scip_var.c
Go to the documentation of this file.
33 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
82 /** creates and captures problem variable; if variable is of integral type, fractional bounds are automatically rounded;
83 * an integer variable with bounds zero and one is automatically converted into a binary variable;
85 * @warning When doing column generation and the original problem is a maximization problem, notice that SCIP will
86 * transform the problem into a minimization problem by multiplying the objective function by -1. Thus, the
87 * original objective function value of variables created during the solving process has to be multiplied by
90 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
102 * @note the variable gets captured, hence at one point you have to release it using the method SCIPreleaseVar()
115 SCIP_DECL_VARTRANS ((*vartrans)), /**< creates transformed user data by transforming original user data, or NULL */
116 SCIP_DECL_VARDELTRANS ((*vardeltrans)), /**< frees user data of transformed variable, or NULL */
124 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateVar", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
137 name, lb, ub, obj, vartype, initial, removable, vardelorig, vartrans, vardeltrans, varcopy, vardata) );
147 name, lb, ub, obj, vartype, initial, removable, vardelorig, vartrans, vardeltrans, varcopy, vardata) );
158 /** creates and captures problem variable with optional callbacks and variable data set to NULL, which can be set
160 * SCIPvarSetDeltransData(), SCIPvarSetCopy(), and SCIPvarSetData(); sets variable flags initial=TRUE
161 * and removable = FALSE, which can be adjusted by using SCIPvarSetInitial() and SCIPvarSetRemovable(), resp.;
163 * an integer variable with bounds zero and one is automatically converted into a binary variable;
165 * @warning When doing column generation and the original problem is a maximization problem, notice that SCIP will
166 * transform the problem into a minimization problem by multiplying the objective function by -1. Thus, the
167 * original objective function value of variables created during the solving process has to be multiplied by
170 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
182 * @note the variable gets captured, hence at one point you have to release it using the method SCIPreleaseVar()
194 SCIP_CALL( SCIPcheckStage(scip, "SCIPcreateVarBasic", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
196 SCIP_CALL( SCIPcreateVar(scip, var, name, lb, ub, obj, vartype, TRUE, FALSE, NULL, NULL, NULL, NULL, NULL) );
203 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
230 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarName", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
251 SCIPvarGetType(var) == SCIP_VARTYPE_IMPLINT ? SCIP_VARTYPE_IMPLINT_CHAR : SCIP_VARTYPE_CONTINUOUS_CHAR);
257 /** print the given list of variables to output stream separated by the given delimiter character;
259 * i. e. the variables x1, x2, ..., xn with given delimiter ',' are written as: <x1>, <x2>, ..., <xn>;
263 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
293 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsList", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
314 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
344 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsLinearsum", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
375 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
413 SCIP_CALL( SCIPcheckStage(scip, "SCIPwriteVarsPolynomial", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
448 /** parses variable information (in cip format) out of a string; if the parsing process was successful a variable is
449 * created and captured; if variable is of integral type, fractional bounds are automatically rounded; an integer
452 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
472 SCIP_DECL_VARTRANS ((*vartrans)), /**< creates transformed user data by transforming original user data */
481 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVar", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
486 SCIP_CALL( SCIPvarParseOriginal(var, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
487 str, initial, removable, varcopy, vardelorig, vartrans, vardeltrans, vardata, endptr, success) );
496 SCIP_CALL( SCIPvarParseTransformed(var, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
497 str, initial, removable, varcopy, vardelorig, vartrans, vardeltrans, vardata, endptr, success) );
508 /** parses the given string for a variable name and stores the variable in the corresponding pointer if such a variable
511 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
536 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarName", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
571 if( *str == '[' && (str[1] == SCIP_VARTYPE_BINARY_CHAR || str[1] == SCIP_VARTYPE_INTEGER_CHAR ||
572 str[1] == SCIP_VARTYPE_IMPLINT_CHAR || str[1] == SCIP_VARTYPE_CONTINUOUS_CHAR ) && str[2] == ']' )
578 /** parse the given string as variable list (here ',' is the delimiter)) (<x1>, <x2>, ..., <xn>) (see
581 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
593 * @note The pointer success in only set to FALSE in the case that a variable with a parsed variable name does not exist.
595 * @note If the number of (parsed) variables is greater than the available slots in the variable array, nothing happens
596 * except that the required size is stored in the corresponding integer; the reason for this approach is that we
597 * cannot reallocate memory, since we do not know how the memory has been allocated (e.g., by a C++ 'new' or SCIP
622 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsList", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
658 /* if all variable name searches were successful and the variable array has enough slots, copy the collected variables */
677 /** parse the given string as linear sum of variables and coefficients (c1 <x1> + c2 <x2> + ... + cn <xn>)
680 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
692 * @note The pointer success in only set to FALSE in the case that a variable with a parsed variable name does not exist.
694 * @note If the number of (parsed) variables is greater than the available slots in the variable array, nothing happens
695 * except that the required size is stored in the corresponding integer; the reason for this approach is that we
696 * cannot reallocate memory, since we do not know how the memory has been allocated (e.g., by a C++ 'new' or SCIP
717 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsLinearsum", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
730 SCIP_CALL( SCIPparseVarsPolynomial(scip, str, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, &nmonomials, endptr, success) );
734 assert(nmonomials == 0); /* SCIPparseVarsPolynomial should have freed all buffers, so no need to call free here */
744 SCIPfreeParseVarsPolynomialData(scip, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, nmonomials);
780 SCIPfreeParseVarsPolynomialData(scip, &monomialvars, &monomialexps, &monomialcoefs, &monomialnvars, nmonomials);
790 * monomialcoefs, monomialnvars, *nmonomials) short after SCIPparseVarsPolynomial to free all the
791 * allocated memory again. Do not keep the arrays created by SCIPparseVarsPolynomial around, since
794 * Parsing is stopped at the end of string (indicated by the \\0-character) or when no more monomials
797 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
852 SCIP_CALL( SCIPcheckStage(scip, "SCIPparseVarsPolynomial", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
872 while( *str && state != SCIPPARSEPOLYNOMIAL_STATE_END && state != SCIPPARSEPOLYNOMIAL_STATE_ERROR )
900 SCIP_CALL( SCIPduplicateBufferArray(scip, &(*monomialvars)[*nmonomials], vars, nvars) ); /*lint !e866*/
901 SCIP_CALL( SCIPduplicateBufferArray(scip, &(*monomialexps)[*nmonomials], exponents, nvars) ); /*lint !e866*/
1135 /* SCIPwriteVarsPolynomial(scip, NULL, *monomialvars, *monomialexps, *monomialcoefs, *monomialnvars, *nmonomials, FALSE); */
1140 SCIPfreeParseVarsPolynomialData(scip, monomialvars, monomialexps, monomialcoefs, monomialnvars, *nmonomials);
1149 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1182 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPfreeParseVarsPolynomialData", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1201 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1222 SCIP_CALL( SCIPcheckStage(scip, "SCIPcaptureVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1230 /** decreases usage counter of variable, if the usage pointer reaches zero the variable gets freed
1232 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1260 SCIP_CALL( SCIPcheckStage(scip, "SCIPreleaseVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1281 SCIPerrorMessage("cannot release last use of original variable while the transformed problem exists\n");
1295 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1308 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarName", FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
1336 /** gets and captures transformed variable of a given variable; if the variable is not yet transformed,
1339 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1360 SCIP_CALL( SCIPcheckStage(scip, "SCIPtransformVar", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1369 SCIP_CALL( SCIPvarTransform(var, scip->mem->probmem, scip->set, scip->stat, scip->origprob->objsense, transvar) );
1376 * if a variable of the array is not yet transformed, a new transformed variable for this variable is created;
1379 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1404 SCIP_CALL( SCIPcheckStage(scip, "SCIPtransformVars", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
1415 SCIP_CALL( SCIPvarTransform(vars[v], scip->mem->probmem, scip->set, scip->stat, scip->origprob->objsense,
1426 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1450 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetTransformedVar", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1464 * it is possible to call this method with vars == transvars, but remember that variables that are not
1467 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1495 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetTransformedVars", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1503 SCIP_CALL( SCIPvarGetTransformed(vars[v], scip->mem->probmem, scip->set, scip->stat, &transvars[v]) );
1510 /** gets negated variable x' = lb + ub - x of variable x; negated variable is created, if not yet existing;
1511 * in difference to \ref SCIPcreateVar, the negated variable must not be released (unless captured explicitly)
1513 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1536 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNegatedVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1544 /** gets negated variables x' = lb + ub - x of variables x; negated variables are created, if not yet existing
1546 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1572 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetNegatedVars", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1582 /** gets a binary variable that is equal to the given binary variable, and that is either active, fixed, or
1585 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1604 SCIP_Bool* negated /**< pointer to store whether the negation of an active variable was returned */
1613 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetBinvarRepresentative", FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1629 /** gets binary variables that are equal to the given binary variables, and which are either active, fixed, or
1632 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1652 SCIP_Bool* negated /**< array to store whether the negation of an active variable was returned */
1662 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetBinvarRepresentatives", FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
1682 /** flattens aggregation graph of multi-aggregated variable in order to avoid exponential recursion later on
1684 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1703 SCIP_CALL( SCIPcheckStage(scip, "SCIPflattenVarAggregationGraph", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
1709 /** Transforms a given linear sum of variables, that is a_1*x_1 + ... + a_n*x_n + c into a corresponding linear sum of
1712 * If the number of needed active variables is greater than the available slots in the variable array, nothing happens
1713 * except that the required size is stored in the corresponding variable (requiredsize). Otherwise, the active variable
1716 * The reason for this approach is that we cannot reallocate memory, since we do not know how the memory has been
1719 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1734 * @note The resulting linear sum is stored into the given variable array, scalar array, and constant. That means the
1737 * @note That method can be used to convert a single variables into variable space of active variables. Therefore call
1753 SCIP_Real* constant, /**< pointer to constant c in linear sum a_1*x_1 + ... + a_n*x_n + c which
1758 SCIP_Bool mergemultiples /**< should multiple occurrences of a var be replaced by a single coeff? */
1769 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetProbvarLinearSum", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1770 SCIP_CALL( SCIPvarGetActiveRepresentatives(scip->set, vars, scalars, nvars, varssize, constant, requiredsize, mergemultiples) );
1776 * multi-aggregated variable, scalar and constant; if the variable resolves to a fixed variable,
1777 * "scalar" will be 0.0 and the value of the sum will be stored in "constant"; a multi-aggregation
1779 * is treated like an aggregation; if the multi-aggregation constant is infinite, "scalar" will be 0.0
1781 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1808 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetProbvarSum", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1814 /** return for given variables all their active counterparts; all active variables will be pairwise different
1815 * @note It does not hold that the first output variable is the active variable for the first input variable.
1817 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
1850 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetActiveVars", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
1864 * @note The return value of this method should be used carefully if the dual feasibility check was explictely disabled.
1909 * @note The return value of this method should be used carefully if the dual feasibility check was explictely disabled.
1929 return SCIPvarGetImplRedcost(var, scip->set, varfixing, scip->stat, scip->transprob, scip->lp);
1991 /** returns lower bound of variable directly before or after the bound change given by the bound change index
2068 /* handle multi-aggregated variables depending on one variable only (possibly caused by SCIPvarFlattenAggregationGraph()) */
2118 return var->data.negate.constant - SCIPgetVarUbAtIndex(scip, var->negatedvar, bdchgidx, after);
2127 /** returns upper bound of variable directly before or after the bound change given by the bound change index
2204 /* handle multi-aggregated variables depending on one variable only (possibly caused by SCIPvarFlattenAggregationGraph()) */
2254 return var->data.negate.constant - SCIPgetVarLbAtIndex(scip, var->negatedvar, bdchgidx, after);
2263 /** returns lower or upper bound of variable directly before or after the bound change given by the bound change index
2283 /** returns whether the binary variable was fixed at the time given by the bound change index */
2294 /* check the current bounds first in order to decide at which bound change information we have to look
2297 return ((SCIPvarGetLbLocal(var) > 0.5 && SCIPgetVarLbAtIndex(scip, var, bdchgidx, after) > 0.5)
2314 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2322 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2341 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarSols", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2359 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2376 SCIP_CALL( SCIPcheckStage(scip, "SCIPclearRelaxSolVals", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2396 * this solution can be filled by the relaxation handlers and can be used by heuristics and for separation;
2401 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2408 * @note This method incrementally updates the objective value of the relaxation solution. If the whole solution
2409 * should be updated, using SCIPsetRelaxSolVals() instead or calling SCIPclearRelaxSolVals() before setting
2420 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolVal", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2431 /** sets the values of the given variables in the global relaxation solution and informs SCIP about the validity
2433 * this solution can be filled by the relaxation handlers and can be used by heuristics and for separation;
2436 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2457 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolVals", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2472 /** sets the values of the variables in the global relaxation solution to the values in the given primal solution
2473 * and informs SCIP about the validity and whether the solution can be enforced via linear cuts;
2474 * the relaxation solution can be filled by the relaxation handlers and might be used by heuristics and for separation
2476 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2496 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetRelaxSolValsSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2511 SCIPrelaxationSetSolObj(scip->relaxation, SCIPsolGetObj(sol, scip->set, scip->transprob, scip->origprob));
2535 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPisRelaxSolValid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2540 /** informs SCIP that the relaxation solution is valid and whether the relaxation can be enforced through linear cuts
2542 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2556 SCIP_CALL( SCIPcheckStage(scip, "SCIPmarkRelaxSolValid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2565 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2578 SCIP_CALL( SCIPcheckStage(scip, "SCIPmarkRelaxSolInvalid", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2602 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetRelaxSolVal", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2628 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetRelaxSolObj", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2660 return (SCIPgetVarAvgCutoffs(scip, var, SCIP_BRANCHDIR_DOWNWARDS) > SCIPgetVarAvgCutoffs(scip, var, SCIP_BRANCHDIR_UPWARDS));
2666 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2673 * @note if propagation is enabled, strong branching is not done directly on the LP, but probing nodes are created
2678 SCIP_Bool enablepropagation /**< should propagation be done before solving the strong branching LP? */
2682 SCIP_CALL( SCIPcheckStage(scip, "SCIPstartStrongbranch", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2686 SCIPdebugMsg(scip, "starting strong branching mode%s: lpcount=%" SCIP_LONGINT_FORMAT "\n", enablepropagation ? " with propagation" : "", scip->stat->lpcount - scip->stat->nsbdivinglps);
2688 /* start probing mode to allow propagation before solving the strong branching LPs; if no propagation should be done,
2705 /* other then in SCIPstartProbing(), we do not disable collecting variable statistics during strong branching;
2709 SCIP_CALL( SCIPtreeStartProbing(scip->tree, scip->mem->probmem, scip->set, scip->lp, scip->relaxation, scip->transprob, TRUE) );
2727 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2740 SCIP_CALL( SCIPcheckStage(scip, "SCIPendStrongbranch", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2742 /* depending on whether the strong branching mode was started with propagation enabled or not, we end the strong
2756 /* collect all bound changes deducted during probing, which were applied at the probing root and apply them to the
2786 SCIPdebugMsg(scip, "ending strong branching with probing: %d bound changes collected\n", nbnds);
2791 /* switch back from probing to normal operation mode and restore variables and constraints to focus node */
2792 SCIP_CALL( SCIPtreeEndProbing(scip->tree, scip->reopt, scip->mem->probmem, scip->set, scip->messagehdlr, scip->stat,
2801 SCIPdebugMsg(scip, "apply probing lower bound change <%s> >= %.9g\n", SCIPvarGetName(boundchgvars[i]), bounds[i]);
2806 SCIPdebugMsg(scip, "apply probing upper bound change <%s> <= %.9g\n", SCIPvarGetName(boundchgvars[i]), bounds[i]);
2825 /** analyze the strong branching for the given variable; that includes conflict analysis for infeasible branches and
2832 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
2834 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
2856 * because the strong branching's bound change is necessary for infeasibility, it cannot be undone;
2857 * therefore, infeasible strong branchings on non-binary variables will not produce a valid conflict constraint
2867 SCIP_CALL( SCIPconflictAnalyzeStrongbranch(scip->conflict, scip->conflictstore, scip->mem->probmem, scip->set, scip->stat,
2868 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, col, downconflict, upconflict) );
2872 /* the strong branching results can be used to strengthen the root reduced cost information which is used for example
2875 * @note Ignore the results if the LP solution of the down (up) branch LP is smaller which should not happened by
2878 if( SCIPtreeGetCurrentDepth(scip->tree) == 0 && SCIPvarIsBinary(var) && SCIPlpIsDualReliable(scip->lp) )
2886 if( col->sbdownvalid && SCIPsetFeasCeil(scip->set, col->primsol-1.0) >= col->lb - 0.5 && lpobjval < col->sbdown )
2887 SCIPvarUpdateBestRootSol(var, scip->set, SCIPvarGetUbGlobal(var), -(col->sbdown - lpobjval), lpobjval);
2888 if( col->sbupvalid && SCIPsetFeasFloor(scip->set, col->primsol+1.0) <= col->ub + 0.5 && lpobjval < col->sbup )
2889 SCIPvarUpdateBestRootSol(var, scip->set, SCIPvarGetLbGlobal(var), col->sbup - lpobjval, lpobjval);
2897 * Before calling this method, the strong branching mode must have been activated by calling SCIPstartStrongbranch();
2898 * after strong branching was done for all candidate variables, the strong branching mode must be ended by
2899 * SCIPendStrongbranch(). Since this method does not apply domain propagation before strongbranching,
2902 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
2915 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
2919 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
2921 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
2934 assert(!SCIPtreeProbing(scip->tree)); /* we should not be in strong branching with propagation mode */
2937 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchFrac", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
2954 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
2963 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
2976 SCIP_CALL( SCIPcolGetStrongbranch(col, FALSE, scip->set, scip->stat, scip->transprob, scip->lp, itlim,
2979 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
2982 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
2990 /** create, solve, and evaluate a single strong branching child (for strong branching with propagation) */
3005 SCIP_Longint* ndomreductions, /**< pointer to store the number of domain reductions found, or NULL */
3014 SCIP_Bool* foundsol, /**< pointer to store whether a primal solution was found during strong branching */
3031 /* the down branch is infeasible due to the branching bound change; since this means that solval is not within the
3032 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3042 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3053 /* the up branch is infeasible due to the branching bound change; since this means that solval is not within the
3054 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3064 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3074 /* we need to ensure that we can create at least one new probing node without exceeding the maximal tree depth */
3077 /* create a new probing node for the strong branching child and apply the new bound for the variable */
3192 SCIPdebugMsg(scip, "probing LP hit %s limit\n", SCIPgetLPSolstat(scip) == SCIP_LPSOLSTAT_ITERLIMIT ? "iteration" : "time");
3194 /* we access the LPI directly, because when a time limit was hit, we cannot access objective value and dual
3195 * feasibility using the SCIPlp... methods; we should try to avoid direct calls to the LPI, but this is rather
3196 * uncritical here, because we are immediately after the SCIPsolveProbingLP() call, because we access the LPI
3209 /* we use SCIP's infinity value here because a value larger than this is counted as infeasible by SCIP */
3232 case SCIP_LPSOLSTAT_NOTSOLVED: /* should only be the case for *cutoff = TRUE or *lperror = TRUE */
3233 case SCIP_LPSOLSTAT_OBJLIMIT: /* in this case, *cutoff should be TRUE and we should not get here */
3234 case SCIP_LPSOLSTAT_INFEASIBLE: /* in this case, *cutoff should be TRUE and we should not get here */
3241 /* If columns are missing in the LP, the cutoff flag may be wrong. Therefore, we need to set it and the valid pointer
3252 SCIPdebugMsg(scip, "error during strong branching probing LP solving: status=%d\n", SCIPgetLPSolstat(scip));
3257 /* if the subproblem was feasible, we store the local bounds of the variables after propagation and (possibly)
3259 * @todo do this after propagation? should be able to get valid bounds more often, but they might be weaker
3276 /* update newlbs and newubs: take the weaker of the already stored bounds and the current local bounds */
3298 * Before calling this method, the strong branching mode must have been activated by calling SCIPstartStrongbranch();
3299 * after strong branching was done for all candidate variables, the strong branching mode must be ended by
3300 * SCIPendStrongbranch(). Since this method applies domain propagation before strongbranching, propagation has to be be
3303 * Before solving the strong branching LP, domain propagation can be performed. The number of propagation rounds
3306 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3313 * @warning When using this method, LP banching candidates and solution values must be copied beforehand, because
3326 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
3330 SCIP_Longint* ndomredsdown, /**< pointer to store the number of domain reductions down, or NULL */
3332 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
3334 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
3371 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchWithPropagation", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3377 * If this is not the case, we may still return that the up and down dual bounds are valid, because the branching
3379 * However, we must not set the downinf or upinf pointers to TRUE based on the dual bound, because we cannot
3384 /* if maxproprounds is -2, change it to 0, which for the following calls means using the parameter settings */
3424 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3433 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3440 SCIPdebugMsg(scip, "strong branching on var <%s>: solval=%g, lb=%g, ub=%g\n", SCIPvarGetName(var), solval,
3443 /* the up branch is infeasible due to the branching bound change; since this means that solval is not within the
3444 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3457 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3468 /* the down branch is infeasible due to the branching bound change; since this means that solval is not within the
3469 * bounds, this should only happen if previous strong branching calls on other variables detected bound changes which
3482 /* bound changes are applied in SCIPendStrongbranch(), which can be seen as a conflict constraint */
3493 /* We now do strong branching by creating the two potential child nodes as probing nodes and solving them one after
3494 * the other. We will stop when the first child is detected infeasible, saving the effort we would need for the
3495 * second child. Since empirically, the up child tends to be infeasible more often, we do strongbranching first on
3518 SCIP_CALL( performStrongbranchWithPropagation(scip, var, downchild, firstchild, propagate, newub, itlim, maxproprounds,
3519 down, &downvalidlocal, ndomredsdown, downconflict, lperror, vars, nvars, newlbs, newubs, &foundsol, &cutoff) );
3538 (SCIPvarGetLbLocal(var) > newub + 0.5 || SCIPconflictGetNConflicts(scip->conflict) > oldnconflicts) )
3545 /* if this is the first call, we do not regard the up branch, its valid pointer is initially set to FALSE */
3552 SCIP_CALL( performStrongbranchWithPropagation(scip, var, downchild, firstchild, propagate, newlb, itlim, maxproprounds,
3553 up, &upvalidlocal, ndomredsup, upconflict, lperror, vars, nvars, newlbs, newubs, &foundsol, &cutoff) );
3574 (SCIPvarGetUbLocal(var) < newlb - 0.5 || SCIPconflictGetNConflicts(scip->conflict) > oldnconflicts) )
3581 /* if this is the first call, we do not regard the down branch, its valid pointer is initially set to FALSE */
3600 *down, *up, downvalidlocal, upvalidlocal, scip->stat->nsbdivinglpiterations - oldniters, itlim);
3613 /** gets strong branching information on column variable x with integral LP solution value (val); that is, the down branch
3616 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3623 * @note If the integral LP solution value is the lower or upper bound of the variable, the corresponding branch will be
3632 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
3636 SCIP_Bool* downinf, /**< pointer to store whether the downwards branch is infeasible, or NULL */
3638 SCIP_Bool* downconflict, /**< pointer to store whether a conflict constraint was created for an
3648 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchInt", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3668 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3677 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3690 SCIP_CALL( SCIPcolGetStrongbranch(col, TRUE, scip->set, scip->stat, scip->transprob, scip->lp, itlim,
3693 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3696 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3706 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3720 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
3724 SCIP_Bool* downinf, /**< array to store whether the downward branches are infeasible, or NULL */
3737 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarsStrongbranchesFrac", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3768 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3779 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3794 SCIP_CALL( SCIPcolGetStrongbranches(cols, nvars, FALSE, scip->set, scip->stat, scip->transprob, scip->lp, itlim,
3797 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3800 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3817 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3831 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
3835 SCIP_Bool* downinf, /**< array to store whether the downward branches are infeasible, or NULL */
3850 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarsStrongbranchesInt", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
3880 SCIPerrorMessage("cannot get strong branching information on non-COLUMN variable <%s>\n", SCIPvarGetName(var));
3891 SCIPerrorMessage("cannot get strong branching information on variable <%s> not in current LP\n", SCIPvarGetName(var));
3906 SCIP_CALL( SCIPcolGetStrongbranches(cols, nvars, TRUE, scip->set, scip->stat, scip->transprob, scip->lp, itlim,
3909 /* check, if the branchings are infeasible; in exact solving mode, we cannot trust the strong branching enough to
3912 if( !(*lperror) && SCIPprobAllColsInLP(scip->transprob, scip->set, scip->lp) && !scip->set->misc_exactsolve )
3927 /** get LP solution status of last strong branching call (currently only works for strong branching with propagation) */
3939 /** gets strong branching information on COLUMN variable of the last SCIPgetVarStrongbranch() call;
3940 * returns values of SCIP_INVALID, if strong branching was not yet called on the given variable;
3941 * keep in mind, that the returned old values may have nothing to do with the current LP solution
3943 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3955 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
3959 SCIP_Real* solval, /**< stores LP solution value of variable at the last strong branching call, or NULL */
3963 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarStrongbranchLast", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE) );
3971 SCIPcolGetStrongbranchLast(SCIPvarGetCol(var), down, up, downvalid, upvalid, solval, lpobjval);
3978 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
3997 SCIP_CALL( SCIPcheckStage(scip, "SCIPsetVarStrongbranchData", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4005 SCIPcolSetStrongbranchData(SCIPvarGetCol(var), scip->set, scip->stat, scip->lp, lpobjval, primsol,
4013 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4029 SCIP_CALL( SCIPcheckStage(scip, "SCIPtryStrongbranchLPSol", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4081 /** gets node number of the last node in current branch and bound run, where strong branching was used on the
4084 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4104 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarStrongbranchNode", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4114 /** if strong branching was already applied on the variable at the current node, returns the number of LPs solved after
4118 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4138 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarStrongbranchLPAge", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4150 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4170 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarNStrongbranchs", FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
4182 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4206 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarLocksType", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4225 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, locktype, nlocksdown, nlocksup) );
4236 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4263 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarLocks", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4271 * this method should be called whenever the lock status of a variable in a constraint changes, for example if
4272 * the coefficient of the variable changed its sign or if the left or right hand sides of the constraint were
4275 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4301 SCIP_CALL( SCIPcheckStage(scip, "SCIPlockVarCons", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4345 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, (SCIP_LOCKTYPE) i, nlocksdown[i], nlocksup[i]) );
4355 /** remove locks of type @p locktype of variable with respect to the lock status of the constraint and its negation;
4356 * this method should be called whenever the lock status of a variable in a constraint changes, for example if
4357 * the coefficient of the variable changed its sign or if the left or right hand sides of the constraint were
4360 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4386 SCIP_CALL( SCIPcheckStage(scip, "SCIPunlockVarCons", FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE) );
4428 SCIP_CALL( SCIPvarAddLocks(var, scip->mem->probmem, scip->set, scip->eventqueue, (SCIP_LOCKTYPE) i, -nlocksdown[i], -nlocksup[i]) );
4440 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4455 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarObj", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
4470 SCIP_CALL( SCIPvarChgObj(var, scip->mem->probmem, scip->set, scip->origprob, scip->primal, scip->lp, scip->eventqueue, newobj) );
4477 SCIP_CALL( SCIPvarChgObj(var, scip->mem->probmem, scip->set, scip->transprob, scip->primal, scip->lp, scip->eventqueue, newobj) );
4488 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4504 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarObj", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
4512 SCIP_CALL( SCIPvarAddObj(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob, scip->primal,
4520 SCIP_CALL( SCIPvarAddObj(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob, scip->primal,
4530 /** returns the adjusted (i.e. rounded, if the given variable is of integral type) lower bound value;
4533 * @return adjusted lower bound for the given variable; the bound of the variable is not changed
4555 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPadjustedVarLb", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
4562 /** returns the adjusted (i.e. rounded, if the given variable is of integral type) upper bound value;
4565 * @return adjusted upper bound for the given variable; the bound of the variable is not changed
4587 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPadjustedVarUb", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
4594 /** depending on SCIP's stage, changes lower bound of variable in the problem, in preprocessing, or in current node;
4595 * if possible, adjusts bound to integral value; doesn't store any inference information in the bound change, such
4598 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
4601 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4610 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
4618 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarLb", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4626 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
4655 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
4656 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
4670 SCIP_CALL( SCIPnodeAddBoundchg(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
4671 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
4684 /** depending on SCIP's stage, changes upper bound of variable in the problem, in preprocessing, or in current node;
4685 * if possible, adjusts bound to integral value; doesn't store any inference information in the bound change, such
4688 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
4691 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4700 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
4708 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarUb", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4716 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
4745 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
4760 SCIP_CALL( SCIPnodeAddBoundchg(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
4761 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
4773 /** changes lower bound of variable in the given node; if possible, adjust bound to integral value; doesn't store any
4774 * inference information in the bound change, such that in conflict analysis, this change is treated like a branching
4777 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4789 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarLbNode", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4803 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
4809 SCIP_CALL( SCIPnodeAddBoundchg(node, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
4810 scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
4817 /** changes upper bound of variable in the given node; if possible, adjust bound to integral value; doesn't store any
4818 * inference information in the bound change, such that in conflict analysis, this change is treated like a branching
4821 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4833 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarUbNode", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4847 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
4853 SCIP_CALL( SCIPnodeAddBoundchg(node, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
4854 scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
4861 /** changes global lower bound of variable; if possible, adjust bound to integral value; also tightens the local bound,
4864 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
4867 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4876 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
4884 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarLbGlobal", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4892 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
4920 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
4921 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
4935 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
4936 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
4948 /** changes global upper bound of variable; if possible, adjust bound to integral value; also tightens the local bound,
4951 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
4954 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
4963 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
4971 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarUbGlobal", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
4979 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
5007 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
5008 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5022 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
5023 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5035 /** changes lazy lower bound of the variable, this is only possible if the variable is not in the LP yet
5037 * lazy bounds are bounds, that are enforced by constraints and the objective function; hence, these bounds do not need
5040 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
5050 * @note lazy bounds are useful for branch-and-price since the corresponding variable bounds are not part of the LP
5061 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarLbLazy", FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5068 /** changes lazy upper bound of the variable, this is only possible if the variable is not in the LP yet
5070 * lazy bounds are bounds, that are enforced by constraints and the objective function; hence, these bounds do not need
5073 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
5083 * @note lazy bounds are useful for branch-and-price since the corresponding variable bounds are not part of the LP
5094 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarUbLazy", FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5101 /** changes lower bound of variable in preprocessing or in the current node, if the new bound is tighter
5102 * (w.r.t. bound strengthening epsilon) than the current bound; if possible, adjusts bound to integral value;
5103 * doesn't store any inference information in the bound change, such that in conflict analysis, this change
5106 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
5109 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
5117 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
5132 /** @todo if needed provide pending local/global bound changes that will be flushed after leaving diving mode (as in struct_tree.h) */
5135 SCIP_CALL( SCIPcheckStage(scip, "SCIPtightenVarLb", FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5147 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
5165 if( (force && SCIPsetIsLE(scip->set, newbound, lb)) || (!force && !SCIPsetIsLbBetter(scip->set, newbound, lb, ub)) )
5188 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
5189 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5201 SCIP_CALL( SCIPnodeAddBoundchg(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
5202 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
5217 /** changes upper bound of variable in preprocessing or in the current node, if the new bound is tighter
5218 * (w.r.t. bound strengthening epsilon) than the current bound; if possible, adjusts bound to integral value;
5219 * doesn't store any inference information in the bound change, such that in conflict analysis, this change
5222 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
5225 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
5233 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
5248 /** @todo if needed provide pending local/global bound changes that will be flushed after leaving diving mode (as in struct_tree.h) */
5251 SCIP_CALL( SCIPcheckStage(scip, "SCIPtightenVarUb", FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5263 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
5281 if( (force && SCIPsetIsGE(scip->set, newbound, ub)) || (!force && !SCIPsetIsUbBetter(scip->set, newbound, lb, ub)) )
5304 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
5305 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5317 SCIP_CALL( SCIPnodeAddBoundchg(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
5318 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
5333 /** fixes variable in preprocessing or in the current node, if the new bound is tighter (w.r.t. bound strengthening
5334 * epsilon) than the current bound; if possible, adjusts bound to integral value; the given inference constraint is
5335 * stored, such that the conflict analysis is able to find out the reason for the deduction of the bound change
5337 * @note In presolving stage when not in probing mode the variable will be fixed directly, otherwise this method
5338 * changes first the lowerbound by calling SCIPinferVarLbCons and second the upperbound by calling
5341 * @note If SCIP is in presolving stage, it can happen that the internal variable array (which get be accessed via
5344 * @note During presolving, an integer variable which bound changes to {0,1} is upgraded to a binary variable.
5361 SCIP_CALL( SCIPcheckStage(scip, "SCIPinferVarFixCons", FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5371 SCIP_CALL( SCIPvarFix(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
5372 scip->primal, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
5383 SCIP_CALL( SCIPinferVarLbCons(scip, var, fixedval, infercons, inferinfo, force, infeasible, &lbtightened) );
5387 SCIP_CALL( SCIPinferVarUbCons(scip, var, fixedval, infercons, inferinfo, force, infeasible, tightened) );
5397 /** changes lower bound of variable in preprocessing or in the current node, if the new bound is tighter
5398 * (w.r.t. bound strengthening epsilon) than the current bound; if possible, adjusts bound to integral value;
5399 * the given inference constraint is stored, such that the conflict analysis is able to find out the reason
5402 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
5405 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
5413 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
5431 SCIP_CALL( SCIPcheckStage(scip, "SCIPinferVarLbCons", FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5443 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
5461 if( (force && SCIPsetIsLE(scip->set, newbound, lb)) || (!force && !SCIPsetIsLbBetter(scip->set, newbound, lb, ub)) )
5481 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
5482 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5494 SCIP_CALL( SCIPnodeAddBoundinfer(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
5495 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
5510 /** changes upper bound of variable in preprocessing or in the current node, if the new bound is tighter
5511 * (w.r.t. bound strengthening epsilon) than the current bound; if possible, adjusts bound to integral value;
5512 * the given inference constraint is stored, such that the conflict analysis is able to find out the reason
5515 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
5518 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
5526 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
5544 SCIP_CALL( SCIPcheckStage(scip, "SCIPinferVarUbCons", FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5556 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
5574 if( (force && SCIPsetIsGE(scip->set, newbound, ub)) || (!force && !SCIPsetIsUbBetter(scip->set, newbound, lb, ub)) )
5594 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
5595 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5607 SCIP_CALL( SCIPnodeAddBoundinfer(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
5608 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
5623 /** depending on SCIP's stage, fixes binary variable in the problem, in preprocessing, or in current node;
5624 * the given inference constraint is stored, such that the conflict analysis is able to find out the reason for the
5627 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
5642 SCIP_Bool* tightened /**< pointer to store whether the fixing tightened the local bounds, or NULL */
5652 SCIP_CALL( SCIPcheckStage(scip, "SCIPinferBinvarCons", FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5693 SCIP_CALL( SCIPvarFix(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
5694 scip->primal, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
5702 SCIP_CALL( SCIPnodeAddBoundinfer(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
5703 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
5708 SCIP_CALL( SCIPnodeAddBoundinfer(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
5709 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
5725 /** fixes variable in preprocessing or in the current node, if the new bound is tighter (w.r.t. bound strengthening
5726 * epsilon) than the current bound; if possible, adjusts bound to integral value; the given inference constraint is
5727 * stored, such that the conflict analysis is able to find out the reason for the deduction of the bound change
5729 * @note In presolving stage when not in probing mode the variable will be fixed directly, otherwise this method
5730 * changes first the lowerbound by calling SCIPinferVarLbProp and second the upperbound by calling
5733 * @note If SCIP is in presolving stage, it can happen that the internal variable array (which get be accessed via
5736 * @note During presolving, an integer variable which bound changes to {0,1} is upgraded to a binary variable.
5753 SCIP_CALL( SCIPcheckStage(scip, "SCIPinferVarFixProp", FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5763 SCIP_CALL( SCIPvarFix(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
5764 scip->primal, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
5775 SCIP_CALL( SCIPinferVarLbProp(scip, var, fixedval, inferprop, inferinfo, force, infeasible, &lbtightened) );
5779 SCIP_CALL( SCIPinferVarUbProp(scip, var, fixedval, inferprop, inferinfo, force, infeasible, tightened) );
5789 /** changes lower bound of variable in preprocessing or in the current node, if the new bound is tighter
5790 * (w.r.t. bound strengthening epsilon) than the current bound; if possible, adjusts bound to integral value;
5791 * the given inference propagator is stored, such that the conflict analysis is able to find out the reason
5794 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
5797 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
5805 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
5823 SCIP_CALL( SCIPcheckStage(scip, "SCIPinferVarLbProp", FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5835 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
5874 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
5875 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
5887 SCIP_CALL( SCIPnodeAddBoundinfer(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
5888 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
5903 /** changes upper bound of variable in preprocessing or in the current node, if the new bound is tighter
5904 * (w.r.t. bound strengthening epsilon) than the current bound; if possible, adjusts bound to integral value;
5905 * the given inference propagator is stored, such that the conflict analysis is able to find out the reason
5908 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
5911 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
5919 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
5937 SCIP_CALL( SCIPcheckStage(scip, "SCIPinferVarUbProp", FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
5949 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
5988 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
5989 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
6001 SCIP_CALL( SCIPnodeAddBoundinfer(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
6002 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue,
6017 /** depending on SCIP's stage, fixes binary variable in the problem, in preprocessing, or in current node;
6018 * the given inference propagator is stored, such that the conflict analysis is able to find out the reason for the
6021 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
6037 SCIP_Bool* tightened /**< pointer to store whether the fixing tightened the local bounds, or NULL */
6047 SCIP_CALL( SCIPcheckStage(scip, "SCIPinferBinvarProp", FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
6088 SCIP_CALL( SCIPvarFix(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
6089 scip->primal, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
6097 SCIP_CALL( SCIPnodeAddBoundinfer(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
6098 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, 1.0,
6103 SCIP_CALL( SCIPnodeAddBoundinfer(SCIPtreeGetCurrentNode(scip->tree), scip->mem->probmem, scip->set, scip->stat,
6104 scip->transprob, scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, 0.0,
6120 /** changes global lower bound of variable in preprocessing or in the current node, if the new bound is tighter
6121 * (w.r.t. bound strengthening epsilon) than the current global bound; if possible, adjusts bound to integral value;
6124 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
6127 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
6136 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
6152 SCIP_CALL( SCIPcheckStage(scip, "SCIPtightenVarLbGlobal", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
6164 SCIPwarningMessage(scip, "ignore lower bound tightening for %s from %e to +infinity\n", SCIPvarGetName(var),
6182 /* bound changes of less than epsilon are ignored by SCIPvarChgLb or raise an assert in SCIPnodeAddBoundinfer,
6185 if( SCIPsetIsEQ(scip->set, lb, newbound) || (!force && !SCIPsetIsLbBetter(scip->set, newbound, lb, ub)) )
6210 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
6211 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
6223 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
6224 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
6240 /** changes global upper bound of variable in preprocessing or in the current node, if the new bound is tighter
6241 * (w.r.t. bound strengthening epsilon) than the current global bound; if possible, adjusts bound to integral value;
6244 * @warning If SCIP is in presolving stage, it can happen that the internal variable array (which can be accessed via
6247 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
6256 * @note During presolving, an integer variable whose bound changes to {0,1} is upgraded to a binary variable.
6272 SCIP_CALL( SCIPcheckStage(scip, "SCIPtightenVarUbGlobal", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
6284 SCIPwarningMessage(scip, "ignore upper bound tightening for %s from %e to -infinity\n", SCIPvarGetName(var),
6302 /* bound changes of less than epsilon are ignored by SCIPvarChgUb or raise an assert in SCIPnodeAddBoundinfer,
6305 if( SCIPsetIsEQ(scip->set, ub, newbound) || (!force && !SCIPsetIsUbBetter(scip->set, newbound, lb, ub)) )
6330 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
6331 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
6343 SCIP_CALL( SCIPnodeAddBoundchg(scip->tree->root, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
6344 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable, var, newbound,
6366 /** for a multi-aggregated variable, returns the global lower bound computed by adding the global bounds from all aggregation variables
6368 * This global bound may be tighter than the one given by SCIPvarGetLbGlobal, since the latter is not updated if bounds of aggregation variables are changing
6369 * calling this function for a non-multi-aggregated variable results in a call to SCIPvarGetLbGlobal.
6371 * @return the global lower bound computed by adding the global bounds from all aggregation variables
6387 /** for a multi-aggregated variable, returns the global upper bound computed by adding the global bounds from all aggregation variables
6389 * This global bound may be tighter than the one given by SCIPvarGetUbGlobal, since the latter is not updated if bounds of aggregation variables are changing
6390 * calling this function for a non-multi-aggregated variable results in a call to SCIPvarGetUbGlobal
6392 * @return the global upper bound computed by adding the global bounds from all aggregation variables
6408 /** for a multi-aggregated variable, returns the local lower bound computed by adding the local bounds from all aggregation variables
6410 * This local bound may be tighter than the one given by SCIPvarGetLbLocal, since the latter is not updated if bounds of aggregation variables are changing
6411 * calling this function for a non-multi-aggregated variable results in a call to SCIPvarGetLbLocal.
6413 * @return the local lower bound computed by adding the global bounds from all aggregation variables
6429 /** for a multi-aggregated variable, returns the local upper bound computed by adding the local bounds from all aggregation variables
6431 * This local bound may be tighter than the one given by SCIPvarGetUbLocal, since the latter is not updated if bounds of aggregation variables are changing
6432 * calling this function for a non-multi-aggregated variable results in a call to SCIPvarGetUbLocal.
6434 * @return the local upper bound computed by adding the global bounds from all aggregation variables
6450 /** for a multi-aggregated variable, gives the global lower bound computed by adding the global bounds from all
6451 * aggregation variables, this global bound may be tighter than the one given by SCIPvarGetLbGlobal, since the latter is
6465 /** for a multi-aggregated variable, gives the global upper bound computed by adding the global bounds from all
6466 * aggregation variables, this upper bound may be tighter than the one given by SCIPvarGetUbGlobal, since the latter is
6480 /** for a multi-aggregated variable, gives the local lower bound computed by adding the local bounds from all
6481 * aggregation variables, this lower bound may be tighter than the one given by SCIPvarGetLbLocal, since the latter is
6495 /** for a multi-aggregated variable, gives the local upper bound computed by adding the local bounds from all
6496 * aggregation variables, this upper bound may be tighter than the one given by SCIPvarGetUbLocal, since the latter is
6510 /** returns solution value and index of variable lower bound that is closest to the variable's value in the given primal
6511 * solution or current LP solution if no primal solution is given; returns an index of -1 if no variable lower bound is
6514 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
6527 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarClosestVlb", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
6534 /** returns solution value and index of variable upper bound that is closest to the variable's value in the given primal solution;
6535 * or current LP solution if no primal solution is given; returns an index of -1 if no variable upper bound is available
6537 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
6550 SCIP_CALL( SCIPcheckStage(scip, "SCIPgetVarClosestVub", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
6557 /** informs variable x about a globally valid variable lower bound x >= b*z + d with integer variable z;
6563 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
6583 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarVlb", FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
6585 SCIP_CALL( SCIPvarAddVlb(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob, scip->tree,
6586 scip->reopt, scip->lp, scip->cliquetable, scip->branchcand, scip->eventqueue, vlbvar, vlbcoef, vlbconstant,
6591 /* if x is not continuous we add a variable bound for z; do not add it if cofficient would be too small or we already
6594 if( !(*infeasible) && SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisZero(scip, 1.0/vlbcoef) )
6599 SCIP_CALL( SCIPvarAddVub(vlbvar, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
6600 scip->tree, scip->reopt, scip->lp, scip->cliquetable, scip->branchcand, scip->eventqueue, var, 1.0/vlbcoef,
6606 SCIP_CALL( SCIPvarAddVlb(vlbvar, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
6607 scip->tree, scip->reopt, scip->lp, scip->cliquetable, scip->branchcand, scip->eventqueue, var, 1.0/vlbcoef,
6616 /** informs variable x about a globally valid variable upper bound x <= b*z + d with integer variable z;
6622 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
6642 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarVub", FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
6644 SCIP_CALL( SCIPvarAddVub(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob, scip->tree,
6645 scip->reopt, scip->lp, scip->cliquetable, scip->branchcand, scip->eventqueue, vubvar, vubcoef, vubconstant, TRUE,
6650 /* if x is not continuous we add a variable bound for z; do not add it if cofficient would be too small or we already
6653 if( !(*infeasible) && SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisZero(scip, 1.0/vubcoef) )
6658 SCIP_CALL( SCIPvarAddVlb(vubvar, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
6659 scip->tree, scip->reopt, scip->lp, scip->cliquetable, scip->branchcand, scip->eventqueue, var, 1.0/vubcoef,
6665 SCIP_CALL( SCIPvarAddVub(vubvar, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
6666 scip->tree, scip->reopt, scip->lp, scip->cliquetable, scip->branchcand, scip->eventqueue, var, 1.0/vubcoef,
6675 /** informs binary variable x about a globally valid implication: x == 0 or x == 1 ==> y <= b or y >= b;
6678 * if the variable is already fixed to the given value, the implication is performed immediately;
6681 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
6693 SCIP_Bool varfixing, /**< FALSE if y should be added in implications for x == 0, TRUE for x == 1 */
6703 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarImplication", FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
6715 /* transform implication containing two binary variables to clique; condition ensures that the active representative
6718 if( SCIPvarIsBinary(implvar) && (SCIPvarIsActive(implvar) || (implprobvar != NULL && SCIPvarIsBinary(implprobvar))) )
6723 /* only add clique if implication is not redundant with respect to global bounds of the implication variable */
6743 /* the implication graph can only handle 'real' binary (SCIP_VARTYPE_BINARY) variables, therefore we transform the
6744 * implication in variable bounds, (lowerbound of y will be abbreviated by lby, upperbound equivlaent) the follwing
6768 SCIP_CALL( SCIPvarAddVlb(implvar, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
6778 SCIP_CALL( SCIPvarAddVub(implvar, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
6791 SCIP_CALL( SCIPvarAddVlb(implvar, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
6801 SCIP_CALL( SCIPvarAddVub(implvar, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
6809 SCIP_CALL( SCIPvarAddImplic(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
6810 scip->tree, scip->reopt, scip->lp, scip->cliquetable, scip->branchcand, scip->eventqueue, varfixing, implvar, impltype,
6817 /** adds a clique information to SCIP, stating that at most one of the given binary variables can be set to 1;
6820 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
6832 SCIP_Bool* values, /**< values of the variables in the clique; NULL to use TRUE for all vars */
6839 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddClique", FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
6848 SCIP_CALL( SCIPcliquetableAdd(scip->cliquetable, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
6849 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, vars, values, nvars, isequation,
6856 /** relabels the given labels in-place in an increasing fashion: the first seen label is 0, the next label 1, etc...
6858 * @note every label equal to -1 is treated as a previously unseen, unique label and gets a new ordered label.
6892 /* look up the class index image in the hash map; if it is not stored yet, new class index is created and stored */
6897 SCIP_CALL( SCIPhashmapInsertInt(classidx2newlabel, (void*)(size_t)currentlabel, classidx) ); /*lint !e571*/
6901 localclassidx = SCIPhashmapGetImageInt(classidx2newlabel, (void*)(size_t)currentlabel); /*lint !e571*/
6907 /* indices start with zero, but we have an offset of 1 because we cannot store 0 in a hashmap */
6920 /** sort the variables w.r.t. the given labels; thereby ensure the current order of the variables with the same label. */
6927 int* sortedindices, /**< array to store indices of sorted variables in the original vars array */
6928 int* classesstartposs, /**< starting position array for each label class (must have size nclasses + 1) */
6976 /* to reach the goal that all variables of each class will be standing next to each other we will initialize the
6977 * starting pointers for each class by adding the cardinality of each class to the last class starting pointer
6978 * e.g. class1 has 4 elements and class2 has 3 elements then the starting pointer for class1 will be the pointer
6979 * to sortedvars[0], the starting pointer to class2 will be the pointer to sortedvars[4] and to class3 it will be
7025 /* calculate clique partition for a maximal amount of comparisons on variables due to expensive algorithm
7031 * afterwards the output array contains one value for each variable, such that two variables got the same value iff they
7033 * the first variable is always assigned to clique 0, and a variable can only be assigned to clique i if at least one of
7037 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7050 SCIP_VAR**const vars, /**< binary variables in the clique from which at most one can be set to 1 */
7054 int*const ncliques /**< pointer to store the number of cliques actually contained in the partition */
7125 /* if we had to many variables fill up the cliquepartition and put each variable in a separate clique */
7141 /** calculates a partition of the given set of binary variables into cliques; takes into account independent clique components
7148 * afterwards the output array contains one value for each variable, such that two variables got the same value iff they
7150 * the first variable is always assigned to clique 0, and a variable can only be assigned to clique i if at least one of
7154 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7166 SCIP_VAR**const vars, /**< binary variables in the clique from which at most one can be set to 1 */
7169 int*const ncliques /**< pointer to store the number of cliques actually contained in the partition */
7190 SCIP_CALL( SCIPcheckStage(scip, "SCIPcalcCliquePartition", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
7234 SCIP_CALL( SCIPgetVarsData(scip, &allvars, NULL, &nallbinvars, &nallintvars, &nallimplvars, NULL) );
7236 SCIP_CALL( SCIPcliquetableComputeCliqueComponents(scip->cliquetable, scip->set, SCIPblkmem(scip), allvars, nallbinvars, nallintvars, nallimplvars) );
7258 /* stable sort the variables w.r.t. the component labels so that we can restrict the quadratic algorithm to the components */
7263 SCIP_CALL( labelSortStable(scip, tmpvars, componentlabels, sortedtmpvars, sortedindices, componentstartposs, nvars, ncomponents) );
7274 /* if we have only one large connected component, skip the stable sorting and prepare the data differently */
7302 SCIP_CALL( calcCliquePartitionGreedy(scip, &(sortedtmpvars[componentstartposs[c]]), &(sortedtmpvalues[componentstartposs[c]]),
7308 /* store the obtained clique partition with an offset of ncliques for the original variables */
7322 /* except in the two trivial cases, we have to ensure the order consistency of the partition indices */
7346 SCIP_CALL( calcCliquePartitionGreedy(scip, tmpvars, tmpvalues, nvars, debugcliquepartition, &ndebugcliques) );
7367 * afterwards the output array contains one value for each variable, such that two variables got the same value iff they
7369 * the first variable is always assigned to clique 0 and a variable can only be assigned to clique i if at least one of
7371 * for each clique with n_c variables at least n_c-1 variables can be set to TRUE in a feasible solution;
7373 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7385 SCIP_VAR**const vars, /**< binary variables in the clique from which at most one can be set to 1 */
7388 int*const ncliques /**< pointer to store the number of cliques actually contained in the partition */
7414 /* calculate cliques on negated variables, which are "negated" cliques on normal variables array */
7424 /** force SCIP to clean up all cliques; cliques do not get automatically cleaned up after presolving. Use
7448 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPcleanupCliques", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
7452 SCIP_CALL( SCIPcliquetableCleanup(scip->cliquetable, scip->mem->probmem, scip->set, scip->stat, scip->transprob,
7453 scip->origprob, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, &nlocalbdchgs,
7470 * to prevent inactive variables in cliques when retrieved via SCIPgetCliques(). This might reduce the number of cliques
7487 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNCliques", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
7497 * to prevent inactive variables in cliques when retrieved via SCIPgetCliques(). This might reduce the number of cliques
7514 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetNCliquesCreated", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
7524 * to prevent inactive variables in cliques when retrieved via SCIPgetCliques(). This might reduce the number of cliques
7541 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetCliques", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
7549 * if regardimplics is TRUE, both the cliques and the implications of the implication graph are regarded
7551 * @return TRUE, if there is a clique that contains both variable/clique pairs; FALSE, otherwise
7584 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPhaveVarsCommonClique", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
7586 /* if both variables together have more cliques then actual cliques exist, then they have a common clique (in debug
7587 * mode we check this for correctness), otherwise we need to call the pairwise comparison method for these variables
7590 assert((SCIPvarGetNCliques(var1, value1) + SCIPvarGetNCliques(var2, value2) > SCIPcliquetableGetNCliques(scip->cliquetable)) ? SCIPvarsHaveCommonClique(var1, value1, var2, value2, FALSE) : TRUE);
7593 return (SCIPvarGetNCliques(var1, value1) + SCIPvarGetNCliques(var2, value2) > SCIPcliquetableGetNCliques(scip->cliquetable)
7599 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7615 * If @p writenodeweights is true, only nodes corresponding to variables that have a fractional value and only edges
7645 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPwriteCliqueGraph", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
7648 SCIP_CALL( SCIPgetVarsData(scip, &allvars, &nallvars, &nbinvars, &nintvars, &nimplvars, NULL) );
7671 SCIP_CALL_FINALLY( SCIPhashmapCreate(&nodehashmap, SCIPblkmem(scip), nbinvars+nimplvars), fclose(gmlfile) );
7686 id1 = clqvalues[v1] ? SCIPvarGetProbindex(clqvars[v1]) : (nallvars + SCIPvarGetProbindex(clqvars[v1]));
7692 SCIP_CALL_FINALLY( SCIPhashmapInsertInt(nodehashmap, (void*)(size_t)id1, 1), fclose(gmlfile) ); /*lint !e571*/
7694 (void) SCIPsnprintf(nodename, SCIP_MAXSTRLEN, "%s%s", (id1 >= nallvars ? "~" : ""), SCIPvarGetName(clqvars[v1]));
7700 SCIPgmlWriteNodeWeight(gmlfile, (unsigned int)id1, nodename, NULL, NULL, NULL, SCIPgetSolVal(scip, NULL, clqvars[v1]));
7713 id2 = clqvalues[v2] ? SCIPvarGetProbindex(clqvars[v2]) : (nallvars + SCIPvarGetProbindex(clqvars[v2]));
7719 SCIP_CALL_FINALLY( SCIPhashmapInsertInt(nodehashmap, (void*)(size_t)id2, 1), fclose(gmlfile) ); /*lint !e571*/
7721 (void) SCIPsnprintf(nodename, SCIP_MAXSTRLEN, "%s%s", (id2 >= nallvars ? "~" : ""), SCIPvarGetName(clqvars[v2]));
7727 SCIPgmlWriteNodeWeight(gmlfile, (unsigned int)id2, nodename, NULL, NULL, NULL, SCIPgetSolVal(scip, NULL, clqvars[v2]));
7736 if ( ! writenodeweights || ! SCIPisFeasIntegral(scip, SCIPgetSolVal(scip, NULL, clqvars[v2])) )
7751 /** Removes (irrelevant) variable from all its global structures, i.e. cliques, implications and variable bounds.
7774 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPremoveVarFromGlobalStructures", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE) );
7776 /* mark the variable as deletable from global structures - This is necessary for the delayed clean up of cliques */
7780 SCIP_CALL( SCIPvarRemoveCliquesImplicsVbs(var, SCIPblkmem(scip), scip->cliquetable, scip->set, TRUE, FALSE, TRUE) );
7785 /** sets the branch factor of the variable; this value can be used in the branching methods to scale the score
7786 * values of the variables; higher factor leads to a higher probability that this variable is chosen for branching
7788 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7807 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarBranchFactor", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
7816 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7835 SCIP_CALL( SCIPcheckStage(scip, "SCIPscaleVarBranchFactor", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
7844 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7863 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarBranchFactor", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
7870 /** sets the branch priority of the variable; variables with higher branch priority are always preferred to variables
7873 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7894 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarBranchPriority", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
7902 /* inform the pseudo branch candidates that the branch priority changes and change the branch priority */
7903 SCIP_CALL( SCIPbranchcandUpdateVarBranchPriority(scip->branchcand, scip->set, var, branchpriority) );
7914 /** changes the branch priority of the variable to the given value, if it is larger than the current priority
7916 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7932 int branchpriority /**< new branch priority of the variable, if it is larger than current priority */
7935 SCIP_CALL( SCIPcheckStage(scip, "SCIPupdateVarBranchPriority", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
7949 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7968 SCIP_CALL( SCIPcheckStage(scip, "SCIPaddVarBranchPriority", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
7977 /** sets the branch direction of the variable (-1: prefer downwards branch, 0: automatic selection, +1: prefer upwards
7980 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
7996 SCIP_BRANCHDIR branchdirection /**< preferred branch direction of the variable (downwards, upwards, auto) */
7999 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarBranchDirection", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
8019 assert(SCIPgetStage(scip) == SCIP_STAGE_PROBLEM || SCIPgetStage(scip) == SCIP_STAGE_PRESOLVING);
8030 /* we adjust variable bounds to integers first, since otherwise a later bound tightening with a fractional old
8031 * bound may give an assert because SCIP expects non-continuous variables to have non-fractional bounds
8033 * we adjust bounds with a fractionality within [eps,feastol] only if the resulting bound change is a bound
8037 (!SCIPisIntegral(scip, SCIPvarGetLbGlobal(var)) && SCIPvarGetLbGlobal(var) < SCIPfeasCeil(scip, SCIPvarGetLbGlobal(var)))
8040 SCIP_CALL( SCIPtightenVarLbGlobal(scip, var, SCIPfeasCeil(scip, SCIPvarGetLbGlobal(var)), TRUE, infeasible, &tightened) );
8044 /* the only reason for not applying a forced boundchange is when the new bound is reduced because the variables upper bound is below the new bound
8045 * in a concrete case, lb == ub == 100.99999001; even though within feastol of 101, the lower bound cannot be tighented to 101 due to the upper bound
8047 assert(tightened || SCIPisFeasLE(scip, SCIPvarGetUbGlobal(var), SCIPfeasCeil(scip, SCIPvarGetLbGlobal(var))));
8050 (!SCIPisIntegral(scip, SCIPvarGetUbGlobal(var)) && SCIPvarGetUbGlobal(var) > SCIPfeasFloor(scip, SCIPvarGetUbGlobal(var)))
8053 SCIP_CALL( SCIPtightenVarUbGlobal(scip, var, SCIPfeasFloor(scip, SCIPvarGetUbGlobal(var)), TRUE, infeasible, &tightened) );
8057 assert(tightened || SCIPisFeasGE(scip, SCIPvarGetLbGlobal(var), SCIPfeasFloor(scip, SCIPvarGetUbGlobal(var))));
8066 * @warning This type change might change the variable array returned from SCIPgetVars() and SCIPgetVarsData();
8068 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
8076 * @note If SCIP is already beyond the SCIP_STAGE_PROBLEM and a original variable is passed, the variable type of the
8077 * corresponding transformed variable is changed; the type of the original variable does not change
8079 * @note If the type changes from a continuous variable to a non-continuous variable the bounds of the variable get
8090 SCIP_CALL( SCIPcheckStage(scip, "SCIPchgVarType", FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
8097 SCIPdebugMsg(scip, "upgrading type of negated variable <%s> from %d to %d\n", SCIPvarGetName(var), SCIPvarGetType(var), vartype);
8105 SCIPdebugMsg(scip, "upgrading type of variable <%s> from %d to %d\n", SCIPvarGetName(var), SCIPvarGetType(var), vartype);
8122 SCIP_CALL( SCIPprobChgVarType(scip->origprob, scip->mem->probmem, scip->set, scip->branchcand, scip->cliquetable, var, vartype) );
8149 SCIP_CALL( SCIPprobChgVarType(scip->transprob, scip->mem->probmem, scip->set, scip->branchcand, scip->cliquetable, var, vartype) );
8165 /** in problem creation and solving stage, both bounds of the variable are set to the given value;
8166 * in presolving stage, the variable is converted into a fixed variable, and bounds are changed respectively;
8167 * conversion into a fixed variable changes the vars array returned from SCIPgetVars() and SCIPgetVarsData(),
8170 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
8183 SCIP_Bool* fixed /**< pointer to store whether the fixing was performed (variable was unfixed) */
8190 SCIP_CALL( SCIPcheckStage(scip, "SCIPfixVar", FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE) );
8195 /* in the problem creation stage, modify the bounds as requested, independently from the current bounds */
8198 if( (SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPsetIsFeasIntegral(scip->set, fixedval))
8217 /* in the problem creation stage, modify the bounds as requested, independently from the current bounds;
8218 * we have to make sure, that the order of the bound changes does not intermediately produce an invalid
8238 SCIP_CALL( SCIPvarFix(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
8239 scip->primal, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
8263 /** From a given equality a*x + b*y == c, aggregates one of the variables and removes it from the set of
8264 * active problem variables. This changes the vars array returned from SCIPgetVars() and SCIPgetVarsData(),
8265 * and also renders the arrays returned from the SCIPvarGetImpl...() methods for the two variables invalid.
8266 * In the first step, the equality is transformed into an equality with active problem variables
8267 * a'*x' + b'*y' == c'. If x' == y', this leads to the detection of redundancy if a' == -b' and c' == 0,
8268 * of infeasibility, if a' == -b' and c' != 0, or to a variable fixing x' == c'/(a'+b') (and possible
8270 * In the second step, the variable to be aggregated is chosen among x' and y', prefering a less strict variable
8271 * type as aggregation variable (i.e. continuous variables are preferred over implicit integers, implicit integers
8272 * over integers, and integers over binaries). If none of the variables is continuous, it is tried to find an integer
8273 * aggregation (i.e. integral coefficients a'' and b'', such that a''*x' + b''*y' == c''). This can lead to
8274 * the detection of infeasibility (e.g. if c'' is fractional), or to a rejection of the aggregation (denoted by
8275 * aggregated == FALSE), if the resulting integer coefficients are too large and thus numerically instable.
8280 * - aggregated: the aggregation was successfully performed (the variables were not aggregated before)
8282 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
8306 SCIP_CALL( SCIPcheckStage(scip, "SCIPaggregateVars", FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
8332 if( SCIPvarGetStatus(varx) == SCIP_VARSTATUS_MULTAGGR || SCIPvarGetStatus(vary) == SCIP_VARSTATUS_MULTAGGR )
8344 /* capture the special cases that less than two variables are left, due to resolutions to a fixed variable or
8359 SCIP_CALL( SCIPvarFix(vary, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
8360 scip->primal, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
8370 SCIP_CALL( SCIPvarFix(varx, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
8371 scip->primal, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
8377 /* both variables were resolved to the same active problem variable: this variable can be fixed */
8387 SCIP_CALL( SCIPvarFix(varx, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
8388 scip->primal, scip->tree, scip->reopt, scip->lp, scip->branchcand, scip->eventqueue, scip->cliquetable,
8395 /* both variables are different active problem variables, and both scalars are non-zero: try to aggregate them */
8396 SCIP_CALL( SCIPvarTryAggregateVars(scip->set, scip->mem->probmem, scip->stat, scip->transprob, scip->origprob,
8397 scip->primal, scip->tree, scip->reopt, scip->lp, scip->cliquetable, scip->branchcand, scip->eventfilter,
8405 /** converts variable into multi-aggregated variable; this changes the variable array returned from
8408 * @warning The integrality condition is not checked anymore on the multi-aggregated variable. You must not
8409 * multi-aggregate an integer variable without being sure, that integrality on the aggregation variables
8414 * - aggregated: the aggregation was successfully performed (the variables were not aggregated before)
8416 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
8432 SCIP_CALL( SCIPcheckStage(scip, "SCIPmultiaggregateVar", FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) );
8443 SCIP_CALL( SCIPvarMultiaggregate(var, scip->mem->probmem, scip->set, scip->stat, scip->transprob, scip->origprob,
8444 scip->primal, scip->tree, scip->reopt, scip->lp, scip->cliquetable, scip->branchcand, scip->eventfilter,
8485 * @note A reduction is called dual, if it may discard feasible solutions, but leaves at least one optimal solution
8486 * intact. Often such reductions are based on analyzing the objective function, reduced costs, and/or dual LPs.
8509 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
8521 * @note There exists no "unmark" method since it has to be ensured that if a plugin requires that a variable is not
8533 SCIP_CALL( SCIPcheckStage(scip, "SCIPmarkDoNotMultaggrVar", TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE) );
8554 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPenableVarHistory", FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8573 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPdisableVarHistory", FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8578 /** updates the pseudo costs of the given variable and the global pseudo costs after a change of "solvaldelta" in the
8579 * variable's solution value and resulting change of "objdelta" in the in the LP's objective value;
8582 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
8597 SCIP_CALL( SCIPcheckStage(scip, "SCIPupdateVarPseudocost", FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8599 if( !SCIPsetIsInfinity(scip->set, 2*objdelta) ) /* differences infinity - eps should also be treated as infinity */
8603 SCIP_CALL( SCIPvarUpdatePseudocost(var, scip->set, scip->stat, solvaldelta, objdelta, weight) );
8631 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarPseudocostVal", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8659 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarPseudocostValCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8683 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarPseudocost", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8711 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarPseudocostCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8715 return SCIPvarGetPseudocostCurrentRun(var, scip->stat, dir == SCIP_BRANCHDIR_DOWNWARDS ? -1.0 : 1.0);
8718 /** gets the variable's (possible fractional) number of pseudo cost updates for the given direction
8720 * @return the variable's (possible fractional) number of pseudo cost updates for the given direction
8737 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarPseudocostCount", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8744 /** gets the variable's (possible fractional) number of pseudo cost updates for the given direction,
8747 * @return the variable's (possible fractional) number of pseudo cost updates for the given direction,
8765 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarPseudocostCountCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8772 /** get pseudo cost variance of the variable, either for entire solve or only for current branch and bound run
8792 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarPseudocostVariance", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8799 /** calculates a confidence bound for this variable under the assumption of normally distributed pseudo costs
8801 * The confidence bound \f$ \theta \geq 0\f$ denotes the interval borders \f$ [X - \theta, \ X + \theta]\f$, which contains
8802 * the true pseudo costs of the variable, i.e., the expected value of the normal distribution, with a probability
8815 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPcalculatePscostConfidenceBound", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8820 /** check if variable pseudo-costs have a significant difference in location. The significance depends on
8821 * the choice of \p clevel and on the kind of tested hypothesis. The one-sided hypothesis, which
8825 * This method is applied best if variable x has a better pseudo-cost score than y. The method hypothesizes that y were actually
8826 * better than x (despite the current information), meaning that y can be expected to yield branching
8827 * decisions as least as good as x in the long run. If the method returns TRUE, the current history information is
8828 * sufficient to safely rely on the alternative hypothesis that x yields indeed a better branching score (on average)
8833 * @note set \p onesided to FALSE if you are not sure which variable is better. The hypothesis tested then reads
8849 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPsignificantVarPscostDifference", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8851 return SCIPvarSignificantPscostDifference(scip->set, scip->stat, varx, fracx, vary, fracy, dir, clevel, onesided);
8854 /** tests at a given confidence level whether the variable pseudo-costs only have a small probability to
8855 * exceed a \p threshold. This is useful to determine if past observations provide enough evidence
8856 * to skip an expensive strong-branching step if there is already a candidate that has been proven to yield an improvement
8859 * @note use \p clevel to adjust the level of confidence. For SCIP_CONFIDENCELEVEL_MIN, the method returns TRUE if
8862 * @see SCIP_Confidencelevel for a list of available levels. The used probability limits refer to the one-sided levels
8865 * @return TRUE if the variable pseudo-cost probabilistic model is likely to be smaller than \p threshold
8877 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPpscostThresholdProbabilityTest", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8879 return SCIPvarPscostThresholdProbabilityTest(scip->set, scip->stat, var, frac, threshold, dir, clevel);
8882 /** check if the current pseudo cost relative error in a direction violates the given threshold. The Relative
8894 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPisVarPscostRelerrorReliable", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8923 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarPseudocostScore", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8961 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarPseudocostScoreCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
8992 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarVSIDS", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9024 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarVSIDSCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9058 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarConflictScore", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9089 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarConflictScoreCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9120 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarConflictlengthScore", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9151 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarConflictlengthScoreCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9180 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgConflictlength", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9206 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgConflictlengthCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9213 /** returns the average number of inferences found after branching on the variable in given direction;
9214 * if branching on the variable in the given direction was yet evaluated, the average number of inferences
9217 * @return the average number of inferences found after branching on the variable in given direction
9234 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgInferences", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9241 /** returns the average number of inferences found after branching on the variable in given direction in the current run;
9242 * if branching on the variable in the given direction was yet evaluated, the average number of inferences
9245 * @return the average number of inferences found after branching on the variable in given direction in the current run
9262 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgInferencesCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9290 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgInferenceScore", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9300 /** returns the variable's average inference score value only using inferences of the current run
9302 * @return the variable's average inference score value only using inferences of the current run
9321 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgInferenceScoreCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9331 /** initializes the upwards and downwards pseudocosts, conflict scores, conflict lengths, inference scores, cutoff scores
9334 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
9349 SCIP_Real downpscost, /**< value to which pseudocosts for downwards branching should be initialized */
9350 SCIP_Real uppscost, /**< value to which pseudocosts for upwards branching should be initialized */
9351 SCIP_Real downvsids, /**< value to which VSIDS score for downwards branching should be initialized */
9352 SCIP_Real upvsids, /**< value to which VSIDS score for upwards branching should be initialized */
9353 SCIP_Real downconflen, /**< value to which conflict length score for downwards branching should be initialized */
9354 SCIP_Real upconflen, /**< value to which conflict length score for upwards branching should be initialized */
9355 SCIP_Real downinfer, /**< value to which inference counter for downwards branching should be initialized */
9356 SCIP_Real upinfer, /**< value to which inference counter for upwards branching should be initialized */
9357 SCIP_Real downcutoff, /**< value to which cutoff counter for downwards branching should be initialized */
9358 SCIP_Real upcutoff /**< value to which cutoff counter for upwards branching should be initialized */
9361 SCIP_CALL( SCIPcheckStage(scip, "SCIPinitVarBranchStats", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
9372 SCIP_CALL( SCIPvarIncNBranchings(var, NULL, NULL, scip->stat, SCIP_BRANCHDIR_DOWNWARDS, SCIP_UNKNOWN, 1) );
9374 SCIP_CALL( SCIPvarIncInferenceSum(var, NULL, NULL, scip->stat, SCIP_BRANCHDIR_DOWNWARDS, SCIP_UNKNOWN, downinfer) );
9375 SCIP_CALL( SCIPvarIncVSIDS(var, NULL, scip->set, scip->stat, SCIP_BRANCHDIR_DOWNWARDS, SCIP_UNKNOWN, downvsids) );
9376 SCIP_CALL( SCIPvarIncCutoffSum(var, NULL, NULL, scip->stat, SCIP_BRANCHDIR_DOWNWARDS, SCIP_UNKNOWN, downcutoff) );
9381 SCIP_CALL( SCIPvarIncNActiveConflicts(var, NULL, NULL, scip->stat, SCIP_BRANCHDIR_DOWNWARDS, SCIP_UNKNOWN, downconflen) );
9387 SCIP_CALL( SCIPvarIncNBranchings(var, NULL, NULL, scip->stat, SCIP_BRANCHDIR_UPWARDS, SCIP_UNKNOWN, 1) );
9389 SCIP_CALL( SCIPvarIncInferenceSum(var, NULL, NULL, scip->stat, SCIP_BRANCHDIR_UPWARDS, SCIP_UNKNOWN, upinfer) );
9390 SCIP_CALL( SCIPvarIncVSIDS(var, NULL, scip->set, scip->stat, SCIP_BRANCHDIR_UPWARDS, SCIP_UNKNOWN, upvsids) );
9391 SCIP_CALL( SCIPvarIncCutoffSum(var, NULL, NULL, scip->stat, SCIP_BRANCHDIR_UPWARDS, SCIP_UNKNOWN, upcutoff) );
9396 SCIP_CALL( SCIPvarIncNActiveConflicts(var, NULL, NULL, scip->stat, SCIP_BRANCHDIR_UPWARDS, SCIP_UNKNOWN, upconflen) );
9402 /** initializes the upwards and downwards conflict scores, conflict lengths, inference scores, cutoff scores of a
9405 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
9421 SCIP_Real downvsids, /**< value to which VSIDS score for downwards branching should be initialized */
9422 SCIP_Real upvsids, /**< value to which VSIDS score for upwards branching should be initialized */
9423 SCIP_Real downconflen, /**< value to which conflict length score for downwards branching should be initialized */
9424 SCIP_Real upconflen, /**< value to which conflict length score for upwards branching should be initialized */
9425 SCIP_Real downinfer, /**< value to which inference counter for downwards branching should be initialized */
9426 SCIP_Real upinfer, /**< value to which inference counter for upwards branching should be initialized */
9427 SCIP_Real downcutoff, /**< value to which cutoff counter for downwards branching should be initialized */
9428 SCIP_Real upcutoff /**< value to which cutoff counter for upwards branching should be initialized */
9431 SCIP_CALL( SCIPcheckStage(scip, "SCIPinitVarValueBranchStats", FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE) );
9438 if( !SCIPisFeasZero(scip, downvsids) || !SCIPisFeasZero(scip, downinfer) || !SCIPisFeasZero(scip, downcutoff) )
9440 SCIP_CALL( SCIPvarIncNBranchings(var, SCIPblkmem(scip), scip->set, scip->stat, SCIP_BRANCHDIR_DOWNWARDS, value, 1) );
9441 SCIP_CALL( SCIPvarIncInferenceSum(var, SCIPblkmem(scip), scip->set, scip->stat, SCIP_BRANCHDIR_DOWNWARDS, value, downinfer) );
9442 SCIP_CALL( SCIPvarIncVSIDS(var, SCIPblkmem(scip), scip->set, scip->stat, SCIP_BRANCHDIR_DOWNWARDS, value, downvsids) );
9443 SCIP_CALL( SCIPvarIncCutoffSum(var, SCIPblkmem(scip), scip->set, scip->stat, SCIP_BRANCHDIR_DOWNWARDS, value, downcutoff) );
9448 SCIP_CALL( SCIPvarIncNActiveConflicts(var, SCIPblkmem(scip), scip->set, scip->stat, SCIP_BRANCHDIR_DOWNWARDS, value, downconflen) );
9451 if( !SCIPisFeasZero(scip, upvsids) || !SCIPisFeasZero(scip, upinfer) || !SCIPisFeasZero(scip, upcutoff) )
9453 SCIP_CALL( SCIPvarIncNBranchings(var, SCIPblkmem(scip), scip->set, scip->stat, SCIP_BRANCHDIR_UPWARDS, value, 1) );
9454 SCIP_CALL( SCIPvarIncInferenceSum(var, SCIPblkmem(scip), scip->set, scip->stat, SCIP_BRANCHDIR_UPWARDS, value, upinfer) );
9455 SCIP_CALL( SCIPvarIncVSIDS(var, SCIPblkmem(scip), scip->set, scip->stat, SCIP_BRANCHDIR_UPWARDS, value, upvsids) );
9456 SCIP_CALL( SCIPvarIncCutoffSum(var, SCIPblkmem(scip), scip->set, scip->stat, SCIP_BRANCHDIR_UPWARDS, value, upcutoff) );
9461 SCIP_CALL( SCIPvarIncNActiveConflicts(var, SCIPblkmem(scip), scip->set, scip->stat, SCIP_BRANCHDIR_UPWARDS, value, upconflen) );
9467 /** returns the average number of cutoffs found after branching on the variable in given direction;
9468 * if branching on the variable in the given direction was yet evaluated, the average number of cutoffs
9471 * @return the average number of cutoffs found after branching on the variable in given direction
9488 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgCutoffs", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9495 /** returns the average number of cutoffs found after branching on the variable in given direction in the current run;
9496 * if branching on the variable in the given direction was yet evaluated, the average number of cutoffs
9499 * @return the average number of cutoffs found after branching on the variable in given direction in the current run
9516 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgCutoffsCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9544 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgCutoffScore", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9575 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgCutoffScoreCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9585 /** returns the variable's average inference/cutoff score value, weighting the cutoffs of the variable with the given
9613 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgInferenceCutoffScore", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9626 inferdown + cutoffweight * avginfer * cutoffdown, inferup + cutoffweight * avginfer * cutoffup);
9629 /** returns the variable's average inference/cutoff score value, weighting the cutoffs of the variable with the given
9632 * @return the variable's average inference/cutoff score value, only using inferences and cutoffs of the current run
9657 SCIP_CALL_ABORT( SCIPcheckStage(scip, "SCIPgetVarAvgInferenceCutoffScoreCurrentRun", FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE) );
9661 avginferdown = SCIPhistoryGetAvgInferences(scip->stat->glbhistorycrun, SCIP_BRANCHDIR_DOWNWARDS);
9670 inferdown + cutoffweight * avginfer * cutoffdown, inferup + cutoffweight * avginfer * cutoffup);
9675 * @return \ref SCIP_OKAY is returned if everything worked. Otherwise a suitable error code is passed. See \ref
9700 SCIP_CALL( SCIPcheckStage(scip, "SCIPprintVar", FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE) );
Definition: type_tree.h:33
void SCIPcolGetStrongbranchLast(SCIP_COL *col, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Real *solval, SCIP_Real *lpobjval)
Definition: lp.c:4630
SCIP_Real SCIPvarGetAvgConflictlengthCurrentRun(SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: var.c:14884
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1696
SCIP_Bool SCIPsolveIsStopped(SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool checknodelimits)
Definition: solve.c:91
SCIP_RETCODE SCIPchgVarLbGlobal(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_var.c:4878
SCIP_RETCODE SCIPtreeEndProbing(SCIP_TREE *tree, SCIP_REOPT *reopt, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_LP *lp, SCIP_RELAXATION *relaxation, SCIP_PRIMAL *primal, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_CLIQUETABLE *cliquetable)
Definition: tree.c:6780
void SCIPvarGetClosestVlb(SCIP_VAR *var, SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_Real *closestvlb, int *closestvlbidx)
Definition: var.c:13604
Definition: struct_var.h:99
SCIP_Real SCIPgetVarAvgInferences(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:9228
SCIP_RETCODE SCIPvarIncInferenceSum(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_BRANCHDIR dir, SCIP_Real value, SCIP_Real weight)
Definition: var.c:15011
SCIP_Bool SCIPvarsHaveCommonClique(SCIP_VAR *var1, SCIP_Bool value1, SCIP_VAR *var2, SCIP_Bool value2, SCIP_Bool regardimplics)
Definition: var.c:10964
SCIP_Real SCIPgetVarAvgCutoffs(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:9482
SCIP_Bool SCIPsetIsLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6011
int SCIPcliquetableGetVarComponentIdx(SCIP_CLIQUETABLE *cliquetable, SCIP_VAR *var)
Definition: implics.c:2322
internal methods for storing primal CIP solutions
SCIP_RETCODE SCIPvarIncVSIDS(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_BRANCHDIR dir, SCIP_Real value, SCIP_Real weight)
Definition: var.c:14531
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5119
SCIP_RETCODE SCIPvarAddVub(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_CLIQUETABLE *cliquetable, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_VAR *vubvar, SCIP_Real vubcoef, SCIP_Real vubconstant, SCIP_Bool transitive, SCIP_Bool *infeasible, int *nbdchgs)
Definition: var.c:10081
void SCIPvarUpdateBestRootSol(SCIP_VAR *var, SCIP_SET *set, SCIP_Real rootsol, SCIP_Real rootredcost, SCIP_Real rootlpobjval)
Definition: var.c:12764
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2130
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:851
SCIP_RETCODE SCIPvarAddObj(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_EVENTQUEUE *eventqueue, SCIP_Real addobj)
Definition: var.c:6051
SCIP_Bool SCIPlpiIsInfinity(SCIP_LPI *lpi, SCIP_Real val)
public methods for branch and bound tree
Definition: type_lp.h:39
SCIP_Real SCIPrelaxationGetSolObj(SCIP_RELAXATION *relaxation)
Definition: relax.c:716
SCIP_RETCODE SCIPgetBinvarRepresentative(SCIP *scip, SCIP_VAR *var, SCIP_VAR **repvar, SCIP_Bool *negated)
Definition: scip_var.c:1600
SCIP_RETCODE SCIPbacktrackProbing(SCIP *scip, int probingdepth)
Definition: scip_probing.c:280
internal methods for branch and bound tree
SCIP_Real SCIPgetVarAvgInferenceCutoffScore(SCIP *scip, SCIP_VAR *var, SCIP_Real cutoffweight)
Definition: scip_var.c:9599
Definition: type_var.h:40
SCIP_RETCODE SCIPaddVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real addobj)
Definition: scip_var.c:4498
Definition: struct_scip.h:58
SCIP_Real SCIPvarGetAvgCutoffsCurrentRun(SCIP_VAR *var, SCIP_STAT *stat, SCIP_BRANCHDIR dir)
Definition: var.c:15792
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1994
public methods for memory management
SCIP_Real SCIPgetVarAvgInferencesCurrentRun(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:9256
SCIP_RETCODE SCIPmarkRelaxSolValid(SCIP *scip, SCIP_Bool includeslp)
Definition: scip_var.c:2549
SCIP_Real SCIPgetVarConflictlengthScoreCurrentRun(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:9143
SCIP_Bool SCIPsetIsFeasEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6351
#define SCIPsetDuplicateBufferArray(set, ptr, source, num)
Definition: set.h:1906
SCIP_RETCODE SCIPvarChgLbGlobal(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_CLIQUETABLE *cliquetable, SCIP_Real newbound)
Definition: var.c:6895
SCIP_RETCODE SCIPvarCreateTransformed(SCIP_VAR **var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: var.c:2044
public methods for implications, variable bounds, and cliques
SCIP_Real SCIPvarGetPseudocostCountCurrentRun(SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: var.c:14098
methods for implications, variable bounds, and cliques
SCIP_RETCODE SCIPvarGetProbvarBinary(SCIP_VAR **var, SCIP_Bool *negated)
Definition: var.c:11796
SCIP_Bool SCIPvarIsPscostRelerrorReliable(SCIP_VAR *var, SCIP_SET *set, SCIP_STAT *stat, SCIP_Real threshold, SCIP_CONFIDENCELEVEL clevel)
Definition: var.c:14264
Definition: struct_var.h:151
SCIP_Real SCIPgetVarPseudocostVal(SCIP *scip, SCIP_VAR *var, SCIP_Real solvaldelta)
Definition: scip_var.c:8623
void SCIPgmlWriteArc(FILE *file, unsigned int source, unsigned int target, const char *label, const char *color)
Definition: misc.c:627
internal methods for clocks and timing issues
SCIP_RETCODE SCIPvarChgLbOriginal(SCIP_VAR *var, SCIP_SET *set, SCIP_Real newbound)
Definition: var.c:6277
SCIP_Longint SCIPcolGetStrongbranchNode(SCIP_COL *col)
Definition: lp.c:16850
SCIP_RETCODE SCIPgetNegatedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **negvars)
Definition: scip_var.c:1563
SCIP_RETCODE SCIPnodeAddBoundinfer(SCIP_NODE *node, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_CLIQUETABLE *cliquetable, SCIP_VAR *var, SCIP_Real newbound, SCIP_BOUNDTYPE boundtype, SCIP_CONS *infercons, SCIP_PROP *inferprop, int inferinfo, SCIP_Bool probingchange)
Definition: tree.c:1769
SCIP_RETCODE SCIPvarChgLbLazy(SCIP_VAR *var, SCIP_SET *set, SCIP_Real lazylb)
Definition: var.c:7179
SCIP_RETCODE SCIPgetVarStrongbranchLast(SCIP *scip, SCIP_VAR *var, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Real *solval, SCIP_Real *lpobjval)
Definition: scip_var.c:3950
SCIP_RETCODE SCIPprobChgVarType(SCIP_PROB *prob, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_BRANCHCAND *branchcand, SCIP_CLIQUETABLE *cliquetable, SCIP_VAR *var, SCIP_VARTYPE vartype)
Definition: prob.c:1130
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:568
SCIP_RETCODE SCIPinferVarLbProp(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_PROP *inferprop, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5807
Definition: type_set.h:37
SCIP_Real SCIPvarGetMultaggrLbGlobal(SCIP_VAR *var, SCIP_SET *set)
Definition: var.c:8274
SCIP_RETCODE SCIPchgVarLbNode(SCIP *scip, SCIP_NODE *node, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_var.c:4782
SCIP_Bool SCIPpscostThresholdProbabilityTest(SCIP *scip, SCIP_VAR *var, SCIP_Real frac, SCIP_Real threshold, SCIP_BRANCHDIR dir, SCIP_CONFIDENCELEVEL clevel)
Definition: scip_var.c:8868
SCIP_RETCODE SCIPvarChgUbOriginal(SCIP_VAR *var, SCIP_SET *set, SCIP_Real newbound)
Definition: var.c:6336
void SCIPgmlWriteNode(FILE *file, unsigned int id, const char *label, const char *nodetype, const char *fillcolor, const char *bordercolor)
Definition: misc.c:485
Definition: struct_var.h:198
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1442
Definition: struct_var.h:82
SCIP_RETCODE SCIPparseVarName(SCIP *scip, const char *str, SCIP_VAR **var, char **endptr)
Definition: scip_var.c:523
SCIP_RETCODE SCIPvarParseOriginal(SCIP_VAR **var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, const char *str, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARCOPY((*varcopy)), SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_VARDATA *vardata, char **endptr, SCIP_Bool *success)
Definition: var.c:2413
interface methods for specific LP solvers
SCIP_RETCODE SCIPchgVarUbLazy(SCIP *scip, SCIP_VAR *var, SCIP_Real lazyub)
Definition: scip_var.c:5085
SCIP_Real SCIPbranchGetScore(SCIP_SET *set, SCIP_VAR *var, SCIP_Real downgain, SCIP_Real upgain)
Definition: branch.c:2189
SCIP_Real SCIPgetVarPseudocostCountCurrentRun(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:8759
SCIP_BOUNDTYPE SCIPboundchgGetBoundtype(SCIP_BOUNDCHG *boundchg)
Definition: var.c:16657
SCIP_Real SCIPgetVarPseudocostScoreCurrentRun(SCIP *scip, SCIP_VAR *var, SCIP_Real solval)
Definition: scip_var.c:8950
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:903
SCIP_RETCODE SCIPgetVarsData(SCIP *scip, SCIP_VAR ***vars, int *nvars, int *nbinvars, int *nintvars, int *nimplvars, int *ncontvars)
Definition: scip_prob.c:1918
SCIP_Bool SCIPconsIsLockedTypeNeg(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8457
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:4581
SCIP_RETCODE SCIPhashmapCreate(SCIP_HASHMAP **hashmap, BMS_BLKMEM *blkmem, int mapsize)
Definition: misc.c:2891
SCIP_Bool SCIPsetIsFeasIntegral(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6494
SCIP_Real SCIPgetVarVSIDS(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:8986
SCIP_RETCODE SCIPinferBinvarProp(SCIP *scip, SCIP_VAR *var, SCIP_Bool fixedval, SCIP_PROP *inferprop, int inferinfo, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:6030
SCIP_Real SCIPgetVarMultaggrUbLocal(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:6501
SCIP_RETCODE SCIPvarTransform(SCIP_VAR *origvar, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_OBJSENSE objsense, SCIP_VAR **transvar)
Definition: var.c:3340
SCIP_Real SCIPgetVarPseudocostValCurrentRun(SCIP *scip, SCIP_VAR *var, SCIP_Real solvaldelta)
Definition: scip_var.c:8651
SCIP_Real SCIPvarGetAvgConflictlength(SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: var.c:14840
Definition: type_var.h:53
SCIP_RETCODE SCIPaddVarLocks(SCIP *scip, SCIP_VAR *var, int nlocksdown, int nlocksup)
Definition: scip_var.c:4256
SCIP_Longint SCIPgetVarStrongbranchNode(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:4099
SCIP_RETCODE SCIPhashmapInsertInt(SCIP_HASHMAP *hashmap, void *origin, int image)
Definition: misc.c:3009
void SCIPlpStartStrongbranchProbing(SCIP_LP *lp)
Definition: lp.c:16045
SCIP_RETCODE SCIPvarCreateOriginal(SCIP_VAR **var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: var.c:2001
SCIP_RETCODE SCIPvarAddImplic(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_CLIQUETABLE *cliquetable, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool transitive, SCIP_Bool *infeasible, int *nbdchgs)
Definition: var.c:10436
internal methods for branching rules and branching candidate storage
SCIP_RETCODE SCIPcliquetableCleanup(SCIP_CLIQUETABLE *cliquetable, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, int *nchgbds, SCIP_Bool *infeasible)
Definition: implics.c:2883
static SCIP_RETCODE calcCliquePartitionGreedy(SCIP *const scip, SCIP_VAR **const vars, SCIP_Bool *const values, int const nvars, int *const cliquepartition, int *const ncliques)
Definition: scip_var.c:7048
SCIP_RETCODE SCIPcreateVarBasic(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype)
Definition: scip_var.c:184
SCIP_Real SCIPgetVarAvgCutoffsCurrentRun(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:9510
SCIP_Real SCIPgetVarVSIDSCurrentRun(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:9018
SCIP_RETCODE SCIPvarChgUbGlobal(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_CLIQUETABLE *cliquetable, SCIP_Real newbound)
Definition: var.c:7038
SCIP_Real SCIPgetVarAvgCutoffScoreCurrentRun(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:9567
public methods for problem variables
SCIP_Bool SCIPisVarPscostRelerrorReliable(SCIP *scip, SCIP_VAR *var, SCIP_Real threshold, SCIP_CONFIDENCELEVEL clevel)
Definition: scip_var.c:8887
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5235
SCIP_Bool SCIPgetVarWasFixedAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2284
SCIP_Real SCIPvarGetAvgInferences(SCIP_VAR *var, SCIP_STAT *stat, SCIP_BRANCHDIR dir)
Definition: var.c:15547
SCIP_Real SCIPgetVarPseudocost(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:8677
SCIP_RETCODE SCIPchgVarLbProbing(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_probing.c:356
SCIP_RETCODE SCIPvarsGetActiveVars(SCIP_SET *set, SCIP_VAR **vars, int *nvars, int varssize, int *requiredsize)
Definition: var.c:11492
SCIP_RETCODE SCIPchgVarUbNode(SCIP *scip, SCIP_NODE *node, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_var.c:4826
SCIP_RETCODE SCIPwriteVarsPolynomial(SCIP *scip, FILE *file, SCIP_VAR ***monomialvars, SCIP_Real **monomialexps, SCIP_Real *monomialcoefs, int *monomialnvars, int nmonomials, SCIP_Bool type)
Definition: scip_var.c:394
void SCIPrelaxationSetSolValid(SCIP_RELAXATION *relaxation, SCIP_Bool isvalid, SCIP_Bool includeslp)
Definition: relax.c:672
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:138
SCIP_Real SCIPgetVarMultaggrUbGlobal(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:6471
static SCIP_RETCODE labelSortStable(SCIP *scip, SCIP_VAR **vars, int *classlabels, SCIP_VAR **sortedvars, int *sortedindices, int *classesstartposs, int nvars, int nclasses)
Definition: scip_var.c:6922
SCIP_Bool SCIPrelaxationIsSolValid(SCIP_RELAXATION *relaxation)
Definition: relax.c:685
SCIP_RETCODE SCIPchgVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_var.c:4612
SCIP_RETCODE SCIPaddVarVlb(SCIP *scip, SCIP_VAR *var, SCIP_VAR *vlbvar, SCIP_Real vlbcoef, SCIP_Real vlbconstant, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6571
SCIP_RETCODE SCIPcreateLPSol(SCIP *scip, SCIP_SOL **sol, SCIP_HEUR *heur)
Definition: scip_sol.c:419
SCIP_RETCODE SCIPvarUpdatePseudocost(SCIP_VAR *var, SCIP_SET *set, SCIP_STAT *stat, SCIP_Real solvaldelta, SCIP_Real objdelta, SCIP_Real weight)
Definition: var.c:13859
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:4549
void SCIPvarAdjustLb(SCIP_VAR *var, SCIP_SET *set, SCIP_Real *lb)
Definition: var.c:6227
SCIP_RETCODE SCIPaddVarVub(SCIP *scip, SCIP_VAR *var, SCIP_VAR *vubvar, SCIP_Real vubcoef, SCIP_Real vubconstant, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6630
Definition: type_lp.h:37
public methods for SCIP variables
SCIP_RETCODE SCIPvarChgBranchDirection(SCIP_VAR *var, SCIP_BRANCHDIR branchdirection)
Definition: var.c:11305
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:203
SCIP_RETCODE SCIPvarRemoveCliquesImplicsVbs(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_CLIQUETABLE *cliquetable, SCIP_SET *set, SCIP_Bool irrelevantvar, SCIP_Bool onlyredundant, SCIP_Bool removefromvar)
Definition: var.c:1535
SCIP_RETCODE SCIPchgVarUbGlobal(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_var.c:4965
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1483
SCIP_Longint SCIPcolGetStrongbranchLPAge(SCIP_COL *col, SCIP_STAT *stat)
Definition: lp.c:4662
internal methods for LP management
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:279
Definition: struct_tree.h:132
SCIP_RETCODE SCIPparseVarsLinearsum(SCIP *scip, const char *str, SCIP_VAR **vars, SCIP_Real *vals, int *nvars, int varssize, int *requiredsize, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:699
SCIP_RETCODE SCIPgetVarClosestVlb(SCIP *scip, SCIP_VAR *var, SCIP_SOL *sol, SCIP_Real *closestvlb, int *closestvlbidx)
Definition: scip_var.c:6519
SCIP_Real SCIPcomputeVarUbGlobal(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:6394
internal methods for branching and inference history
SCIP_Real SCIPcomputeVarLbLocal(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:6415
SCIP_Bool SCIPisStrongbranchDownFirst(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:2645
SCIP_RETCODE SCIPtransformVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1392
public methods for numerical tolerances
SCIP_Real SCIPgetVarPseudocostScore(SCIP *scip, SCIP_VAR *var, SCIP_Real solval)
Definition: scip_var.c:8912
SCIP_RETCODE SCIPscaleVarBranchFactor(SCIP *scip, SCIP_VAR *var, SCIP_Real scale)
Definition: scip_var.c:7829
Definition: struct_lp.h:126
SCIP_Bool SCIPsetIsGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6047
public methods for querying solving statistics
int SCIPcliquetableGetNCliquesCreated(SCIP_CLIQUETABLE *cliquetable)
Definition: implics.c:3479
Definition: struct_sol.h:63
SCIP_RETCODE SCIPtryStrongbranchLPSol(SCIP *scip, SCIP_Bool *foundsol, SCIP_Bool *cutoff)
Definition: scip_var.c:4019
SCIP_Bool SCIPhashmapExists(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3240
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4198
SCIP_Real SCIPvarGetVSIDSCurrentRun(SCIP_VAR *var, SCIP_STAT *stat, SCIP_BRANCHDIR dir)
Definition: var.c:15408
SCIP_RETCODE SCIPupdateVarPseudocost(SCIP *scip, SCIP_VAR *var, SCIP_Real solvaldelta, SCIP_Real objdelta, SCIP_Real weight)
Definition: scip_var.c:8589
public methods for the branch-and-bound tree
SCIP_Real SCIPgetVarBdAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BOUNDTYPE boundtype, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2266
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8082
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6829
union SCIP_Var::@13 data
SCIP_RETCODE SCIPvarChgLbLocal(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_Real newbound)
Definition: var.c:7680
int SCIPcliquetableGetNCliques(SCIP_CLIQUETABLE *cliquetable)
Definition: implics.c:3469
SCIP_RETCODE SCIPvarChgType(SCIP_VAR *var, SCIP_VARTYPE vartype)
Definition: var.c:5925
SCIP_RETCODE SCIPmultiaggregateVar(SCIP *scip, SCIP_VAR *var, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: scip_var.c:8421
Definition: struct_misc.h:127
public methods for managing constraints
SCIP_Real SCIPvarGetImplRedcost(SCIP_VAR *var, SCIP_SET *set, SCIP_Bool varfixing, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp)
Definition: var.c:12951
SCIP_RETCODE SCIPparseVarsList(SCIP *scip, const char *str, SCIP_VAR **vars, int *nvars, int varssize, int *requiredsize, char **endptr, char delimiter, SCIP_Bool *success)
Definition: scip_var.c:600
SCIP_RETCODE SCIPvarChgBranchPriority(SCIP_VAR *var, int branchpriority)
Definition: var.c:11175
Definition: type_lp.h:40
SCIP_Real SCIPvarGetPseudocost(SCIP_VAR *var, SCIP_STAT *stat, SCIP_Real solvaldelta)
Definition: var.c:13957
SCIP_RETCODE SCIPprobRemoveVarName(SCIP_PROB *prob, SCIP_VAR *var)
Definition: prob.c:904
SCIP_Real SCIPsolGetObj(SCIP_SOL *sol, SCIP_SET *set, SCIP_PROB *transprob, SCIP_PROB *origprob)
Definition: sol.c:1498
SCIP_RETCODE SCIPvarChgUbLazy(SCIP_VAR *var, SCIP_SET *set, SCIP_Real lazyub)
Definition: var.c:7202
SCIP_Real SCIPgetVarPseudocostVariance(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir, SCIP_Bool onlycurrentrun)
Definition: scip_var.c:8785
Definition: type_retcode.h:36
SCIP_RETCODE SCIPgetBinvarRepresentatives(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **repvars, SCIP_Bool *negated)
Definition: scip_var.c:1647
internal methods for storing and manipulating the main problem
Definition: struct_cons.h:37
SCIP_Bool SCIPboundchgIsRedundant(SCIP_BOUNDCHG *boundchg)
Definition: var.c:16667
SCIP_Bool SCIPvarPscostThresholdProbabilityTest(SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var, SCIP_Real frac, SCIP_Real threshold, SCIP_BRANCHDIR dir, SCIP_CONFIDENCELEVEL clevel)
Definition: var.c:14407
SCIP_RETCODE SCIPchgVarLbLazy(SCIP *scip, SCIP_VAR *var, SCIP_Real lazylb)
Definition: scip_var.c:5052
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:529
SCIP_Bool SCIPdoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8471
SCIP_RETCODE SCIPpropagateProbing(SCIP *scip, int maxproprounds, SCIP_Bool *cutoff, SCIP_Longint *ndomredsfound)
Definition: scip_probing.c:630
SCIP_RETCODE SCIPvarChgObj(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PROB *prob, SCIP_PRIMAL *primal, SCIP_LP *lp, SCIP_EVENTQUEUE *eventqueue, SCIP_Real newobj)
Definition: var.c:5976
Definition: type_retcode.h:42
SCIP_Bool SCIPrelaxationIsSolZero(SCIP_RELAXATION *relaxation)
Definition: relax.c:662
SCIP_RETCODE SCIPgetSolVals(SCIP *scip, SCIP_SOL *sol, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_sol.c:1447
SCIP_RETCODE SCIPinferVarFixCons(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5346
SCIP_RETCODE SCIPinitVarBranchStats(SCIP *scip, SCIP_VAR *var, SCIP_Real downpscost, SCIP_Real uppscost, SCIP_Real downvsids, SCIP_Real upvsids, SCIP_Real downconflen, SCIP_Real upconflen, SCIP_Real downinfer, SCIP_Real upinfer, SCIP_Real downcutoff, SCIP_Real upcutoff)
Definition: scip_var.c:9346
SCIP_RETCODE SCIPvarRelease(SCIP_VAR **var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: var.c:2774
Definition: type_lp.h:47
SCIP_RETCODE SCIPgetProbvarSum(SCIP *scip, SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: scip_var.c:1796
SCIP_RETCODE SCIPaddVarImplication(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6690
Definition: type_set.h:46
SCIP_RETCODE SCIPcheckStage(SCIP *scip, const char *method, SCIP_Bool init, SCIP_Bool problem, SCIP_Bool transforming, SCIP_Bool transformed, SCIP_Bool initpresolve, SCIP_Bool presolving, SCIP_Bool exitpresolve, SCIP_Bool presolved, SCIP_Bool initsolve, SCIP_Bool solving, SCIP_Bool solved, SCIP_Bool exitsolve, SCIP_Bool freetrans, SCIP_Bool freescip)
Definition: debug.c:2010
SCIP_Real SCIPvarGetPseudocostCurrentRun(SCIP_VAR *var, SCIP_STAT *stat, SCIP_Real solvaldelta)
Definition: var.c:14006
void SCIPstrCopySection(const char *str, char startchar, char endchar, char *token, int size, char **endptr)
Definition: misc.c:10384
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4374
SCIP_RETCODE SCIPvarAddLocks(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LOCKTYPE locktype, int addnlocksdown, int addnlocksup)
Definition: var.c:3056
SCIP_RETCODE SCIPvarGetTransformed(SCIP_VAR *origvar, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR **transvar)
Definition: var.c:3426
SCIP_RETCODE SCIPchgVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_var.c:4702
SCIP_Real SCIPcalculatePscostConfidenceBound(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir, SCIP_Bool onlycurrentrun, SCIP_CONFIDENCELEVEL clevel)
Definition: scip_var.c:8807
SCIP_RETCODE SCIPmarkDoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8524
Definition: type_set.h:47
Definition: type_var.h:42
SCIP_RETCODE SCIPtightenVarLbGlobal(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:6138
Definition: type_var.h:44
SCIP_RETCODE SCIPgetVarStrongbranchInt(SCIP *scip, SCIP_VAR *var, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *downinf, SCIP_Bool *upinf, SCIP_Bool *downconflict, SCIP_Bool *upconflict, SCIP_Bool *lperror)
Definition: scip_var.c:3626
void SCIPvarGetClosestVub(SCIP_VAR *var, SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_Real *closestvub, int *closestvubidx)
Definition: var.c:13679
SCIP_RETCODE SCIPvarFlattenAggregationGraph(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: var.c:4291
SCIP_Real SCIPgetVarConflictlengthScore(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:9112
SCIP_RETCODE SCIPvarSetRelaxSol(SCIP_VAR *var, SCIP_SET *set, SCIP_RELAXATION *relaxation, SCIP_Real solval, SCIP_Bool updateobj)
Definition: var.c:13344
data structures for branch and bound tree
SCIP_Real SCIPboundchgGetNewbound(SCIP_BOUNDCHG *boundchg)
Definition: var.c:16627
Definition: type_set.h:43
SCIP_Real SCIPgetVarAvgInferenceScoreCurrentRun(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:9313
Definition: type_retcode.h:33
SCIP_RETCODE SCIPvarFix(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_CLIQUETABLE *cliquetable, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: var.c:3627
SCIP_RETCODE SCIPvarAddVlb(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_CLIQUETABLE *cliquetable, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_VAR *vlbvar, SCIP_Real vlbcoef, SCIP_Real vlbconstant, SCIP_Bool transitive, SCIP_Bool *infeasible, int *nbdchgs)
Definition: var.c:9709
internal methods for global SCIP settings
SCIP_Real SCIPvarCalcPscostConfidenceBound(SCIP_VAR *var, SCIP_SET *set, SCIP_BRANCHDIR dir, SCIP_Bool onlycurrentrun, SCIP_CONFIDENCELEVEL clevel)
Definition: var.c:14226
SCIP_RETCODE SCIPprobAddVarName(SCIP_PROB *prob, SCIP_VAR *var)
Definition: prob.c:888
SCIP main data structure.
SCIP_Bool SCIPsignificantVarPscostDifference(SCIP *scip, SCIP_VAR *varx, SCIP_Real fracx, SCIP_VAR *vary, SCIP_Real fracy, SCIP_BRANCHDIR dir, SCIP_CONFIDENCELEVEL clevel, SCIP_Bool onesided)
Definition: scip_var.c:8838
SCIP_RETCODE SCIPsolveProbingLP(SCIP *scip, int itlim, SCIP_Bool *lperror, SCIP_Bool *cutoff)
Definition: scip_probing.c:866
SCIP_Real SCIPcomputeVarUbLocal(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:6436
SCIP_RETCODE SCIPinferVarUbProp(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_PROP *inferprop, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5921
SCIP_RETCODE SCIPvarIncNBranchings(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_BRANCHDIR dir, SCIP_Real value, int depth)
Definition: var.c:14927
SCIP_RETCODE SCIPgetProbvarLinearSum(SCIP *scip, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize, SCIP_Bool mergemultiples)
Definition: scip_var.c:1740
SCIP_Real SCIPgetVarAvgConflictlength(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:9174
SCIP_RETCODE SCIPremoveVarFromGlobalStructures(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:7767
SCIP_RETCODE SCIPgetVarClosestVub(SCIP *scip, SCIP_VAR *var, SCIP_SOL *sol, SCIP_Real *closestvub, int *closestvubidx)
Definition: scip_var.c:6542
SCIP_Longint SCIPgetVarStrongbranchLPAge(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:4133
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:877
SCIP_Bool SCIPsetIsLbBetter(SCIP_SET *set, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: set.c:6776
SCIP_Real SCIPvarGetPseudocostCount(SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: var.c:14053
internal methods for relaxators
SCIP_Bool SCIPsetIsEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:5975
SCIP_RETCODE SCIPvarChgUbLocal(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_Real newbound)
Definition: var.c:7806
SCIP_Real SCIPlpGetObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:12911
SCIP_RETCODE SCIPvarPrint(SCIP_VAR *var, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, FILE *file)
Definition: var.c:2895
SCIP_Real SCIPgetVarPseudocostCount(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:8731
Definition: type_lp.h:34
Definition: struct_prop.h:37
SCIP_Real SCIPgetVarPseudocostCurrentRun(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:8705
SCIP_Bool SCIPlpiWasSolved(SCIP_LPI *lpi)
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:4449
internal methods for problem variables
SCIP_RETCODE SCIPvarChgBranchFactor(SCIP_VAR *var, SCIP_SET *set, SCIP_Real branchfactor)
Definition: var.c:11049
SCIP_RETCODE SCIPvarTryAggregateVars(SCIP_SET *set, BMS_BLKMEM *blkmem, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_CLIQUETABLE *cliquetable, SCIP_BRANCHCAND *branchcand, SCIP_EVENTFILTER *eventfilter, SCIP_EVENTQUEUE *eventqueue, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: var.c:5098
Definition: struct_var.h:106
SCIP_RETCODE SCIPstartStrongbranch(SCIP *scip, SCIP_Bool enablepropagation)
Definition: scip_var.c:2676
SCIP_RETCODE SCIPlpiGetObjval(SCIP_LPI *lpi, SCIP_Real *objval)
public data structures and miscellaneous methods
SCIP_Bool SCIPcliquetableNeedsComponentUpdate(SCIP_CLIQUETABLE *cliquetable)
Definition: implics.c:3517
SCIP_RETCODE SCIPvarIncCutoffSum(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_BRANCHDIR dir, SCIP_Real value, SCIP_Real weight)
Definition: var.c:15095
SCIP_RETCODE SCIPinferVarFixProp(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_PROP *inferprop, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5738
Definition: type_var.h:55
SCIP_Bool SCIPlpiIsDualFeasible(SCIP_LPI *lpi)
SCIP_RETCODE SCIPtreeStartProbing(SCIP_TREE *tree, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_LP *lp, SCIP_RELAXATION *relaxation, SCIP_PROB *transprob, SCIP_Bool strongbranching)
Definition: tree.c:6347
SCIP_RETCODE SCIProundSol(SCIP *scip, SCIP_SOL *sol, SCIP_Bool *success)
Definition: scip_sol.c:2504
static SCIP_RETCODE analyzeStrongbranch(SCIP *scip, SCIP_VAR *var, SCIP_Bool *downinf, SCIP_Bool *upinf, SCIP_Bool *downconflict, SCIP_Bool *upconflict)
Definition: scip_var.c:2829
Definition: type_var.h:54
Definition: type_var.h:46
SCIP_RETCODE SCIPgetVarStrongbranchWithPropagation(SCIP *scip, SCIP_VAR *var, SCIP_Real solval, SCIP_Real lpobjval, int itlim, int maxproprounds, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Longint *ndomredsdown, SCIP_Longint *ndomredsup, SCIP_Bool *downinf, SCIP_Bool *upinf, SCIP_Bool *downconflict, SCIP_Bool *upconflict, SCIP_Bool *lperror, SCIP_Real *newlbs, SCIP_Real *newubs)
Definition: scip_var.c:3316
SCIP_RETCODE SCIPconflictAnalyzeStrongbranch(SCIP_CONFLICT *conflict, SCIP_CONFLICTSTORE *conflictstore, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_CLIQUETABLE *cliquetable, SCIP_COL *col, SCIP_Bool *downconflict, SCIP_Bool *upconflict)
Definition: conflict.c:8364
SCIP_RETCODE SCIPcliquetableComputeCliqueComponents(SCIP_CLIQUETABLE *cliquetable, SCIP_SET *set, BMS_BLKMEM *blkmem, SCIP_VAR **vars, int nbinvars, int nintvars, int nimplvars)
Definition: implics.c:3094
SCIP_Bool SCIPstrToRealValue(const char *str, SCIP_Real *value, char **endptr)
Definition: misc.c:10354
SCIP_RETCODE SCIPtrySolFree(SCIP *scip, SCIP_SOL **sol, SCIP_Bool printreason, SCIP_Bool completely, SCIP_Bool checkbounds, SCIP_Bool checkintegrality, SCIP_Bool checklprows, SCIP_Bool *stored)
Definition: scip_sol.c:3276
SCIP_RETCODE SCIPsetRelaxSolVals(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Bool includeslp)
Definition: scip_var.c:2443
SCIP_RETCODE SCIPcalcCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques)
Definition: scip_var.c:7164
methods for debugging
SCIP_BOUNDCHG * SCIPdomchgGetBoundchg(SCIP_DOMCHG *domchg, int pos)
Definition: var.c:16685
public methods for LP management
Definition: type_set.h:40
void SCIPcolSetStrongbranchData(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real lpobjval, SCIP_Real primsol, SCIP_Real sbdown, SCIP_Real sbup, SCIP_Bool sbdownvalid, SCIP_Bool sbupvalid, SCIP_Longint iter, int itlim)
Definition: lp.c:4147
datastructures for block memory pools and memory buffers
SCIP_RETCODE SCIPwriteCliqueGraph(SCIP *scip, const char *fname, SCIP_Bool writenodeweights)
Definition: scip_var.c:7618
SCIP_RETCODE SCIPsetRelaxSolValsSol(SCIP *scip, SCIP_SOL *sol, SCIP_Bool includeslp)
Definition: scip_var.c:2483
SCIP_Real SCIPvarGetMultaggrUbGlobal(SCIP_VAR *var, SCIP_SET *set)
Definition: var.c:8340
SCIP_Bool SCIPprobAllColsInLP(SCIP_PROB *prob, SCIP_SET *set, SCIP_LP *lp)
Definition: prob.c:2267
SCIP_Real SCIPcomputeVarLbGlobal(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:6373
SCIP_Real SCIPgetVarAvgInferenceCutoffScoreCurrentRun(SCIP *scip, SCIP_VAR *var, SCIP_Real cutoffweight)
Definition: scip_var.c:9643
Definition: type_set.h:41
SCIP_Real SCIPbdchginfoGetNewbound(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:17936
SCIP_RETCODE SCIPgetVarsStrongbranchesInt(SCIP *scip, SCIP_VAR **vars, int nvars, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *downinf, SCIP_Bool *upinf, SCIP_Bool *downconflict, SCIP_Bool *upconflict, SCIP_Bool *lperror)
Definition: scip_var.c:3824
SCIP_RETCODE SCIPcreateVar(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:104
Definition: type_var.h:41
Definition: type_var.h:45
SCIP_Real SCIPvarGetAvgInferencesCurrentRun(SCIP_VAR *var, SCIP_STAT *stat, SCIP_BRANCHDIR dir)
Definition: var.c:15604
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8178
SCIP_RETCODE SCIPchgVarBranchPriority(SCIP *scip, SCIP_VAR *var, int branchpriority)
Definition: scip_var.c:7888
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4289
int SCIPconflictGetNConflicts(SCIP_CONFLICT *conflict)
Definition: conflict.c:3538
void SCIPgmlWriteNodeWeight(FILE *file, unsigned int id, const char *label, const char *nodetype, const char *fillcolor, const char *bordercolor, SCIP_Real weight)
Definition: misc.c:533
Definition: type_set.h:45
datastructures for problem statistics
Definition: type_set.h:42
SCIP_Bool SCIPsetIsFeasLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6373
SCIP_RETCODE SCIPcliquetableAdd(SCIP_CLIQUETABLE *cliquetable, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: implics.c:2350
SCIP_RETCODE SCIPinferVarLbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5415
SCIP_RETCODE SCIPvarIncNActiveConflicts(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_BRANCHDIR dir, SCIP_Real value, SCIP_Real length)
Definition: var.c:14667
void SCIPrelaxationSetSolObj(SCIP_RELAXATION *relaxation, SCIP_Real obj)
Definition: relax.c:705
SCIP_BDCHGINFO * SCIPvarGetLbchgInfo(SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: var.c:15890
public methods for the LP relaxation, rows and columns
SCIP_BDCHGINFO * SCIPvarGetUbchgInfo(SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: var.c:15946
SCIP_Real SCIPgetVarMultaggrLbLocal(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:6486
SCIP_RETCODE SCIPcolGetStrongbranches(SCIP_COL **cols, int ncols, SCIP_Bool integral, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *lperror)
Definition: lp.c:4394
SCIP_RETCODE SCIPwriteVarsLinearsum(SCIP *scip, FILE *file, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Bool type)
Definition: scip_var.c:333
SCIP_Real SCIPlpGetLooseObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:12950
datastructures for storing and manipulating the main problem
Definition: type_set.h:39
Definition: type_lp.h:36
Definition: type_set.h:36
void SCIPrelaxationSetSolZero(SCIP_RELAXATION *relaxation, SCIP_Bool iszero)
Definition: relax.c:651
Definition: type_history.h:34
SCIP_Real SCIPgetVarAvgConflictlengthCurrentRun(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR dir)
Definition: scip_var.c:9200
SCIP_RETCODE SCIPaddVarBranchFactor(SCIP *scip, SCIP_VAR *var, SCIP_Real addfactor)
Definition: scip_var.c:7857
SCIP_LPSOLSTAT SCIPgetLastStrongbranchLPSolStat(SCIP *scip, SCIP_BRANCHDIR branchdir)
Definition: scip_var.c:3928
SCIP_RETCODE SCIPwriteVarsList(SCIP *scip, FILE *file, SCIP_VAR **vars, int nvars, SCIP_Bool type, char delimiter)
Definition: scip_var.c:282
SCIP_RETCODE SCIPsetVarStrongbranchData(SCIP *scip, SCIP_VAR *var, SCIP_Real lpobjval, SCIP_Real primsol, SCIP_Real down, SCIP_Real up, SCIP_Bool downvalid, SCIP_Bool upvalid, SCIP_Longint iter, int itlim)
Definition: scip_var.c:3984
general public methods
SCIP_RETCODE SCIPsetRelaxSolVal(SCIP *scip, SCIP_VAR *var, SCIP_Real val)
Definition: scip_var.c:2412
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:555
SCIP_Real SCIPgetVarImplRedcost(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing)
Definition: scip_var.c:1911
Definition: type_history.h:35
public methods for solutions
internal methods for conflict analysis
void SCIPfreeParseVarsPolynomialData(SCIP *scip, SCIP_VAR ****monomialvars, SCIP_Real ***monomialexps, SCIP_Real **monomialcoefs, int **monomialnvars, int nmonomials)
Definition: scip_var.c:1161
SCIP_RETCODE SCIPvarMultiaggregate(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_PRIMAL *primal, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_CLIQUETABLE *cliquetable, SCIP_BRANCHCAND *branchcand, SCIP_EVENTFILTER *eventfilter, SCIP_EVENTQUEUE *eventqueue, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: var.c:5264
SCIP_RETCODE SCIPinferVarUbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5528
SCIP_RETCODE SCIPgetVarsStrongbranchesFrac(SCIP *scip, SCIP_VAR **vars, int nvars, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *downinf, SCIP_Bool *upinf, SCIP_Bool *downconflict, SCIP_Bool *upconflict, SCIP_Bool *lperror)
Definition: scip_var.c:3713
internal methods for main solving loop and node processing
SCIP_RETCODE SCIPgetVarSols(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_var.c:2329
SCIP_RETCODE SCIPnodeAddBoundchg(SCIP_NODE *node, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *transprob, SCIP_PROB *origprob, SCIP_TREE *tree, SCIP_REOPT *reopt, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTQUEUE *eventqueue, SCIP_CLIQUETABLE *cliquetable, SCIP_VAR *var, SCIP_Real newbound, SCIP_BOUNDTYPE boundtype, SCIP_Bool probingchange)
Definition: tree.c:2021
Definition: type_lp.h:48
public methods for the probing mode
SCIP_RETCODE SCIPvarGetActiveRepresentatives(SCIP_SET *set, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize, SCIP_Bool mergemultiples)
Definition: var.c:3796
SCIP_Bool SCIPvarSignificantPscostDifference(SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *varx, SCIP_Real fracx, SCIP_VAR *vary, SCIP_Real fracy, SCIP_BRANCHDIR dir, SCIP_CONFIDENCELEVEL clevel, SCIP_Bool onesided)
Definition: var.c:14341
public methods for message output
data structures for LP management
SCIP_RETCODE SCIPaddVarBranchPriority(SCIP *scip, SCIP_VAR *var, int addpriority)
Definition: scip_var.c:7962
Definition: type_var.h:84
datastructures for problem variables
SCIP_RETCODE SCIPcalcNegatedCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques)
Definition: scip_var.c:7383
SCIP_RETCODE SCIPaggregateVars(SCIP *scip, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *redundant, SCIP_Bool *aggregated)
Definition: scip_var.c:8287
SCIP_RETCODE SCIPcolGetStrongbranch(SCIP_COL *col, SCIP_Bool integral, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *lperror)
Definition: lp.c:4236
internal methods for problem statistics
SCIP_RETCODE SCIPvarsGetProbvarBinary(SCIP_VAR ***vars, SCIP_Bool **negatedarr, int nvars)
Definition: var.c:11764
SCIP_RETCODE SCIPchgVarBranchDirection(SCIP *scip, SCIP_VAR *var, SCIP_BRANCHDIR branchdirection)
Definition: scip_var.c:7993
SCIP_Bool SCIPhaveVarsCommonClique(SCIP *scip, SCIP_VAR *var1, SCIP_Bool value1, SCIP_VAR *var2, SCIP_Bool value2, SCIP_Bool regardimplics)
Definition: scip_var.c:7567
Definition: struct_implics.h:66
datastructures for collecting primal CIP solutions and primal informations
public methods for message handling
SCIP_RETCODE SCIPtransformVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1352
SCIP_Real SCIPvarGetVSIDS(SCIP_VAR *var, SCIP_STAT *stat, SCIP_BRANCHDIR dir)
Definition: var.c:17809
SCIP_RETCODE SCIPvarParseTransformed(SCIP_VAR **var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, const char *str, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARCOPY((*varcopy)), SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_VARDATA *vardata, char **endptr, SCIP_Bool *success)
Definition: var.c:2477
SCIP_Real SCIPvarGetAvgCutoffs(SCIP_VAR *var, SCIP_STAT *stat, SCIP_BRANCHDIR dir)
Definition: var.c:15745
Definition: type_set.h:44
SCIP_Bool SCIPsetIsFeasGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6417
Definition: type_lp.h:35
SCIP_Real SCIPvarGetMultaggrUbLocal(SCIP_VAR *var, SCIP_SET *set)
Definition: var.c:8208
SCIP_RETCODE SCIPvarChgName(SCIP_VAR *var, BMS_BLKMEM *blkmem, const char *name)
Definition: var.c:2801
static SCIP_RETCODE performStrongbranchWithPropagation(SCIP *scip, SCIP_VAR *var, SCIP_Bool down, SCIP_Bool firstchild, SCIP_Bool propagate, SCIP_Real newbound, int itlim, int maxproprounds, SCIP_Real *value, SCIP_Bool *valid, SCIP_Longint *ndomreductions, SCIP_Bool *conflict, SCIP_Bool *lperror, SCIP_VAR **vars, int nvars, SCIP_Real *newlbs, SCIP_Real *newubs, SCIP_Bool *foundsol, SCIP_Bool *cutoff)
Definition: scip_var.c:2992
SCIP_RETCODE SCIPparseVarsPolynomial(SCIP *scip, const char *str, SCIP_VAR ****monomialvars, SCIP_Real ***monomialexps, SCIP_Real **monomialcoefs, int **monomialnvars, int *nmonomials, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:809
SCIP_Real SCIPgetVarConflictScoreCurrentRun(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:9081
SCIP_Real SCIPhistoryGetAvgInferences(SCIP_HISTORY *history, SCIP_BRANCHDIR dir)
Definition: history.c:641
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:542
SCIP_Bool SCIPconsIsLockedTypePos(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8445
SCIP_Real SCIPgetColFarkasCoef(SCIP *scip, SCIP_COL *col)
Definition: scip_lp.c:1159
Definition: type_lp.h:33
SCIP_Real SCIPgetVarMultaggrLbGlobal(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:6456
Definition: type_lp.h:38
void SCIPvarAdjustUb(SCIP_VAR *var, SCIP_SET *set, SCIP_Real *ub)
Definition: var.c:6244
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:952
SCIP_Bool SCIPsetIsUbBetter(SCIP_SET *set, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: set.c:6801
SCIP_RETCODE SCIPtightenVarUbGlobal(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:6258
static SCIP_RETCODE tightenBounds(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8010
SCIP_RETCODE SCIPinitVarValueBranchStats(SCIP *scip, SCIP_VAR *var, SCIP_Real value, SCIP_Real downvsids, SCIP_Real upvsids, SCIP_Real downconflen, SCIP_Real upconflen, SCIP_Real downinfer, SCIP_Real upinfer, SCIP_Real downcutoff, SCIP_Real upcutoff)
Definition: scip_var.c:9417
SCIP_RETCODE SCIPgetVarStrongbranchFrac(SCIP *scip, SCIP_VAR *var, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *downinf, SCIP_Bool *upinf, SCIP_Bool *downconflict, SCIP_Bool *upconflict, SCIP_Bool *lperror)
Definition: scip_var.c:2909
SCIP_RETCODE SCIPupdateVarBranchPriority(SCIP *scip, SCIP_VAR *var, int branchpriority)
Definition: scip_var.c:7929
void SCIPcolInvalidateStrongbranchData(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4201
SCIP_RETCODE SCIPvarGetProbvarSum(SCIP_VAR **var, SCIP_SET *set, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:12133
Definition: type_retcode.h:43
int SCIPhashmapGetImageInt(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3098
Definition: objbenders.h:33
SCIP_RETCODE SCIPcleanupCliques(SCIP *scip, SCIP_Bool *infeasible)
Definition: scip_var.c:7440
SCIP_Real SCIPgetVarFarkasCoef(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1956
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:220
public methods for global and local (sub)problems
Definition: type_var.h:43
int SCIPgetVarNStrongbranchs(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:4165
SCIP_RETCODE SCIPgetActiveVars(SCIP *scip, SCIP_VAR **vars, int *nvars, int varssize, int *requiredsize)
Definition: scip_var.c:1832
SCIP_RETCODE SCIPchgVarUbProbing(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound)
Definition: scip_probing.c:400
SCIP_Real SCIPvarGetMultaggrLbLocal(SCIP_VAR *var, SCIP_SET *set)
Definition: var.c:8142
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1410
SCIP_Real SCIPgetVarAvgInferenceScore(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:9282
Definition: type_set.h:38
datastructures for global SCIP settings
Definition: type_stat.h:53
SCIP_RETCODE SCIPinferBinvarCons(SCIP *scip, SCIP_VAR *var, SCIP_Bool fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5635
SCIP_RETCODE SCIPparseVar(SCIP *scip, SCIP_VAR **var, const char *str, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARCOPY((*varcopy)), SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_VARDATA *vardata, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:464
SCIP_RETCODE SCIPvarNegate(SCIP_VAR *var, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR **negvar)
Definition: var.c:5702
SCIP_CLIQUE ** SCIPcliquetableGetCliques(SCIP_CLIQUETABLE *cliquetable)
Definition: implics.c:3489
SCIP_RETCODE SCIPchgVarBranchFactor(SCIP *scip, SCIP_VAR *var, SCIP_Real branchfactor)
Definition: scip_var.c:7801
SCIP_RETCODE SCIPprintVar(SCIP *scip, SCIP_VAR *var, FILE *file)
Definition: scip_var.c:9694
static SCIP_RETCODE relabelOrderConsistent(SCIP *const scip, int *labels, int const nlabels, int *nclasses)
Definition: scip_var.c:6861
SCIP_RETCODE SCIPgetNegatedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **negvar)
Definition: scip_var.c:1530
SCIP_Real SCIPgetVarConflictScore(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:9050
SCIP_RETCODE SCIPbranchcandUpdateVarBranchPriority(SCIP_BRANCHCAND *branchcand, SCIP_SET *set, SCIP_VAR *var, int branchpriority)
Definition: branch.c:1175
SCIP_Real SCIPvarGetPseudocostVariance(SCIP_VAR *var, SCIP_BRANCHDIR dir, SCIP_Bool onlycurrentrun)
Definition: var.c:14172
SCIP_Real SCIPgetRelaxSolVal(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:2593
void SCIPvarMarkDeleteGlobalStructures(SCIP_VAR *var)
Definition: var.c:16987
SCIP_RETCODE SCIPchgVarName(SCIP *scip, SCIP_VAR *var, const char *name)
Definition: scip_var.c:1302
memory allocation routines
SCIP_Real SCIPgetVarAvgCutoffScore(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:9536
Definition: type_var.h:58