1 && hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd)) || (haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd) )
11682 SCIPdebugMsg(scip, "stopped at pos %d (of %d), subactivities [%g, %g], redundant = %u, hasrhs = %u, siderest = %g, gcd = %" SCIP_LONGINT_FORMAT ", offset position for 'side' coefficients = %d\n",
11687 (offsetv == -1 && hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd)) ||
11736 assert((hasrhs && SCIPisLE(scip, tmpmaxactsub, siderest) && tmpminactsub > siderest - gcd) || (haslhs && tmpmaxactsub < siderest && SCIPisGE(scip, tmpminactsub, siderest - gcd)));
11739 SCIPdebugMsg(scip, "removing %d last variables from constraint <%s>, because they never change anything on the feasibility of this constraint\n",
11840 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
11927 /* new coeffcient must not be zero if we would loose the implication that a variable needs to be 0 if
11953 if( (!notchangable && hasrhs && ((!SCIPisFeasIntegral(scip, rhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(rhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd))) ||
11954 ( haslhs && (!SCIPisFeasIntegral(scip, lhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(lhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd)) )
12007 /* @todo we still can remove continuous variables if they are redundant due to the non-integrality argument */
12023 /* check if the non-integrality part of all integral variables is smaller than the non-inegrality part of the right
12024 * hand side or bigger than the left hand side respectively, so we can make all of them integral
12028 if( (hasrhs && !SCIPisFeasIntegral(scip, rhs)) || (haslhs && !SCIPisFeasIntegral(scip, lhs)) )
12073 /* if we exceed the fractional part of the right hand side, we cannot tighten the coefficients
12166 /* the fractional part on each variable need to exceed the fractional part on the left hand side */
12267 /* maximal absolute value of coefficients in constraint is one, so we cannot tighten it further */
12284 if( SCIPisEQ(scip, REALABS(vals[nvars - 1]), 1.0) && SCIPisEQ(scip, REALABS(vals[nvars - 2]), 1.0) )
12289 /* calculate greatest common divisor over all integer variables; note that the onlybin flag needs to be recomputed
12311 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12312 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12333 /* we need at least one binary variable and a gcd greater than 1 to try to perform further coefficient changes */
12342 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
12350 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12351 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12368 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12379 /* if we have only binary variables and both first coefficients have a gcd of 1, both are candidates for
12413 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
12421 /* check again, if we have a normalized inequality (not ranged) the one side should be positive,
12477 assert(SCIPisZero(scip, newcoef) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(newcoef) + feastol)) == gcd);
12479 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restcoef = %" SCIP_LONGINT_FORMAT "; changing coef of variable <%s> to %g and %s by %" SCIP_LONGINT_FORMAT "\n", gcd, rest, restcoef, SCIPvarGetName(vars[candpos]), newcoef, hasrhs ? "reduced rhs" : "increased lhs", hasrhs ? rest : (rest > 0 ? gcd - rest : 0));
12510 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
12518 /* tries to aggregate an (in)equality and an equality in order to decrease the number of variables in the (in)equality:
12520 * where a = val1[v] and b = -val0[v] for common variable v which removes most variable weight;
12522 * the variable weight is a weighted sum over all included variables, where each binary variable weighs BINWEIGHT,
12523 * each integer or implicit integer variable weighs INTWEIGHT and each continuous variable weighs CONTWEIGHT
12532 int* diffidx0minus1, /**< array with indices of variables in cons0, that don't appear in cons1 */
12533 int* diffidx1minus0, /**< array with indices of variables in cons1, that don't appear in cons0 */
12536 int diffidx0minus1weight, /**< variable weight sum of variables in cons0, that don't appear in cons1 */
12537 int diffidx1minus0weight, /**< variable weight sum of variables in cons1, that don't appear in cons0 */
12538 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
12543 {
12552 SCIP_Bool commonvarlindependent; /* indicates whether coefficient vector of common variables in linearly dependent */
12578 SCIPdebugMsg(scip, "try aggregation of <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
12614 /* count the number of variables in the potential new constraint a * consdata0 + b * consdata1 */
12639 * v's common coefficient in cons1 / v's common coefficient in cons0 should be constant, i.e., equal 0's common coefficient in cons1 / 0's common coefficient in cons0
12707 /* setup best* variables that were not setup above because we are in the commonvarlindependent case */
12712 SCIPdebugMsg(scip, "aggregate linear constraints <%s> := %.15g*<%s> + %.15g*<%s> -> nvars: %d -> %d, weight: %d -> %d\n",
12743 /* if we recognized linear dependency of the common coefficients, then the aggregation coefficient should be 0.0 for every common variable */
12796 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, SCIPconsGetName(cons0), newnvars, newvars, newvals, newlhs, newrhs,
12817 if( consdataGetMaxAbsval(SCIPconsGetData(newcons)) <= maxaggrnormscale * consdataGetMaxAbsval(consdata0) )
12852 /** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
12934 assert(consdata->nvars > 0);
12948 SCIPcombineTwoInt(maxidx, SCIPrealHashCode(consdata->vals[consdata->nvars - 1] * scale))); /*lint !e571*/
12951 /** returns the key for deciding which of two parallel constraints should be kept (smaller key should be kept);
12952 * prefers non-upgraded constraints and as second criterion the constraint with the smallest position
12966 return (((unsigned int)consdata->upgraded)<<31) + (unsigned int)SCIPconsGetPos(cons); /*lint !e571*/
12976 SCIP_CONS** querycons, /**< pointer to linear constraint used to look for duplicates in the hash table;
12989 while( (parallelcons = (SCIP_CONS*)SCIPhashtableRetrieve(hashtable, (void*)(*querycons))) != NULL )
13031 /** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
13088 /* get constraints from current hash table with same variables as cons0 and with coefficients equal
13089 * to the ones of cons0 when both are scaled such that maxabsval is 1.0 and the coefficient of the
13120 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
13151 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with equal coefficients into single ranged row\n",
13165 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with negated coefficients into single ranged row\n",
13177 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13189 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13194 /* ensure that lhs <= rhs holds without tolerances as we only allow such rows to enter the LP */
13234 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
13298 for( c = (cons0changed ? 0 : firstchange); c < chkind && !(*cutoff) && conss[chkind] != NULL; ++c )
13337 /* SCIPdebugMsg(scip, "preprocess linear constraint pair <%s>[chgd:%d, upgd:%d] and <%s>[chgd:%d, upgd:%d]\n",
13364 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13365 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13367 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13368 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13370 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13371 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13373 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13374 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13389 * - if lhs0 >= lhs1 and for each variable v and each solution value x_v val0[v]*x_v <= val1[v]*x_v,
13391 * - if rhs0 <= rhs1 and for each variable v and each solution value x_v val0[v]*x_v >= val1[v]*x_v,
13393 * - if val0[v] == -val1[v] for all variables v, the two inequalities can be replaced by a single
13395 * - if at least one constraint is an equality, count the weighted number of common variables W_c
13396 * and the weighted number of variable in the difference sets W_0 = w(V_0 \ V_1), W_1 = w(V_1 \ V_0),
13397 * where the weight of each variable depends on its type, such that aggregations in order to remove the
13399 * - if W_c > W_1, try to aggregate consdata0 := a * consdata0 + b * consdata1 in order to decrease the
13400 * variable weight in consdata0, where a = +/- val1[v] and b = -/+ val0[v] for common v which leads to
13401 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13403 * - if W_c > W_0, try to aggregate consdata1 := a * consdata1 + b * consdata0 in order to decrease the
13404 * variable weight in consdata1, where a = +/- val0[v] and b = -/+ val1[v] for common v which leads to
13405 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13539 /* the coefficients in both rows are either equal or negated: create a new constraint with same coefficients and
13542 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with %s coefficients into single ranged row\n",
13561 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13602 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13614 /* check for domination: remove dominated sides, but don't touch equalities as long as they are not totally
13617 if( cons1dominateslhs && (!cons0isequality || cons1dominatesrhs || SCIPisInfinity(scip, consdata0->rhs) ) )
13628 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13641 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13648 else if( cons0dominateslhs && (!cons1isequality || cons0dominatesrhs || SCIPisInfinity(scip, consdata1->rhs)) )
13659 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13671 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13678 if( cons1dominatesrhs && (!cons0isequality || cons1dominateslhs || SCIPisInfinity(scip, -consdata0->lhs)) )
13689 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13702 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13709 else if( cons0dominatesrhs && (!cons1isequality || cons0dominateslhs || SCIPisInfinity(scip, -consdata1->lhs)) )
13720 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13732 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13749 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13764 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13786 SCIP_CALL( aggregateConstraints(scip, cons0, cons1, commonidx0, commonidx1, diffidx0minus1, diffidx1minus0,
13801 if( !aggregated && cons0isequality && !consdata1->upgraded && commonidxweight > diffidx0minus1weight )
13804 SCIP_CALL( aggregateConstraints(scip, cons1, cons0, commonidx1, commonidx0, diffidx1minus0, diffidx0minus1,
13836 SCIP_Bool singletonstuffing, /**< should stuffing of singleton continuous variables be performed? */
13837 SCIP_Bool singlevarstuffing, /**< should single variable stuffing be performed, which tries to fulfill
13881 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
13889 /* we want to have a <= constraint, if the rhs is infinite, we implicitly multiply the constraint by -1,
13919 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
13953 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14050 if( tryfixing && nsingletons > 0 && (SCIPisGT(scip, rhs, maxcondactivity) || SCIPisLE(scip, rhs, mincondactivity)) )
14112 /* @note: we could in theory tighten the bound of the first singleton variable which does not fall into the above case,
14113 * since it cannot be fully fixed. However, this is not needed and should be done by activity-based bound tightening
14114 * anyway after all other continuous singleton columns were fixed; doing it here may introduce numerical
14145 SCIPdebugMsg(scip, "### stuffing fixed %d variables and changed %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds);
14159 * setting all variables to their upper bound (giving us the maximal activity of the constraint) is worst w.r.t.
14160 * feasibility of the constraint. On the other hand, this gives the best objective function contribution of the
14161 * variables contained in the constraint. The maximal activity should be larger than the rhs, otherwise the constraint
14163 * Now we are searching for a variable x_k with maximal ratio c_k / a_k (note that all these ratios are negative), so
14164 * that by reducing the value of this variable we reduce the activity of the constraint while having the smallest
14165 * objective deterioration per activity unit. If x_k has no downlocks, is continuous, and can be reduced enough to
14166 * render the constraint feasible, and ALL other variables have only the one uplock installed by the current constraint,
14167 * we can reduce the upper bound of x_k such that the maxactivity equals the rhs and fix all other variables to their
14169 * Note that the others variables may have downlocks from other constraints, which we do not need to care
14170 * about since we are setting them to the highest possible value. Also, they may be integer or binary, because the
14171 * computed ratio is still a lower bound on the change in the objective caused by reducing those variable to reach
14172 * constraint feasibility. On the other hand, uplocks on x_k from other constraint do no interfer with the method.
14173 * With a slight adjustment, the procedure even works for integral x_k. If (maxactivity - rhs)/val is integral,
14174 * the variable gets an integral value in order to fulfill the constraint tightly, and we can just apply the procedure.
14175 * If (maxactivity - rhs)/val is fractional, we need to check, if overfulfilling the constraint by setting x_k to
14176 * ceil((maxactivity - rhs)/val) is still better than setting x_k to ceil((maxactivity - rhs)/val) - 1 and
14177 * filling the remaining gap in the constraint with the next-best variable. For this, we check that
14179 * c_k * floor((maxactivity - rhs)/val) + c_j * ((maxactivity - rhs) - (floor((maxactivity - rhs)/val) * val))/a_j.
14181 * If there are variables with a_i < 0 and c_i > 0, they are negated to obtain the above form, variables with same
14210 /* if both objective and constraint push the variable to the same direction, we can do nothing here */
14232 if( ratio > bestratio || ((ratio == bestratio) && downlocks == 0 && (bestdownlocks > 0 /*lint !e777*/
14297 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14298 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/-val) )
14325 SCIPdebugMsg(scip, "tighten the lower bound of <%s> from %g to %g (ub=%g)\n", SCIPvarGetName(var), lb, lb + bounddelta, ub);
14334 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14335 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/val))
14362 SCIPdebugMsg(scip, "tighten the upper bound of <%s> from %g to %g (lb=%g)\n", SCIPvarGetName(var), ub, ub - bounddelta, lb);
14377 SCIPdebugMsg(scip, "cons <%s>: %g <=\n", SCIPconsGetName(cons), factor > 0 ? consdata->lhs : -consdata->rhs);
14380 SCIPdebugMsg(scip, "%+g <%s>([%g,%g],%g,[%d,%d],%s)\n", factor * vals[v], SCIPvarGetName(vars[v]),
14413 SCIPdebugMsg(scip, "### new stuffing fixed %d vars, tightened %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds);
14447 * redlb[v] == k : if x_v >= k, we can always round x_v down to x_v == k without violating any constraint
14448 * redub[v] == k : if x_v <= k, we can always round x_v up to x_v == k without violating any constraint
14461 * This is because then, the value of the variable is either determined by one of its bounds or
14483 /* copy the variable array since this array might change during the curse of this algorithm */
14505 /* Initialize isimplint array: variable may be implied integer if rounded to their best bound they are integral.
14521 isimplint[v] = (SCIPisInfinity(scip, -lb) || SCIPisIntegral(scip, lb)) && (SCIPisInfinity(scip, ub) || SCIPisIntegral(scip, ub));
14537 /* we only need to consider constraints that have been locked (i.e., checked constraints or constraints that are
14571 assert(0 <= contv && contv < ncontvars); /* variable should be active due to applyFixings() */
14623 consdataGetGlbActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
14633 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastglbminactivity) )
14637 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastglbmaxactivity) )
14643 assert(0 <= arrayindex && arrayindex < nvars); /* variable should be active due to applyFixings() */
14712 /* there is more than one continuous variable or the integer variables have fractional coefficients:
14730 /* there is exactly one continuous variable and the integer variables have integral coefficients:
14731 * this is the interesting case, and we have to check whether the coefficient is +/-1 and the corresponding
14784 * if largest bound to make constraints redundant is -infinity, we better do nothing for numerical reasons
14792 /* if x_v >= redlb[v], we can always round x_v down to x_v == redlb[v] without violating any constraint
14795 SCIPdebugMsg(scip, "variable <%s> only locked down in linear constraints: dual presolve <%s>[%.15g,%.15g] <= %.15g\n",
14811 * if smallest bound to make constraints redundant is +infinity, we better do nothing for numerical reasons
14819 /* if x_v <= redub[v], we can always round x_v up to x_v == redub[v] without violating any constraint
14822 SCIPdebugMsg(scip, "variable <%s> only locked up in linear constraints: dual presolve <%s>[%.15g,%.15g] >= %.15g\n",
14860 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
14866 SCIPdebugMsg(scip, "dual presolve: converting continuous variable <%s>[%g,%g] to implicit integer\n",
14912 SCIPdebugMsg(scip, "Enforcement method of linear constraints for %s solution\n", sol == NULL ? "LP" : "relaxation");
14951 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
14976 /** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
14995 }
15024 /** deinitialization method of constraint handler (called before transformed problem is freed) */
15067 return !(SCIPisEQ(scip, lhs, rhs) || SCIPisInfinity(scip, -lhs) || SCIPisInfinity(scip, rhs) );
15076 {
15084 * iterates through all linear constraints and stores relevant statistics in the linear constraint statistics \p linconsstats.
15086 * @note only constraints are iterated that belong to the linear constraint handler. If the problem has been presolved already,
15087 * constraints that were upgraded to more special types such as, e.g., varbound constraints, will not be shown correctly anymore.
15088 * Similarly, if specialized constraints were created through the API, these are currently not present.
15174 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_SINGLETON, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15194 /* precedence constraints have the same coefficient, but with opposite sign for the same variable type */
15213 /* is constraint of type SCIP_CONSTYPE_{SETPARTITION, SETPACKING, SETCOVERING, CARDINALITY, INVKNAPSACK}? */
15225 /* scan through variables and detect if all variables are binary and have a coefficient +/-1 */
15301 /* if both sides are infinite at this point, no further classification is necessary for this constraint */
15352 SCIPlinConsStatsIncTypeCount(linconsstats, matched ? SCIP_LINCONSTYPE_BINPACKING : SCIP_LINCONSTYPE_KNAPSACK, 1);
15355 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15387 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15412 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_MIXEDBINARY, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15421 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_GENERAL, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15428 /** presolving deinitialization method of constraint handler (called after presolving has been finished) */
15474 SCIPstatisticMessage("below threshold: %d / %d ratio= %g\n", ngoodconss, nallconss, (100.0 * ngoodconss / nallconss));
15490 /* this is no problem reduction, because the upgraded constraint was added to the problem before, and the
15491 * (redundant) linear constraint was only kept in order to support presolving the the linear constraint handler
15497 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
15506 /** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
15525 }
15541 "(restart) converted %d cuts from the global cut pool into linear constraints\n", ncutsadded);
15542 /* an extra blank line should be printed separately since the buffer message handler only handles up to one
15638 SCIP_CALL( consdataCreate(scip, &targetdata, sourcedata->nvars, sourcedata->vars, sourcedata->vals, sourcedata->lhs, sourcedata->rhs) );
15641 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
15642 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
15645 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
15651 /** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
15704 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
15727 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, NULL, separatecards, conshdlrdata->separateall, &ncuts, &cutoff) );
15770 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
15785 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, sol, TRUE, conshdlrdata->separateall, &ncuts, &cutoff) );
15861 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
15913 SCIPinfoMessage(scip, NULL, "activity invalid due to positive and negative infinity contributions\n");
15915 SCIPinfoMessage(scip, NULL, "violation: left hand side is violated by %.15g\n", consdata->lhs - activity);
15917 SCIPinfoMessage(scip, NULL, "violation: right hand side is violated by %.15g\n", activity - consdata->rhs);
15948 /* check, if we want to tighten variable's bounds (in probing, we always want to tighten the bounds) */
15962 && ((tightenboundsfreq == 0 && depth == 0) || (tightenboundsfreq >= 1 && (depth % tightenboundsfreq == 0)));
16088 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16101 /* apply presolving as long as possible on the single constraint (however, abort after a certain number of rounds
16144 SCIP_CALL( tightenBounds(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars, &cutoff, nchgbds) );
16154 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
16155 if( SCIPisFeasGT(scip, minactivity, consdata->rhs) || SCIPisFeasLT(scip, maxactivity, consdata->lhs) )
16157 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16162 else if( SCIPisFeasGE(scip, minactivity, consdata->lhs) && SCIPisFeasLE(scip, maxactivity, consdata->rhs) )
16164 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16173 else if( !SCIPisInfinity(scip, -consdata->lhs) && SCIPisFeasGE(scip, minactivity, consdata->lhs) )
16175 SCIPdebugMsg(scip, "linear constraint <%s> left hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16181 else if( !SCIPisInfinity(scip, consdata->rhs) && SCIPisFeasLE(scip, maxactivity, consdata->rhs) )
16183 SCIPdebugMsg(scip, "linear constraint <%s> right hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16213 /* reduce big-M coefficients, that make the constraint redundant if the variable is on a bound */
16256 SCIP_CALL( extractCliques(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars,
16284 SCIP_CALL( convertEquality(scip, cons, conshdlrdata, &cutoff, nfixedvars, naggrvars, ndelconss) );
16288 if( !cutoff && SCIPconsIsActive(cons) && conshdlrdata->dualpresolving && SCIPallowDualReds(scip) )
16303 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16310 (conshdlrdata->singletonstuffing || conshdlrdata->singlevarstuffing) && SCIPallowDualReds(scip) )
16342 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && (conshdlrdata->presolusehashing || conshdlrdata->presolpairwise) && !SCIPisStopped(scip) )
16348 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
16349 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &firstchange, &cutoff,
16392 npaircomparisons += (SCIPconsGetData(conss[c])->changed) ? c : (c - firstchange); /*lint !e776*/
16395 SCIP_CALL( preprocessConstraintPairs(scip, usefulconss, firstchange, c, conshdlrdata->maxaggrnormscale,
16401 if( ((*ndelconss - oldndelconss) + (*nchgsides - oldnchgsides)/2.0 + (*nchgcoefs - oldnchgcoefs)/10.0) / ((SCIP_Real) npaircomparisons) < conshdlrdata->mingainpernmincomp )
16414 /* before upgrading, check whether we can apply some additional dual presolving, because a variable only appears
16418 && *nfixedvars == oldnfixedvars && *naggrvars == oldnaggrvars && *nchgbds == oldnchgbds && *ndelconss == oldndelconss
16429 * only upgrade constraints, if no reductions were found in this round (otherwise, the linear constraint handler
16430 * may find additional reductions before giving control away to other (less intelligent?) constraint handlers)
16432 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) )
16445 /* only upgrade completely presolved constraints, that changed since the last upgrading call */
16472 * delete upgraded equalities, if we don't need it anymore for aggregation and redundancy checking
16488 else if( *nfixedvars > oldnfixedvars || *naggrvars > oldnaggrvars || *nchgbds > oldnchgbds || *ndelconss > oldndelconss
16506 SCIP_CALL( resolvePropagation(scip, cons, infervar, intToInferInfo(inferinfo), boundtype, bdchgidx, result) );
16531 {
16608 consname = name;
16612 SCIP_CALL( SCIPcopyConsLinear(scip, cons, sourcescip, consname, nvars, sourcevars, sourcecoefs,
16613 SCIPgetLhsLinear(sourcescip, sourcecons), SCIPgetRhsLinear(sourcescip, sourcecons), varmap, consmap,
16614 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
16622 /* find operators '<=', '==', '>=', [free] in input string and return those places. There should only be one operator,
16680 /* assign the found operator to the first or second pointer and check for violations of the linear constraint grammar */
16764 /* find operators in the line first, all other remaining parsing depends on occurence of the operators '<=', '>=', '==',
16777 /* assign the strings for parsing the left hand side, right hand side, and the linear variable sum */
16818 SCIPerrorMessage("Parsing has wrong operator character '%c', should be one of <=>[", *firstop);
16854 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
16863 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
16864 assert(!*success || requsize <= coefssize); /* if successful, then should have had enough space now */
16874 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
16907 /** constraint method of constraint handler which returns the number of variables (if possible) */
16988 /* bound change can turn the constraint infeasible or redundant only if it was a tightening */
16993 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17006 if( (val > 0.0 ? !SCIPisInfinity(scip, consdata->rhs) : !SCIPisInfinity(scip, -consdata->lhs)) )
17010 if( (val > 0.0 ? !SCIPisInfinity(scip, -consdata->lhs) : !SCIPisInfinity(scip, consdata->rhs)) )
17049 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17059 /* there is only one lock left: we may multi-aggregate the variable as slack of an equation */
17127 /* create array of variables and coefficients: sum_{i \in P} x_i - sum_{i \in N} x_i >= 1 - |N| */
17159 (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "cf%" SCIP_LONGINT_FORMAT, SCIPgetNConflictConssApplied(scip));
17160 SCIP_CALL( SCIPcreateConsLinear(scip, &cons, consname, nbdchginfos, vars, vals, lhs, SCIPinfinity(scip),
17163 /* try to automatically convert a linear constraint into a more specific and more specialized constraint */
17190 /** upgrades quadratic constraints with only and at least one linear variables into a linear constraint
17204 SCIPdebugMsg(scip, "upgradeConsQuadratic called for constraint <%s>\n", SCIPconsGetName(cons));
17233 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original quadratic constraint */
17270 SCIPgetNLinearVarsNonlinear(scip, cons), SCIPgetLinearVarsNonlinear(scip, cons), SCIPgetLinearCoefsNonlinear(scip, cons),
17280 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original nonlinear constraint */
17310 SCIP_CALL( SCIPincludeConflicthdlrBasic(scip, &conflicthdlr, CONFLICTHDLR_NAME, CONFLICTHDLR_DESC, CONFLICTHDLR_PRIORITY,
17338 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolLinear, CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
17340 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropLinear, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
17343 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpLinear, consSepasolLinear, CONSHDLR_SEPAFREQ,
17351 SCIP_CALL( SCIPincludeQuadconsUpgrade(scip, upgradeConsQuadratic, QUADCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17357 SCIP_CALL( SCIPincludeNonlinconsUpgrade(scip, upgradeConsNonlinear, NULL, NONLINCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17363 "multiplier on propagation frequency, how often the bounds are tightened (-1: never, 0: only at root)",
17364 &conshdlrdata->tightenboundsfreq, TRUE, DEFAULT_TIGHTENBOUNDSFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17399 "maximal allowed relative gain in maximum norm for constraint aggregation (0.0: disable constraint aggregation)",
17400 &conshdlrdata->maxaggrnormscale, TRUE, DEFAULT_MAXAGGRNORMSCALE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17403 "maximum activity delta to run easy propagation on linear constraint (faster, but numerically less stable)",
17404 &conshdlrdata->maxeasyactivitydelta, TRUE, DEFAULT_MAXEASYACTIVITYDELTA, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17407 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cardinality cuts",
17411 "should all constraints be subject to cardinality cut generation instead of only the ones with non-zero dual value?",
17431 "should single variable stuffing be performed, which tries to fulfill constraints using the cheapest variable?",
17434 "constraints/" CONSHDLR_NAME "/sortvars", "apply binaries sorting in decr. order of coeff abs value?",
17438 "should the violation for a constraint with side 0.0 be checked relative to 1.0 (FALSE) or to the maximum absolute value in the activity (TRUE)?",
17442 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
17446 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
17454 "should presolving and propagation try to improve bounds, detect infeasibility, and extract sub-constraints from ranged rows and equations?",
17467 &conshdlrdata->rangedrowfreq, TRUE, DEFAULT_RANGEDROWFREQ, 1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17515 (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "constraints/linear/upgrade/%s", conshdlrname);
17516 (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "enable linear upgrading for constraint handler <%s>", conshdlrname);
17527 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17556 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
17558 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
17577 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
17593 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
17601 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
17615 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17625 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17641 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17651 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17694 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
17701 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
17702 * method SCIPcreateConsLinear(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
17706 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17725 }
17735 SCIP_Real* sourcecoefs, /**< coefficient array of the linear constraint, or NULL if all coefficients are one */
17738 SCIP_HASHMAP* varmap, /**< a SCIP_HASHMAP mapping variables of the source SCIP to corresponding
17740 SCIP_HASHMAP* consmap, /**< a hashmap to store the mapping of source constraints to the corresponding
17750 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup? */
17751 SCIP_Bool stickingatnode, /**< should the constraint always be kept at the node where it was added, even
17776 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17797 /* transform source variable to active variables of the source SCIP since only these can be mapped to variables of
17802 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, nvars, &constant, &requiredsize, TRUE) );
17809 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, requiredsize, &constant, &requiredsize, TRUE) );
17830 SCIP_CALL( SCIPgetVarCopy(sourcescip, scip, var, &vars[v], varmap, consmap, global, &success) );
17844 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17874 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
17896 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
17904 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
17925 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
17935 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
17951 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
17961 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18011 /** changes coefficient of variable in linear constraint; deletes the variable if coefficient is zero; adds variable if
18014 * @note This method may only be called during problem creation stage for an original constraint and variable.
18016 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18035 {
18040 if( SCIPgetStage(scip) > SCIP_STAGE_PROBLEM || !SCIPconsIsOriginal(cons) || !SCIPvarIsOriginal(var) )
18042 SCIPerrorMessage("method may only be called during problem creation stage for original constraints and variables\n");
18060 /* decrease i by one since otherwise we would skip the coefficient which has been switched to position i */
18082 * @note This method may only be called during problem creation stage for an original constraint and variable.
18084 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18209 /** gets the array of variables in the linear constraint; the user must not modify this array! */
18232 /** gets the array of coefficient values in the linear constraint; the user must not modify this array! */
18257 * @note if the solution contains values at infinity, this method will return SCIP_INVALID in case the activity
18367 /** returns the linear relaxation of the given linear constraint; may return NULL if no LP row was yet created;
18392 /** tries to automatically convert a linear constraint into a more specific and more specialized constraint */
18434 /* we cannot upgrade a modifiable linear constraint, since we don't know what additional coefficients to expect */
18456 /* check, if the constraint was already upgraded and will be deleted anyway after preprocessing */
18465 SCIPerrorMessage("cannot upgrade linear constraint that is already stored as row in the LP\n");
18477 /* normalizeCons() can only detect infeasibility when scaling with the gcd. in that case, the scaling was
18482 * TODO: this needs to be fixed on master by changing the API and passing a pointer to whether the constraint is
18594 SCIPdebugMsg(scip, " +bin=%d -bin=%d +int=%d -int=%d +impl=%d -impl=%d +cont=%d -cont=%d +1=%d -1=%d +I=%d -I=%d +F=%d -F=%d possum=%.15g negsum=%.15g integral=%u\n",
18606 nposbin, nnegbin, nposint, nnegint, nposimpl, nnegimpl, nposimplbin, nnegimplbin, nposcont, nnegcont,
18617 SCIPdebugMsg(scip, " -> upgraded to constraint type <%s>\n", SCIPconshdlrGetName(SCIPconsGetHdlr(*upgdcons)));
void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
SCIP_VAR ** SCIPgetLinearVarsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14868
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4221
SCIP_Real SCIPgetActivityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18277
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:105
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1696
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:640
Definition: type_result.h:33
Definition: type_result.h:37
Definition: struct_cons.h:280
static SCIP_RETCODE tightenVarBounds(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:6705
static void consdataCalcMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1431
SCIP_RETCODE SCIPincludeNonlinconsUpgrade(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nonlinconsupgd)), SCIP_DECL_EXPRGRAPHNODEREFORM((*nodereform)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_nonlinear.c:9242
static SCIP_DECL_CONSDEACTIVE(consDeactiveLinear)
Definition: cons_linear.c:15572
Definition: type_cons.h:72
Definition: struct_var.h:99
SCIP_RETCODE SCIPincludeConshdlrLinear(SCIP *scip)
Definition: cons_linear.c:17311
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:855
static SCIP_RETCODE consCatchEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:719
static SCIP_RETCODE chgCoefPos(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Real newval)
Definition: cons_linear.c:3970
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5119
static SCIP_Real consdataGetFeasibility(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3141
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2130
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:851
public methods for SCIP parameter handling
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3176
SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:17136
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:663
Definition: type_var.h:40
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:17725
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:864
Definition: struct_scip.h:58
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1994
static void calculateMinvalAndMaxval(SCIP *scip, SCIP_Real side, SCIP_Real val, SCIP_Real minresactivity, SCIP_Real maxresactivity, SCIP_Real *minval, SCIP_Real *maxval)
Definition: cons_linear.c:10475
static void consdataUpdateSignatures(SCIP_CONSDATA *consdata, int pos)
Definition: cons_linear.c:3162
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2364
static void consdataUpdateActivities(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_Real val, SCIP_BOUNDTYPE boundtype, SCIP_Bool global, SCIP_Bool checkreliability)
Definition: cons_linear.c:1598
public methods for memory management
Definition: type_conflict.h:50
static void consdataRecomputeMaxActivityDelta(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1536
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:422
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:954
static SCIP_Bool checkEqualObjective(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real *scale, SCIP_Real *offset)
Definition: cons_linear.c:10078
static SCIP_RETCODE fixVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars)
Definition: cons_linear.c:7718
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1214
static SCIP_RETCODE convertUnaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *ndelconss)
Definition: cons_linear.c:9367
static SCIP_RETCODE tightenVarLb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5345
SCIP_RETCODE SCIPincludeQuadconsUpgrade(SCIP *scip, SCIP_DECL_QUADCONSUPGD((*quadconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_quadratic.c:14187
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:893
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:17745
static SCIP_RETCODE findOperators(const char *str, char **firstoperator, char **secondoperator, SCIP_Bool *success)
Definition: cons_linear.c:16643
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1552
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3233
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:475
public methods for conflict handler plugins and conflict analysis
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:385
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1826
static SCIP_RETCODE consDropAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:824
void SCIPlinConsStatsIncTypeCount(SCIP_LINCONSSTATS *linconsstats, SCIP_LINCONSTYPE linconstype, int increment)
Definition: cons.c:7971
Definition: type_result.h:49
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1607
Definition: type_cons.h:68
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1385
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1292
static void consdataUpdateActivitiesGlbUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2056
SCIP_Bool SCIPisUpdateUnreliable(SCIP *scip, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: scip_numerics.c:1399
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:568
Definition: type_set.h:37
SCIP_RETCODE SCIPsetConshdlrDeactive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDEACTIVE((*consdeactive)))
Definition: scip_cons.c:755
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:172
static SCIP_Real consdataGetMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2285
static SCIP_RETCODE linconsupgradeCreate(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority)
Definition: cons_linear.c:509
void SCIPsortDownRealPtr(SCIP_Real *realarray, void **ptrarray, int len)
Definition: struct_var.h:198
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1442
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1538
static void consdataRecomputeMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1299
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:940
static SCIP_RETCODE normalizeCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4186
SCIP_RETCODE SCIPconvertCutsToConss(SCIP *scip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, int *ncutsadded)
Definition: scip_copy.c:1819
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:903
static void consdataGetGlbActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *glbminactivity, SCIP_Real *glbmaxactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2859
Definition: type_cons.h:74
Definition: type_message.h:45
static void permSortConsdata(SCIP_CONSDATA *consdata, int *perm, int nvars)
Definition: cons_linear.c:3220
Definition: cons_linear.c:354
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4563
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:4581
static SCIP_DECL_HASHGETKEY(hashGetKeyLinearcons)
Definition: cons_linear.c:12863
static void consdataInvalidateActivities(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1200
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:314
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:243
SCIP_Real * SCIPgetLinearCoefsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9680
static void consdataGetGlbActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2921
static SCIP_Bool conshdlrdataHasUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_DECL_LINCONSUPGD((*linconsupgd)), const char *conshdlrname)
Definition: cons_linear.c:590
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2056
SCIP_Real SCIPvarGetNegationConstant(SCIP_VAR *var)
Definition: var.c:17181
SCIP_ROW * SCIPgetRowLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18387
SCIP_RETCODE SCIPaddConflictUb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:488
Definition: type_var.h:53
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_SOL *sol, SCIP_Bool separatecards, SCIP_Bool separateall, int *ncuts, SCIP_Bool *cutoff)
Definition: cons_linear.c:7481
static SCIP_Bool consdataIsResidualIntegral(SCIP *scip, SCIP_CONSDATA *consdata, int pos, SCIP_Real val)
Definition: cons_linear.c:10449
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, SCIP_Real maxaggrnormscale, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides, int *nchgcoefs)
Definition: cons_linear.c:13246
Definition: cons_linear.c:352
Definition: type_cons.h:66
void SCIPlinConsStatsReset(SCIP_LINCONSSTATS *linconsstats)
Definition: cons.c:7940
SCIP_Real SCIPgetRhsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9755
public methods for problem variables
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:392
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5235
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:297
SCIP_Real SCIPselectSimpleValue(SCIP_Real lb, SCIP_Real ub, SCIP_Longint maxdnom)
Definition: misc.c:9368
Definition: type_result.h:40
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:138
void SCIPsortDownRealInt(SCIP_Real *realarray, int *intarray, int len)
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:516
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, int *firstchange, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides)
Definition: cons_linear.c:13052
static SCIP_RETCODE aggregateConstraints(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1, int *commonidx0, int *commonidx1, int *diffidx0minus1, int *diffidx1minus0, int nvarscommon, int commonidxweight, int diffidx0minus1weight, int diffidx1minus0weight, SCIP_Real maxaggrnormscale, int *nchgcoefs, SCIP_Bool *aggregated, SCIP_Bool *infeasible)
Definition: cons_linear.c:12543
static SCIP_RETCODE rangedRowPropagation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds, int *naddconss)
Definition: cons_linear.c:5732
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:4549
SCIP_RETCODE SCIPdelCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_linear.c:18103
static SCIP_RETCODE consDropEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:758
public methods for SCIP variables
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:824
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:686
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:203
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:155
static SCIP_Real consdataGetMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2301
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1483
SCIP_Real SCIPgetRhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18142
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:870
SCIP_Real SCIPgetLhsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14982
static SCIP_RETCODE tightenSides(SCIP *scip, SCIP_CONS *cons, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:8819
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:17874
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:279
Definition: type_cons.h:71
static SCIP_RETCODE addConflictFixedVars(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos)
Definition: cons_linear.c:5014
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:1011
SCIP_RETCODE SCIPparseVarsLinearsum(SCIP *scip, const char *str, SCIP_VAR **vars, SCIP_Real *vals, int *nvars, int varssize, int *requiredsize, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:699
SCIP_RETCODE SCIPaddConflictLb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:421
public methods for numerical tolerances
Definition: struct_conflict.h:40
static SCIP_RETCODE rangedRowSimplify(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:11208
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2113
int SCIPgetNQuadVarTermsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14895
public methods for querying solving statistics
Definition: struct_sol.h:63
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4198
Definition: type_cons.h:59
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:370
public methods for the branch-and-bound tree
Definition: type_cons.h:61
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:8963
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1199
static void linconsupgradeFree(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade)
Definition: cons_linear.c:530
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1310
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8082
static SCIP_RETCODE analyzeConflict(SCIP *scip, SCIP_CONS *cons, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:5223
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool checkrelmaxabs, SCIP_Bool *violated)
Definition: cons_linear.c:7144
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6829
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10269
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:111
SCIP_RETCODE SCIPmultiaggregateVar(SCIP *scip, SCIP_VAR *var, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: scip_var.c:8421
Definition: struct_misc.h:127
public methods for managing constraints
Constraint handler for knapsack constraints of the form , x binary and .
static SCIP_RETCODE updateCutoffbound(SCIP *scip, SCIP_CONS *cons, SCIP_Real primalbound)
Definition: cons_linear.c:10223
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:409
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:11320
static SCIP_RETCODE tightenVarUb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newub, SCIP_Real oldub, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5276
static void getMaxActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *maxactivity, SCIP_Bool *isrelax, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2482
Definition: type_retcode.h:36
SCIP_Bool SCIPisSumRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1318
Definition: type_result.h:35
Definition: struct_cons.h:37
SCIP_Real SCIPgetDualsolLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18331
static SCIP_DECL_QUADCONSUPGD(upgradeConsQuadratic)
Definition: cons_linear.c:17210
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:529
SCIP_RETCODE SCIPaddConsLocal(SCIP *scip, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition: scip_prob.c:3446
SCIP_Bool SCIPdoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8471
Definition: struct_cons.h:117
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3527
public methods for event handler plugins and event handlers
static void consdataGetActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Real *maxactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax)
Definition: cons_linear.c:2581
SCIP_RETCODE SCIPinferVarFixCons(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5346
SCIP_RETCODE SCIPupgradeConsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_CONS **upgdcons)
Definition: cons_linear.c:18410
Definition: type_lp.h:47
SCIP_RETCODE SCIPgetProbvarSum(SCIP *scip, SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: scip_var.c:1796
Definition: type_cons.h:67
SCIP_Real * SCIPgetCoefsLinearVarsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14882
static void consdataCalcMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1407
SCIP_RETCODE SCIPaddVarImplication(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6690
static SCIP_RETCODE chgRhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:3567
Definition: type_result.h:36
static SCIP_RETCODE conshdlrdataEnsureLinconsupgradesSize(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, int num)
Definition: cons_linear.c:449
static void consdataUpdateDelCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2129
static SCIP_RETCODE consdataSort(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3293
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4374
static void consdataUpdateAddCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2079
static int inferInfoGetProprule(INFERINFO inferinfo)
Definition: cons_linear.c:397
static SCIP_RETCODE consdataTightenCoefs(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:8940
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:434
constraint handler for quadratic constraints
Definition: type_var.h:42
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4211
Definition: type_var.h:44
static SCIP_RETCODE addConflictReasonVars(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5079
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2028
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_linear.c:3849
static SCIP_RETCODE resolvePropagation(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, INFERINFO inferinfo, SCIP_BOUNDTYPE boundtype, SCIP_BDCHGIDX *bdchgidx, SCIP_RESULT *result)
Definition: cons_linear.c:5130
SCIP_RETCODE SCIPgetIntParam(SCIP *scip, const char *name, int *value)
Definition: scip_param.c:341
static SCIP_RETCODE checkPartialObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10156
static SCIP_RETCODE conshdlrdataIncludeUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_LINCONSUPGRADE *linconsupgrade)
Definition: cons_linear.c:620
Definition: type_set.h:43
Definition: type_retcode.h:33
public methods for problem copies
static SCIP_Bool canTightenBounds(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:5247
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:890
static SCIP_RETCODE tightenVarBoundsEasy(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5414
SCIP_RETCODE SCIPgetProbvarLinearSum(SCIP *scip, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize, SCIP_Bool mergemultiples)
Definition: scip_var.c:1740
SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:17148
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2494
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:334
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:877
static void getMinActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Bool *isrelax, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2381
Definition: type_result.h:42
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:772
Definition: type_cons.h:58
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:296
static SCIP_Bool isFiniteNonnegativeIntegral(SCIP *scip, SCIP_Real x)
Definition: cons_linear.c:15089
Definition: grphload.c:88
static SCIP_RETCODE scaleCons(SCIP *scip, SCIP_CONS *cons, SCIP_Real scalar)
Definition: cons_linear.c:4043
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:294
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:709
static SCIP_DECL_HASHKEYVAL(hashKeyValLinearcons)
Definition: cons_linear.c:12934
public methods for constraint handler plugins and constraints
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool tightenbounds, SCIP_Bool rangedrowpropagation, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7571
SCIP_Real SCIPgetDualfarkasLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18358
static void consdataUpdateChgCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldval, SCIP_Real newval, SCIP_Bool checkreliability)
Definition: cons_linear.c:2186
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:4449
SCIP_Real SCIPgetRhsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14994
static SCIP_RETCODE consdataPrint(SCIP *scip, SCIP_CONSDATA *consdata, FILE *file)
Definition: cons_linear.c:1089
void SCIPhashtablePrintStatistics(SCIP_HASHTABLE *hashtable, SCIP_MESSAGEHDLR *messagehdlr)
Definition: misc.c:2621
static SCIP_RETCODE retrieveParallelConstraints(SCIP_HASHTABLE *hashtable, SCIP_CONS **querycons, SCIP_CONS **parallelconss, int *nparallelconss)
Definition: cons_linear.c:12991
public data structures and miscellaneous methods
static SCIP_RETCODE chgLhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:3441
SCIP_Bool SCIPisSumGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:789
SCIP_RETCODE SCIPchgRowRhs(SCIP *scip, SCIP_ROW *row, SCIP_Real rhs)
Definition: scip_lp.c:1519
Definition: type_var.h:55
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_linear.c:4127
static void consdataRecomputeGlbMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1380
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONSHDLR *conshdlr, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1336
SCIP_Real SCIPgetLhsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9743
static SCIP_Real consdataGetActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3073
constraint handler for nonlinear constraints
static void conshdlrdataFree(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata)
Definition: cons_linear.c:568
Definition: type_var.h:54
Definition: type_var.h:46
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2550
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:4518
Definition: struct_lp.h:192
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_linear.c:7428
methods for debugging
public methods for LP management
SCIP_RETCODE SCIPhashtableSafeInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2396
static SCIP_RETCODE presolStuffing(SCIP *scip, SCIP_CONS *cons, SCIP_Bool singletonstuffing, SCIP_Bool singlevarstuffing, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds)
Definition: cons_linear.c:13850
SCIP_RETCODE SCIPchgRowLhs(SCIP *scip, SCIP_ROW *row, SCIP_Real lhs)
Definition: scip_lp.c:1495
public methods for cuts and aggregation rows
static void consdataUpdateActivitiesGlbLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2033
Definition: type_cons.h:63
Definition: type_set.h:41
static SCIP_Real consdataComputePseudoActivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1246
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:468
SCIP_Real SCIPbdchginfoGetNewbound(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:17936
Definition: type_cons.h:73
static void consdataCalcActivities(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2319
SCIP_RETCODE SCIPcreateVar(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:104
Definition: type_var.h:41
Definition: type_var.h:45
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8178
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4289
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:847
Constraint handler for linear constraints in their most general form, .
SCIP_Longint SCIPgetNConflictConssApplied(SCIP *scip)
Definition: scip_solvingstats.c:1124
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2425
SCIP_RETCODE SCIPchgRhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:18186
SCIP_Bool SCIPisSumRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1344
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2050
SCIP_RETCODE SCIPvarGetOrigvarSum(SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:12260
SCIP_Real SCIPgetFeasibilityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18304
SCIP_RETCODE SCIPinferVarLbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5415
SCIP_RETCODE SCIPclassifyConstraintTypesLinear(SCIP *scip, SCIP_LINCONSSTATS *linconsstats)
Definition: cons_linear.c:15107
static SCIP_RETCODE aggregateVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10995
public methods for the LP relaxation, rows and columns
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17494
static void consdataGetReliableResidualActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *cancelvar, SCIP_Real *resactivity, SCIP_Bool isminresact, SCIP_Bool useglobalbounds)
Definition: cons_linear.c:2627
static void consdataRecomputeMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1326
SCIP_RETCODE SCIPwriteVarsLinearsum(SCIP *scip, FILE *file, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Bool type)
Definition: scip_var.c:333
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3749
static SCIP_DECL_CONSENFORELAX(consEnforelaxLinear)
Definition: cons_linear.c:15829
Definition: type_set.h:36
methods for sorting joint arrays of various types
SCIP_Bool SCIPconsIsLockedType(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8469
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_linear.c:17546
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:578
static SCIP_RETCODE conshdlrdataCreate(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:544
public methods for branching rule plugins and branching
static void consdataCalcSignatures(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3187
Definition: type_cons.h:62
Definition: struct_misc.h:79
int SCIPgetNLinearVarsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14854
public methods for managing events
static SCIP_RETCODE analyzeConflictRangedRow(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5674
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:652
general public methods
Definition: type_cons.h:69
void SCIPsort(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:5317
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:555
Definition: type_cons.h:70
static void consdataGetActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2708
static SCIP_RETCODE fullDualPresolve(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:14440
int SCIPgetNLinearVarsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9656
public methods for solutions
SCIP_RETCODE SCIPgetVarCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR *sourcevar, SCIP_VAR **targetvar, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *success)
Definition: scip_copy.c:737
SCIP_VAR ** SCIPgetVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18227
SCIP_RETCODE SCIPinferVarUbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5528
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:458
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1335
static void consdataCheckNonbinvar(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1460
static SCIP_RETCODE consCatchAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:792
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:482
Definition: type_lp.h:48
public methods for conflict analysis handlers
static SCIP_RETCODE extractCliques(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, int *nfixedvars, int *nchgbds, SCIP_Bool *cutoff)
Definition: cons_linear.c:7853
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:687
public methods for the probing mode
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1187
Definition: type_cons.h:64
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyLinear)
Definition: cons_linear.c:14979
SCIP_RETCODE SCIPincludeConflicthdlrBasic(SCIP *scip, SCIP_CONFLICTHDLR **conflicthdlrptr, const char *name, const char *desc, int priority, SCIP_DECL_CONFLICTEXEC((*conflictexec)), SCIP_CONFLICTHDLRDATA *conflicthdlrdata)
Definition: scip_conflict.c:177
const char * SCIPconflicthdlrGetName(SCIP_CONFLICTHDLR *conflicthdlr)
Definition: conflict.c:761
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:602
public methods for message output
Definition: type_result.h:43
Definition: type_var.h:84
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:928
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:608
static SCIP_RETCODE convertBinaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9423
SCIP_RETCODE SCIPaggregateVars(SCIP *scip, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *redundant, SCIP_Bool *aggregated)
Definition: scip_var.c:8287
static SCIP_RETCODE tightenBounds(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:6977
SCIP_RETCODE SCIPaddVarsToRow(SCIP *scip, SCIP_ROW *row, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_lp.c:1633
SCIP_VAR ** SCIPgetLinearVarsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9668
static void getNewSidesAfterAggregation(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *slackvar, SCIP_Real slackcoef, SCIP_Real *newlhs, SCIP_Real *newrhs)
Definition: cons_linear.c:9481
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:916
SCIP_Bool SCIPisScalingIntegral(SCIP *scip, SCIP_Real val, SCIP_Real scalar)
Definition: scip_numerics.c:677
static SCIP_RETCODE convertEquality(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10394
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4589
public methods for message handling
static SCIP_RETCODE consPrintConsSol(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, FILE *file)
Definition: cons_linear.c:1128
static unsigned int getParallelConsKey(SCIP_CONS *cons)
Definition: cons_linear.c:12972
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2099
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:3695
static SCIP_DECL_CONFLICTEXEC(conflictExecLinear)
Definition: cons_linear.c:17122
Definition: type_retcode.h:45
SCIP_Real SCIPgetRowSolFeasibility(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2073
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num)
Definition: cons_linear.c:474
Definition: type_set.h:44
Definition: cons_linear.c:334
static SCIP_DECL_NONLINCONSUPGD(upgradeConsNonlinear)
Definition: cons_linear.c:17261
Definition: cons_linear.c:348
static void consdataRecomputeGlbMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1353
SCIP_Real * SCIPgetValsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18250
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:542
static SCIP_RETCODE convertLongEquality(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9537
SCIP_RETCODE SCIPchgLhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:18165
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:117
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:952
SCIP_Bool SCIPconsIsMarkedPropagate(SCIP_CONS *cons)
Definition: cons.c:8285
Definition: type_cons.h:60
static SCIP_Bool isRangedRow(SCIP *scip, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:15076
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:685
SCIP_EXPRGRAPHNODE * SCIPgetExprgraphNodeNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9731
SCIP_RETCODE SCIPaddConflict(SCIP *scip, SCIP_NODE *node, SCIP_CONS *cons, SCIP_NODE *validnode, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_prob.c:3280
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_linear.c:14903
Definition: type_retcode.h:43
static SCIP_DECL_CONSGETNVARS(consGetNVarsLinear)
Definition: cons_linear.c:16926
Definition: objbenders.h:33
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:530
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:220
public methods for global and local (sub)problems
Definition: type_var.h:43
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:8690
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1410
SCIP_RETCODE SCIPaddObjoffset(SCIP *scip, SCIP_Real addval)
Definition: scip_prob.c:1324
int SCIPgetNVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18204
SCIP_Real SCIPgetLhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18119
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:211
static SCIP_RETCODE addConflictBounds(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:4832
SCIP_Longint SCIPcalcSmaComMul(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:8942
Definition: cons_linear.c:350
Definition: type_result.h:39
Definition: struct_event.h:186
static void consdataUpdateActivitiesLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:1983
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5748
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:129
SCIP_RETCODE SCIPchgCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18035
static void consdataUpdateActivitiesUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2008
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata)
Definition: cons_linear.c:1054
Definition: type_cons.h:65
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:343
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1285
memory allocation routines
Definition: type_var.h:58
static SCIP_RETCODE dualPresolve(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10520