Scippy

SCIP

Solving Constraint Integer Programs

nlhdlr_convex.c
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file nlhdlr_convex.c
26 * @ingroup DEFPLUGINS_NLHDLR
27 * @brief nonlinear handlers for convex and concave expressions
28 * @author Benjamin Mueller
29 * @author Stefan Vigerske
30 */
31
32#include <string.h>
33
34#include "scip/nlhdlr_convex.h"
35#include "scip/pub_nlhdlr.h"
36#include "scip/scip_expr.h"
37#include "scip/cons_nonlinear.h"
38#include "scip/expr_var.h"
39#include "scip/expr_abs.h"
41#include "scip/dbldblarith.h"
42
43/* fundamental nonlinear handler properties */
44#define CONVEX_NLHDLR_NAME "convex"
45#define CONVEX_NLHDLR_DESC "handler that identifies and estimates convex expressions"
46#define CONVEX_NLHDLR_DETECTPRIORITY 50
47#define CONVEX_NLHDLR_ENFOPRIORITY 50
48
49#define CONCAVE_NLHDLR_NAME "concave"
50#define CONCAVE_NLHDLR_DESC "handler that identifies and estimates concave expressions"
51#define CONCAVE_NLHDLR_DETECTPRIORITY 40
52#define CONCAVE_NLHDLR_ENFOPRIORITY 40
53
54#define DEFAULT_DETECTSUM FALSE
55#define DEFAULT_EXTENDEDFORM TRUE
56#define DEFAULT_CVXQUADRATIC_CONVEX TRUE
57#define DEFAULT_CVXQUADRATIC_CONCAVE FALSE
58#define DEFAULT_CVXSIGNOMIAL TRUE
59#define DEFAULT_CVXPRODCOMP TRUE
60#define DEFAULT_HANDLETRIVIAL FALSE
61#define DEFAULT_MAXPERTURB 0.01
62
63#define INITLPMAXVARVAL 1000.0 /**< maximal absolute value of variable for still generating a linearization cut at that point in initlp */
64#define RANDNUMINITSEED 220802 /**< initial seed for random number generator for point perturbation */
65
66/*lint -e440*/
67/*lint -e441*/
68/*lint -e666*/
69/*lint -e777*/
70
71/*
72 * Data structures
73 */
74
75/** nonlinear handler expression data */
76struct SCIP_NlhdlrExprData
77{
78 SCIP_EXPR* nlexpr; /**< expression (copy) for which this nlhdlr estimates */
79 SCIP_HASHMAP* nlexpr2origexpr; /**< mapping of our copied expression to original expression */
80
81 int nleafs; /**< number of distinct leafs of nlexpr, i.e., number of distinct (auxiliary) variables handled */
82 SCIP_EXPR** leafexprs; /**< distinct leaf expressions (excluding value-expressions), thus variables */
83};
84
85/** nonlinear handler data */
86struct SCIP_NlhdlrData
87{
88 SCIP_Bool isnlhdlrconvex; /**< whether this data is used for the convex nlhdlr (TRUE) or the concave one (FALSE) */
89 SCIP_SOL* evalsol; /**< solution used for evaluating expression in a different point,
90 e.g., for facet computation of vertex-polyhedral function */
91 SCIP_RANDNUMGEN* randnumgen; /**< random number generator used to perturb reference point in estimateGradient() */
92
93 /* parameters */
94 SCIP_Bool detectsum; /**< whether to run detection when the root of an expression is a non-quadratic sum */
95 SCIP_Bool extendedform; /**< whether to create extended formulations instead of looking for maximal possible subexpression */
96 SCIP_Real maxperturb; /**< maximal perturbation of non-differentiable reference point */
97
98 /* advanced parameters (maybe remove some day) */
99 SCIP_Bool cvxquadratic; /**< whether to use convexity check on quadratics */
100 SCIP_Bool cvxsignomial; /**< whether to use convexity check on signomials */
101 SCIP_Bool cvxprodcomp; /**< whether to use convexity check on product composition f(h)*h */
102 SCIP_Bool handletrivial; /**< whether to handle trivial expressions, i.e., those where all children are variables */
103};
104
105/** data struct to be be passed on to vertexpoly-evalfunction (see SCIPcomputeFacetVertexPolyhedralNonlinear) */
106typedef struct
107{
112
113/** stack used in constructExpr to store expressions that need to be investigated ("to do list") */
114typedef struct
115{
116 SCIP_EXPR** stack; /**< stack elements */
117 int stacksize; /**< allocated space (in number of pointers) */
118 int stackpos; /**< position of top element of stack */
119} EXPRSTACK;
120
121#define DECL_CURVCHECK(x) SCIP_RETCODE x( \
122 SCIP* scip, /**< SCIP data structure */ \
123 SCIP_EXPR* nlexpr, /**< nlhdlr-expr to check */ \
124 SCIP_Bool isrootexpr, /**< whether nlexpr is the root from where detection has been started */ \
125 EXPRSTACK* stack, /**< stack where to add generated leafs */ \
126 SCIP_HASHMAP* nlexpr2origexpr, /**< mapping from our expression copy to original expression */ \
127 SCIP_NLHDLRDATA* nlhdlrdata, /**< data of nlhdlr */ \
128 SCIP_HASHMAP* assumevarfixed, /**< hashmap containing variables that should be assumed to be fixed, or NULL */ \
129 SCIP_Bool* success /**< whether we found something */ \
130 )
131
132/*
133 * static methods
134 */
135
136/** create nlhdlr-expression
137 *
138 * does not create children, i.e., assumes that this will be a leaf
139 */
140static
142 SCIP* scip, /**< SCIP data structure */
143 SCIP_HASHMAP* nlexpr2origexpr, /**< mapping from copied to original expression */
144 SCIP_EXPR** nlhdlrexpr, /**< buffer to store created expr */
145 SCIP_EXPR* origexpr, /**< original expression to be copied */
146 SCIP_EXPRCURV curv /**< curvature to achieve */
147 )
148{
149 assert(scip != NULL);
150 assert(nlexpr2origexpr != NULL);
151 assert(nlhdlrexpr != NULL);
152 assert(origexpr != NULL);
153
154 if( SCIPexprGetNChildren(origexpr) == 0 )
155 {
156 /* for leaves, do not copy */
157 *nlhdlrexpr = origexpr;
158 SCIPcaptureExpr(*nlhdlrexpr);
159 if( !SCIPhashmapExists(nlexpr2origexpr, (void*)*nlhdlrexpr) )
160 {
161 SCIP_CALL( SCIPhashmapInsert(nlexpr2origexpr, (void*)*nlhdlrexpr, (void*)origexpr) );
162 }
163 return SCIP_OKAY;
164 }
165
166 /* create copy of expression, but without children */
167 SCIP_CALL( SCIPduplicateExprShallow(scip, origexpr, nlhdlrexpr, NULL, NULL) );
168 assert(*nlhdlrexpr != NULL); /* copies within the same SCIP must always work */
169
170 /* store the curvature we want to get in the curvature flag of the copied expression
171 * it's a bit of a misuse, but once we are done with everything, this is actually correct
172 */
173 SCIPexprSetCurvature(*nlhdlrexpr, curv);
174
175 /* remember which the original expression was */
176 SCIP_CALL( SCIPhashmapInsert(nlexpr2origexpr, (void*)*nlhdlrexpr, (void*)origexpr) );
177
178 return SCIP_OKAY;
179}
180
181/** expand nlhdlr-expression by adding children according to original expression */
182static
184 SCIP* scip, /**< SCIP data structure */
185 SCIP_HASHMAP* nlexpr2origexpr, /**< mapping from copied to original expression */
186 SCIP_EXPR* nlhdlrexpr, /**< expression for which to create children */
187 SCIP_EXPRCURV* childrencurv /**< curvature required for children, or NULL if to set to UNKNOWN */
188 )
189{
190 SCIP_EXPR* origexpr;
191 SCIP_EXPR* child;
192 int nchildren;
193 int i;
194
195 assert(scip != NULL);
196 assert(nlhdlrexpr != NULL);
197 assert(SCIPexprGetNChildren(nlhdlrexpr) == 0);
198
199 origexpr = (SCIP_EXPR*)SCIPhashmapGetImage(nlexpr2origexpr, (void*)nlhdlrexpr);
200
201 nchildren = SCIPexprGetNChildren(origexpr);
202 if( nchildren == 0 )
203 return SCIP_OKAY;
204
205 for( i = 0; i < nchildren; ++i )
206 {
207 SCIP_CALL( nlhdlrExprCreate(scip, nlexpr2origexpr, &child, SCIPexprGetChildren(origexpr)[i],
208 childrencurv != NULL ? childrencurv[i] : SCIP_EXPRCURV_UNKNOWN) );
209 SCIP_CALL( SCIPappendExprChild(scip, nlhdlrexpr, child) );
210 /* append captures child, so we can release the capture from nlhdlrExprCreate */
211 SCIP_CALL( SCIPreleaseExpr(scip, &child) );
212 }
213
214 assert(SCIPexprGetNChildren(nlhdlrexpr) == SCIPexprGetNChildren(origexpr));
215
216 return SCIP_OKAY;
217}
218
219/** evaluate expression at solution w.r.t. auxiliary variables */
220static
221SCIP_DECL_VERTEXPOLYFUN(nlhdlrExprEvalConcave)
222{
223 VERTEXPOLYFUN_EVALDATA* evaldata = (VERTEXPOLYFUN_EVALDATA*)funcdata;
224 int i;
225
226 assert(args != NULL);
227 assert(nargs == evaldata->nlhdlrexprdata->nleafs);
228 assert(evaldata != NULL);
229
230#ifdef SCIP_MORE_DEBUG
231 SCIPdebugMsg(evaldata->scip, "eval vertexpolyfun at\n");
232#endif
233 for( i = 0; i < nargs; ++i )
234 {
235#ifdef SCIP_MORE_DEBUG
236 SCIPdebugMsg(evaldata->scip, " <%s> = %g\n",
237 SCIPvarGetName(SCIPgetVarExprVar(evaldata->nlhdlrexprdata->leafexprs[i])), args[i]);
238#endif
239 SCIP_CALL_ABORT( SCIPsetSolVal(evaldata->scip, evaldata->evalsol,
240 SCIPgetVarExprVar(evaldata->nlhdlrexprdata->leafexprs[i]), args[i]) );
241 }
242
243 SCIP_CALL_ABORT( SCIPevalExpr(evaldata->scip, evaldata->nlhdlrexprdata->nlexpr, evaldata->evalsol, 0L) );
244
245 return SCIPexprGetEvalValue(evaldata->nlhdlrexprdata->nlexpr);
246}
247
248/** initialize expression stack */
249static
251 SCIP* scip, /**< SCIP data structure */
252 EXPRSTACK* exprstack, /**< stack to initialize */
253 int initsize /**< initial size */
254 )
255{
256 assert(scip != NULL);
257 assert(exprstack != NULL);
258 assert(initsize > 0);
259
260 SCIP_CALL( SCIPallocBufferArray(scip, &exprstack->stack, initsize) );
261 exprstack->stacksize = initsize;
262 exprstack->stackpos = -1;
263
264 return SCIP_OKAY;
265}
266
267/** free expression stack */
268static
270 SCIP* scip, /**< SCIP data structure */
271 EXPRSTACK* exprstack /**< free expression stack */
272 )
273{
274 assert(scip != NULL);
275 assert(exprstack != NULL);
276
277 SCIPfreeBufferArray(scip, &exprstack->stack);
278}
279
280/** add expressions to expression stack */
281static
283 SCIP* scip, /**< SCIP data structure */
284 EXPRSTACK* exprstack, /**< expression stack */
285 int nexprs, /**< number of expressions to push */
286 SCIP_EXPR** exprs /**< expressions to push */
287 )
288{
289 assert(scip != NULL);
290 assert(exprstack != NULL);
291
292 if( nexprs == 0 )
293 return SCIP_OKAY;
294
295 assert(exprs != NULL);
296
297 if( exprstack->stackpos+1 + nexprs > exprstack->stacksize ) /*lint !e644*/
298 {
299 exprstack->stacksize = SCIPcalcMemGrowSize(scip, exprstack->stackpos+1 + nexprs); /*lint !e644*/
300 SCIP_CALL( SCIPreallocBufferArray(scip, &exprstack->stack, exprstack->stacksize) );
301 }
302
303 memcpy(exprstack->stack + (exprstack->stackpos+1), exprs, nexprs * sizeof(SCIP_EXPR*)); /*lint !e679*/ /*lint !e737*/
304 exprstack->stackpos += nexprs;
305
306 return SCIP_OKAY;
307}
308
309/** gives expression from top of expression stack and removes it from stack */
310static
312 EXPRSTACK* exprstack /**< expression stack */
313 )
314{
315 assert(exprstack != NULL);
316 assert(exprstack->stackpos >= 0);
317
318 return exprstack->stack[exprstack->stackpos--];
319}
320
321/** indicate whether expression stack is empty */
322static
324 EXPRSTACK* exprstack /**< expression stack */
325 )
326{
327 assert(exprstack != NULL);
328
329 return exprstack->stackpos < 0;
330}
331
332/** looks whether given expression is (proper) quadratic and has a given curvature
333 *
334 * If having a given curvature, currently require all arguments of quadratic to be linear.
335 * Hence, not using this for a simple square term, as curvCheckExprhdlr may provide a better condition on argument curvature then.
336 * Also we wouldn't do anything useful for a single bilinear term.
337 * Thus, run on sum's only.
338 */
339static
340DECL_CURVCHECK(curvCheckQuadratic)
341{ /*lint --e{715}*/
342 SCIP_EXPR* expr;
343 SCIP_EXPRCURV presentcurv;
344 SCIP_EXPRCURV wantedcurv;
345 SCIP_HASHSET* lonelysquares = NULL;
346 SCIP_Bool isquadratic;
347 int nbilinexprs;
348 int nquadexprs;
349 int i;
350
351 assert(nlexpr != NULL);
352 assert(stack != NULL);
353 assert(nlexpr2origexpr != NULL);
354 assert(success != NULL);
355
356 *success = FALSE;
357
358 if( !nlhdlrdata->cvxquadratic )
359 return SCIP_OKAY;
360
361 if( !SCIPisExprSum(scip, nlexpr) )
362 return SCIP_OKAY;
363
364 wantedcurv = SCIPexprGetCurvature(nlexpr);
365 if( wantedcurv == SCIP_EXPRCURV_LINEAR )
366 return SCIP_OKAY;
367 assert(wantedcurv == SCIP_EXPRCURV_CONVEX || wantedcurv == SCIP_EXPRCURV_CONCAVE);
368
369 expr = (SCIP_EXPR*)SCIPhashmapGetImage(nlexpr2origexpr, (void*)nlexpr);
370 assert(expr != NULL);
371
372 /* check whether quadratic */
373 SCIP_CALL( SCIPcheckExprQuadratic(scip, expr, &isquadratic) );
374
375 /* if not quadratic, then give up here */
376 if( !isquadratic )
377 return SCIP_OKAY;
378
379 SCIPexprGetQuadraticData(expr, NULL, NULL, NULL, NULL, &nquadexprs, &nbilinexprs, NULL, NULL);
380
381 /* if only single square term (+linear), then give up here (let curvCheckExprhdlr handle this) */
382 if( nquadexprs <= 1 )
383 return SCIP_OKAY;
384
385 /* if root expression is only sum of squares (+linear) and detectsum is disabled, then give up here, too */
386 if( isrootexpr && !nlhdlrdata->detectsum && nbilinexprs == 0 )
387 return SCIP_OKAY;
388
389 /* get curvature of quadratic
390 * TODO as we know what curvature we want, we could first do some simple checks like computing xQx for a random x
391 */
392 SCIP_CALL( SCIPcomputeExprQuadraticCurvature(scip, expr, &presentcurv, assumevarfixed, FALSE) );
393
394 /* if not having desired curvature, return */
395 if( presentcurv != wantedcurv )
396 return SCIP_OKAY;
397
398 *success = TRUE;
399
400 if( !nlhdlrdata->detectsum )
401 {
402 /* first step towards block-decomposition of quadratic term:
403 * collect all square-expressions (in original expr) which have no adjacent bilinear term
404 * we will treat these x^2 as linear, i.e., add an auxvar for them, so x^2 maybe linearized
405 * more efficiently (in particular if x is discrete)
406 */
407 SCIP_CALL( SCIPhashsetCreate(&lonelysquares, SCIPblkmem(scip), nquadexprs) );
408 for( i = 0; i < nquadexprs; ++i )
409 {
410 int nadjbilin;
411 SCIP_EXPR* sqrexpr;
412
413 SCIPexprGetQuadraticQuadTerm(expr, i, NULL, NULL, NULL, &nadjbilin, NULL, &sqrexpr);
414 if( nadjbilin == 0 )
415 {
416 assert(sqrexpr != NULL);
417 SCIP_CALL( SCIPhashsetInsert(lonelysquares, SCIPblkmem(scip), (void*)sqrexpr) );
418 }
419 }
420 }
421
422 /* add immediate children to nlexpr */
423 SCIP_CALL( nlhdlrExprGrowChildren(scip, nlexpr2origexpr, nlexpr, NULL) );
424 assert(SCIPexprGetNChildren(nlexpr) == SCIPexprGetNChildren(expr));
425
426 /* put children that are not square or product on stack
427 * grow child for children that are square or product and put this child on stack
428 * require all children to be linear
429 */
430 for( i = 0; i < SCIPexprGetNChildren(nlexpr); ++i )
431 {
432 SCIP_EXPR* child;
434
435 child = SCIPexprGetChildren(nlexpr)[i];
436 assert(child != NULL);
437
438 assert(SCIPhashmapGetImage(nlexpr2origexpr, (void*)child) == SCIPexprGetChildren(expr)[i]);
439
440 if( SCIPisExprPower(scip, child) && SCIPgetExponentExprPow(child) == 2.0 &&
441 (lonelysquares == NULL || !SCIPhashsetExists(lonelysquares, SCIPexprGetChildren(expr)[i])) )
442 {
443 /* square term that isn't lonely, i.e., orig-version of child is a square-expr and nadjbilin>0 */
444 SCIP_CALL( nlhdlrExprGrowChildren(scip, nlexpr2origexpr, child, curvlinear) );
445 assert(SCIPexprGetNChildren(child) == 1);
446 SCIP_CALL( exprstackPush(scip, stack, 1, SCIPexprGetChildren(child)) );
447 }
448 else if( SCIPisExprProduct(scip, child) && SCIPexprGetNChildren(SCIPexprGetChildren(expr)[i]) == 2 )
449 /* using original version of child here as NChildren(child)==0 atm */
450 {
451 /* bilinear term */
452 SCIP_CALL( nlhdlrExprGrowChildren(scip, nlexpr2origexpr, child, curvlinear) );
453 assert(SCIPexprGetNChildren(child) == 2);
454 SCIP_CALL( exprstackPush(scip, stack, 2, SCIPexprGetChildren(child)) );
455 }
456 else
457 {
458 /* linear term (or term to be considered as linear) or lonely square term
459 * if we want extended formulations, then require linearity, so an auxvar will be introduced if it is nonlinear
460 * if we do not want extended formulations, then the term needs to have curvature "wantedcurv"
461 * thus, if the coef is negative, then the child needs to have the curvature opposite to "wantedcurv"
462 */
463 if( nlhdlrdata->extendedform )
465 else
466 SCIPexprSetCurvature(child, SCIPexprcurvMultiply(SCIPgetCoefsExprSum(nlexpr)[i], wantedcurv));
467 SCIP_CALL( exprstackPush(scip, stack, 1, &child) );
468 }
469 }
470
471 if( lonelysquares != NULL )
472 SCIPhashsetFree(&lonelysquares, SCIPblkmem(scip));
473
474 return SCIP_OKAY;
475}
476
477/** looks whether top of given expression looks like a signomial that can have a given curvature
478 *
479 * e.g., sqrt(x)*sqrt(y) is convex if x,y >= 0 and x and y are convex
480 *
481 * unfortunately, doesn't work for tls, because i) it's originally sqrt(x*y), and ii) it is expanded into some sqrt(z*y+y);
482 * but works for cvxnonsep_nsig
483 */
484static
485DECL_CURVCHECK(curvCheckSignomial)
486{ /*lint --e{715}*/
487 SCIP_EXPR* expr;
488 SCIP_EXPR* child;
489 SCIP_Real* exponents;
490 SCIP_INTERVAL* bounds;
491 SCIP_EXPRCURV* curv;
492 int nfactors;
493 int i;
494
495 assert(nlexpr != NULL);
496 assert(stack != NULL);
497 assert(nlexpr2origexpr != NULL);
498 assert(success != NULL);
499
500 *success = FALSE;
501
502 if( !nlhdlrdata->cvxsignomial )
503 return SCIP_OKAY;
504
505 if( !SCIPisExprProduct(scip, nlexpr) )
506 return SCIP_OKAY;
507
508 expr = (SCIP_EXPR*)SCIPhashmapGetImage(nlexpr2origexpr, (void*)nlexpr);
509 assert(expr != NULL);
510
511 nfactors = SCIPexprGetNChildren(expr);
512 if( nfactors <= 1 ) /* boooring */
513 return SCIP_OKAY;
514
515 SCIP_CALL( SCIPallocBufferArray(scip, &exponents, nfactors) );
516 SCIP_CALL( SCIPallocBufferArray(scip, &bounds, nfactors) );
517 SCIP_CALL( SCIPallocBufferArray(scip, &curv, nfactors) );
518
519 for( i = 0; i < nfactors; ++i )
520 {
521 child = SCIPexprGetChildren(expr)[i];
522 assert(child != NULL);
523
524 if( !SCIPisExprPower(scip, child) )
525 {
526 exponents[i] = 1.0;
528 bounds[i] = SCIPexprGetActivity(child);
529 }
530 else
531 {
532 exponents[i] = SCIPgetExponentExprPow(child);
534 bounds[i] = SCIPexprGetActivity(SCIPexprGetChildren(child)[0]);
535 }
536 }
537
539 nfactors, exponents, bounds, curv) )
540 goto TERMINATE;
541
542 /* add immediate children to nlexpr
543 * some entries in curv actually apply to arguments of pow's, will correct this next
544 */
545 SCIP_CALL( nlhdlrExprGrowChildren(scip, nlexpr2origexpr, nlexpr, curv) );
546 assert(SCIPexprGetNChildren(nlexpr) == nfactors);
547
548 /* put children that are not power on stack
549 * grow child for children that are power and put this child on stack
550 * if extendedform, then require children to be linear
551 * unless they are linear, an auxvar will be introduced for them and thus they will be handled as var here
552 */
553 for( i = 0; i < nfactors; ++i )
554 {
555 child = SCIPexprGetChildren(nlexpr)[i];
556 assert(child != NULL);
557
558 if( SCIPisExprPower(scip, child) )
559 {
560 SCIP_CALL( nlhdlrExprGrowChildren(scip, nlexpr2origexpr, child, &curv[i]) );
561 assert(SCIPexprGetNChildren(child) == 1);
562 child = SCIPexprGetChildren(child)[0];
563 }
564 assert(SCIPexprGetNChildren(child) == 0);
565
566 if( nlhdlrdata->extendedform )
567 {
569#ifdef SCIP_DEBUG
570 SCIPinfoMessage(scip, NULL, "Extendedform: Require linearity for ");
571 SCIPprintExpr(scip, child, NULL);
572 SCIPinfoMessage(scip, NULL, "\n");
573#endif
574 }
575
576 SCIP_CALL( exprstackPush(scip, stack, 1, &child) );
577 }
578
579 *success = TRUE;
580
581TERMINATE:
583 SCIPfreeBufferArray(scip, &bounds);
584 SCIPfreeBufferArray(scip, &exponents);
585
586 return SCIP_OKAY;
587}
588
589/** looks for \f$f(c h(x)+d) h(x) \cdot \text{constant}\f$ and tries to conclude conditions on curvature
590 *
591 * Assume \f$h\f$ is univariate:
592 * - First derivative is \f$f'(c h + d) c h' h + f(c h + d) h'\f$.
593 * - Second derivative is \f{align}{&f''(c h + d) c h' c h' h + f'(c h + d) (c h'' h + c h' h') + f'(c h + d) c h' h' + f(c h + d) h'' \\
594 * =& f''(c h + d) c^2 h'^2 h + f'(c h + d) c h'' h + 2 f'(c h + d) c h'^2 + f(c h + d) h''.\f}
595 * Remove always positive factors leaves \f[f''(c h + d) h,\quad f'(c h + d) c h'' h,\quad f'(c h + d) c,\quad f(c h + d) h''.\f]
596 * For convexity we want all these terms to be nonnegative. For concavity we want all of them to be nonpositive.
597 * Note, that in each term either both \f$f'(c h + d)\f$ and \f$c\f$ occur, or none of them.
598 * - Thus, \f$f(c h(x) + d)h(x)\f$ is convex if \f$cf\f$ is monotonically increasing \f$(c f' \geq 0)\f$ and either
599 * - \f$f\f$ is convex \f$(f'' \geq 0)\f$ and \f$h\f$ is nonnegative \f$(h \geq 0)\f$ and \f$h\f$ is convex \f$(h'' \geq 0)\f$ and [\f$f\f$ is nonnegative \f$(f \geq 0)\f$ or \f$h\f$ is linear \f$(h''=0)\f$], or
600 * - \f$f\f$ is concave \f$(f'' \leq 0)\f$ and \f$h\f$ is nonpositive \f$(h \leq 0)\f$ and \f$h\f$ is concave \f$(h'' \leq 0)\f$ and [\f$f\f$ is nonpositive \f$(f \leq 0)\f$ or \f$h\f$ is linear \f$(h''=0)\f$].
601 * - Further, \f$f(c h(x) + d)h(x)\f$ is concave if \f$cf\f$ is monotonically decreasing \f$(c f' \leq 0)\f$ and either
602 * - f is convex \f$(f'' \geq 0)\f$ and \f$h\f$ is nonpositive \f$(h \leq 0)\f$ and \f$h\f$ is concave \f$(h'' \leq 0)\f$ and [\f$f\f$ is nonnegative \f$(f \geq 0)\f$ or \f$h\f$ is linear \f$(h''=0)\f$], or
603 * - f is concave \f$(f'' \leq 0)\f$ and \f$h\f$ is nonnegative \f$(h >= 0)\f$ and \f$h\f$ is convex \f$(h'' \geq 0)\f$ and [\f$f\f$ is nonpositive \f$(f \leq 0)\f$ or \f$h\f$ is linear \f$(h''=0)\f$].
604 *
605 * This should hold also for multivariate and linear \f$h\f$, as things are invariant under linear transformations.
606 * Similar to signomial, I'll assume that this will also hold for other multivariate \f$h\f$ (someone has a formal proof?).
607 */
608static
609DECL_CURVCHECK(curvCheckProductComposite)
610{ /*lint --e{715}*/
611 SCIP_EXPR* expr;
612 SCIP_EXPR* f;
613 SCIP_EXPR* h = NULL;
614 SCIP_Real c = 0.0;
615 SCIP_EXPR* ch = NULL; /* c * h */
616 SCIP_Real d;
617 SCIP_INTERVAL fbounds;
618 SCIP_INTERVAL hbounds;
619 SCIP_MONOTONE fmonotonicity;
620 SCIP_EXPRCURV desiredcurv;
621 SCIP_EXPRCURV hcurv;
622 SCIP_EXPRCURV dummy;
623 int fidx;
624
625 assert(nlexpr != NULL);
626 assert(stack != NULL);
627 assert(nlexpr2origexpr != NULL);
628 assert(success != NULL);
629
630 *success = FALSE;
631
632 if( !nlhdlrdata->cvxprodcomp )
633 return SCIP_OKAY;
634
635 if( !SCIPisExprProduct(scip, nlexpr) )
636 return SCIP_OKAY;
637
638 expr = (SCIP_EXPR*)SCIPhashmapGetImage(nlexpr2origexpr, (void*)nlexpr);
639 assert(expr != NULL);
640
641 if( SCIPexprGetNChildren(expr) != 2 )
642 return SCIP_OKAY;
643
644 /* check whether we have f(c * h(x)) * h(x) or h(x) * f(c * h(x)) */
645 for( fidx = 0; fidx <= 1; ++fidx )
646 {
647 f = SCIPexprGetChildren(expr)[fidx];
648
649 if( SCIPexprGetNChildren(f) != 1 )
650 continue;
651
652 ch = SCIPexprGetChildren(f)[0];
653 c = 1.0;
654 h = ch;
655
656 /* check whether ch is of the form c*h(x), then switch h to child ch */
657 if( SCIPisExprSum(scip, ch) && SCIPexprGetNChildren(ch) == 1 )
658 {
659 c = SCIPgetCoefsExprSum(ch)[0];
660 h = SCIPexprGetChildren(ch)[0];
661 assert(c != 1.0 || SCIPgetConstantExprSum(ch) != 0.0); /* we could handle this, but it should have been simplified away */
662 }
663
664#ifndef NLHDLR_CONVEX_UNITTEST
665 /* can assume that duplicate subexpressions have been identified and comparing pointer is sufficient */
666 if( SCIPexprGetChildren(expr)[1-fidx] == h )
667#else
668 /* called from unittest -> duplicate subexpressions were not identified -> compare more expensively */
669 if( SCIPcompareExpr(scip, SCIPexprGetChildren(expr)[1-fidx], h) == 0 )
670#endif
671 break;
672 }
673 if( fidx == 2 )
674 return SCIP_OKAY;
675
676 /* constant of c*h(x)+d */
677 d = h != ch ? SCIPgetConstantExprSum(ch) : 0.0;
678
679#ifdef SCIP_MORE_DEBUG
680 SCIPinfoMessage(scip, NULL, "f(c*h+d)*h with f = %s, c = %g, d = %g, h = ", SCIPexprhdlrGetName(SCIPexprGetHdlr(f)), c, d);
682 SCIPinfoMessage(scip, NULL, "\n");
683#endif
684
685 assert(c != 0.0);
686
689 fbounds = SCIPexprGetActivity(f);
690 hbounds = SCIPexprGetActivity(h);
691
692 /* if h has mixed sign, then cannot conclude anything */
693 if( hbounds.inf < 0.0 && hbounds.sup > 0.0 )
694 return SCIP_OKAY;
695
696 /* If we have some convex or concave x*abs(c*x+d), then gradients at x=-d/c may be very wrong due to
697 * rounding errors and non-differentiability of abs() at zero (#3411). Therefore, we skip handling
698 * such expression in this nonlinear handler when one of the bounds of c*x+d is very close to zero.
699 * (If zero is in between the bounds of c*x+d, then the composition wouldn't be regarded as convex/concave anyway.)
700 */
701 if( SCIPisExprAbs(scip, f) && (SCIPisZero(scip, c*hbounds.inf+d) || SCIPisZero(scip, c*hbounds.sup+d)) )
702 return SCIP_OKAY;
703
704 SCIP_CALL( SCIPcallExprMonotonicity(scip, f, 0, &fmonotonicity) );
705
706 /* if f is not monotone, then cannot conclude anything */
707 if( fmonotonicity == SCIP_MONOTONE_UNKNOWN )
708 return SCIP_OKAY;
709
710 /* curvature we want to achieve (negate if product has negative coef) */
712
713 /* now check the conditions as stated above */
714 if( desiredcurv == SCIP_EXPRCURV_CONVEX )
715 {
716 /* f(c h(x)+d)h(x) is convex if c*f is monotonically increasing (c f' >= 0) and either
717 * - f is convex (f'' >= 0) and h is nonnegative (h >= 0) and h is convex (h'' >= 0) and [f is nonnegative (f >= 0) or h is linear (h''=0)], or
718 * - f is concave (f'' <= 0) and h is nonpositive (h <= 0) and h is concave (h'' <= 0) and [f is nonpositive (f <= 0) or h is linear (h''=0)]
719 * as the curvature requirements on f are on f only and not the composition f(h), we can ignore the requirements returned by SCIPcallExprCurvature (last arg)
720 */
721 if( (c > 0.0 && fmonotonicity != SCIP_MONOTONE_INC) || (c < 0.0 && fmonotonicity != SCIP_MONOTONE_DEC) )
722 return SCIP_OKAY;
723
724 /* check whether f can be convex (h>=0) or concave (h<=0), resp., and derive requirements for h */
725 if( hbounds.inf >= 0 )
726 {
727 SCIP_CALL( SCIPcallExprCurvature(scip, f, SCIP_EXPRCURV_CONVEX, success, &dummy) );
728
729 /* now h also needs to be convex; and if f < 0, then h actually needs to be linear */
730 if( fbounds.inf < 0.0 )
731 hcurv = SCIP_EXPRCURV_LINEAR;
732 else
733 hcurv = SCIP_EXPRCURV_CONVEX;
734 }
735 else
736 {
737 SCIP_CALL( SCIPcallExprCurvature(scip, f, SCIP_EXPRCURV_CONCAVE, success, &dummy) );
738
739 /* now h also needs to be concave; and if f > 0, then h actually needs to be linear */
740 if( fbounds.sup > 0.0 )
741 hcurv = SCIP_EXPRCURV_LINEAR;
742 else
743 hcurv = SCIP_EXPRCURV_CONCAVE;
744 }
745 }
746 else
747 {
748 /* f(c h(x)+d)*h(x) is concave if c*f is monotonically decreasing (c f' <= 0) and either
749 * - f is convex (f'' >= 0) and h is nonpositive (h <= 0) and h is concave (h'' <= 0) and [f is nonnegative (f >= 0) or h is linear (h''=0)], or
750 * - f is concave (f'' <= 0) and h is nonnegative (h >= 0) and h is convex (h'' >= 0) and [f is nonpositive (f <= 0) or h is linear (h''=0)]
751 * as the curvature requirements on f are on f only and not the composition f(h), we can ignore the requirements returned by SCIPcallExprCurvature (last arg)
752 */
753 if( (c > 0.0 && fmonotonicity != SCIP_MONOTONE_DEC) || (c < 0.0 && fmonotonicity != SCIP_MONOTONE_INC) )
754 return SCIP_OKAY;
755
756 /* check whether f can be convex (h<=0) or concave (h>=0), resp., and derive requirements for h */
757 if( hbounds.sup <= 0 )
758 {
759 SCIP_CALL( SCIPcallExprCurvature(scip, f, SCIP_EXPRCURV_CONVEX, success, &dummy) );
760
761 /* now h also needs to be concave; and if f < 0, then h actually needs to be linear */
762 if( fbounds.inf < 0.0 )
763 hcurv = SCIP_EXPRCURV_LINEAR;
764 else
765 hcurv = SCIP_EXPRCURV_CONCAVE;
766 }
767 else
768 {
769 SCIP_CALL( SCIPcallExprCurvature(scip, f, SCIP_EXPRCURV_CONCAVE, success, &dummy) );
770
771 /* now h also needs to be convex; and if f > 0, then h actually needs to be linear */
772 if( fbounds.sup > 0.0 )
773 hcurv = SCIP_EXPRCURV_LINEAR;
774 else
775 hcurv = SCIP_EXPRCURV_CONVEX;
776 }
777 }
778
779 if( !*success )
780 return SCIP_OKAY;
781
782 /* add immediate children (f and ch) to nlexpr; we set required curvature for h further below */
783 SCIP_CALL( nlhdlrExprGrowChildren(scip, nlexpr2origexpr, nlexpr, NULL) );
784 assert(SCIPexprGetNChildren(nlexpr) == 2);
785
786 /* copy of f (and h) should have same child position in nlexpr as f (and h) has on expr (resp) */
787 assert(SCIPhashmapGetImage(nlexpr2origexpr, (void*)SCIPexprGetChildren(nlexpr)[fidx]) == (void*)f);
788#ifndef NLHDLR_CONVEX_UNITTEST
789 assert(SCIPhashmapGetImage(nlexpr2origexpr, (void*)SCIPexprGetChildren(nlexpr)[1-fidx]) == (void*)h);
790#endif
791 /* push this h onto stack for further checking */
792 SCIP_CALL( exprstackPush(scip, stack, 1, &(SCIPexprGetChildren(nlexpr)[1-fidx])) );
793
794 /* if we prefer extended formulations, then we always want h() to be linear */
795 if( nlhdlrdata->extendedform )
796 hcurv = SCIP_EXPRCURV_LINEAR;
797
798 /* h-child of product should have curvature hcurv */
799 SCIPexprSetCurvature(SCIPexprGetChildren(nlexpr)[1-fidx], hcurv);
800
801 if( h != ch )
802 {
803 /* add copy of ch as child to copy of f */
804 SCIP_CALL( nlhdlrExprGrowChildren(scip, nlexpr2origexpr, SCIPexprGetChildren(nlexpr)[fidx], NULL) );
805 assert(SCIPexprGetNChildren(SCIPexprGetChildren(nlexpr)[fidx]) == 1);
806 assert(SCIPhashmapGetImage(nlexpr2origexpr, (void*)SCIPexprGetChildren(SCIPexprGetChildren(nlexpr)[fidx])[0]) == (void*)ch);
807
808 /* add copy of h (created above as child of product) as child in copy of ch */
810 SCIPexprGetChildren(SCIPexprGetChildren(nlexpr)[fidx])[0] /* copy of ch */,
811 SCIPexprGetChildren(nlexpr)[1-fidx] /* copy of h */) );
812 }
813 else
814 {
815 /* add copy of h (created above as child of product) as child in copy of f */
817 SCIPexprGetChildren(nlexpr)[fidx] /* copy of f */,
818 SCIPexprGetChildren(nlexpr)[1-fidx] /* copy of h */) );
819 }
820
821 return SCIP_OKAY;
822}
823
824/** use expression handlers curvature callback to check whether given curvature can be achieved */
825static
826DECL_CURVCHECK(curvCheckExprhdlr)
827{ /*lint --e{715}*/
828 SCIP_EXPR* origexpr;
829 int nchildren;
830 SCIP_EXPRCURV* childcurv;
831
832 assert(nlexpr != NULL);
833 assert(stack != NULL);
834 assert(nlexpr2origexpr != NULL);
835 assert(success != NULL);
836
837 origexpr = (SCIP_EXPR*)SCIPhashmapGetImage(nlexpr2origexpr, nlexpr);
838 assert(origexpr != NULL);
839 nchildren = SCIPexprGetNChildren(origexpr);
840
841 if( nchildren == 0 )
842 {
843 /* if originally no children, then should be var or value, which should have every curvature,
844 * so should always be success
845 */
846 SCIP_CALL( SCIPcallExprCurvature(scip, origexpr, SCIPexprGetCurvature(nlexpr), success, NULL) );
847 assert(*success);
848
849 return SCIP_OKAY;
850 }
851
852 /* ignore sums if > 1 children
853 * NOTE: this means that for something like 1+f(x), even if f is a trivial convex expression, we would handle 1+f(x)
854 * with this nlhdlr, instead of formulating this as 1+z and handling z=f(x) with the default nlhdlr, i.e., the exprhdlr
855 * today, I prefer handling this here, as it avoids introducing an extra auxiliary variable
856 */
857 if( isrootexpr && !nlhdlrdata->detectsum && SCIPisExprSum(scip, nlexpr) && nchildren > 1 )
858 return SCIP_OKAY;
859
860 SCIP_CALL( SCIPallocBufferArray(scip, &childcurv, nchildren) );
861
862 /* check whether and under which conditions origexpr can have desired curvature */
863 SCIP_CALL( SCIPcallExprCurvature(scip, origexpr, SCIPexprGetCurvature(nlexpr), success, childcurv) );
864#ifdef SCIP_MORE_DEBUG
865 SCIPprintExpr(scip, origexpr, NULL);
866 SCIPinfoMessage(scip, NULL, " is %s? %d\n", SCIPexprcurvGetName(SCIPexprGetCurvature(nlexpr)), *success);
867#endif
868 if( !*success )
869 goto TERMINATE;
870
871 /* if origexpr can have curvature curv, then don't treat it as leaf, but include its children */
872 SCIP_CALL( nlhdlrExprGrowChildren(scip, nlexpr2origexpr, nlexpr, childcurv) );
873 assert(SCIPexprGetChildren(nlexpr) != NULL);
874 assert(SCIPexprGetNChildren(nlexpr) == nchildren);
875
876 /* If we prefer extended formulations, then require all children to be linear.
877 * Unless they are, auxvars will be introduced and they will be handles as variables, which can be an
878 * advantage in the context of extended formulations.
879 */
880 if( nlhdlrdata->extendedform )
881 {
882 int i;
883 for( i = 0; i < nchildren; ++i )
885#ifdef SCIP_DEBUG
886 SCIPinfoMessage(scip, NULL, "require linearity for children of ");
887 SCIPprintExpr(scip, origexpr, NULL);
888 SCIPinfoMessage(scip, NULL, "\n");
889#endif
890 }
891
892 /* add children expressions to to-do list (stack) */
893 SCIP_CALL( exprstackPush(scip, stack, nchildren, SCIPexprGetChildren(nlexpr)) );
894
895TERMINATE:
896 SCIPfreeBufferArray(scip, &childcurv);
897
898 return SCIP_OKAY;
899}
900
901/** curvature check and expression-growing methods
902 *
903 * some day this could be plugins added by users at runtime, but for now we have a fixed list here
904 * @note curvCheckExprhdlr should be last
905 */
906static DECL_CURVCHECK((*CURVCHECKS[])) = { curvCheckProductComposite, curvCheckSignomial, curvCheckQuadratic, curvCheckExprhdlr };
907/** number of curvcheck methods */
908static const int NCURVCHECKS = sizeof(CURVCHECKS) / sizeof(void*);
909
910/** checks whether expression is a sum with more than one child and each child being a variable or going to be a variable if `expr` is a nlhdlr-specific copy
911 *
912 * Within constructExpr(), we can have an expression of any type which is a copy of an original expression,
913 * but without children. At the end of constructExpr() (after the loop with the stack), these expressions
914 * will remain as leafs and will eventually be turned into variables in collectLeafs(). Thus, we treat
915 * every child that has no children as if it were a variable. Theoretically, there is still the possibility
916 * that it could be a constant (value-expression), but simplify should have removed these.
917 */
918static
920 SCIP* scip, /**< SCIP data structure */
921 SCIP_EXPR* expr /**< expression to check */
922 )
923{
924 int nchildren;
925 int c;
926
927 assert(expr != NULL);
928
929 if( !SCIPisExprSum(scip, expr) )
930 return FALSE;
931
932 nchildren = SCIPexprGetNChildren(expr);
933 if( nchildren <= 1 )
934 return FALSE;
935
936 for( c = 0; c < nchildren; ++c )
937 /*if( !SCIPisExprVar(scip, SCIPexprGetChildren(expr)[c]) ) */
938 if( SCIPexprGetNChildren(SCIPexprGetChildren(expr)[c]) > 0 )
939 return FALSE;
940
941 return TRUE;
942}
943
944/** constructs a subexpression (as nlhdlr-expression) of maximal size that has a given curvature
945 *
946 * If the curvature cannot be achieved for an expression in the original expression graph,
947 * then this expression becomes a leaf in the nlhdlr-expression.
948 *
949 * Sets `*rootnlexpr` to NULL if failed.
950 */
951static
953 SCIP* scip, /**< SCIP data structure */
954 SCIP_NLHDLRDATA* nlhdlrdata, /**< nonlinear handler data */
955 SCIP_EXPR** rootnlexpr, /**< buffer to store created expression */
956 SCIP_HASHMAP* nlexpr2origexpr, /**< mapping from our expression copy to original expression */
957 int* nleafs, /**< number of leafs in constructed expression */
958 SCIP_EXPR* rootexpr, /**< expression */
959 SCIP_EXPRCURV curv, /**< curvature to achieve */
960 SCIP_HASHMAP* assumevarfixed, /**< hashmap containing variables that should be assumed to be fixed, or NULL */
961 SCIP_Bool assumecurvature, /**< whether to assume that desired curvature is given (skips curvature checks) */
962 SCIP_Bool* curvsuccess /**< pointer to store whether the curvature could be achieved
963 * w.r.t. the original variables (might be NULL) */
964 )
965{
966 SCIP_EXPR* nlexpr;
967 EXPRSTACK stack; /* to do list: expressions where to check whether they can have the desired curvature when taking their children into account */
968 int oldstackpos;
969 SCIP_Bool isrootexpr = TRUE;
970
971 assert(scip != NULL);
972 assert(nlhdlrdata != NULL);
973 assert(rootnlexpr != NULL);
974 assert(nlexpr2origexpr != NULL);
975 assert(nleafs != NULL);
976 assert(rootexpr != NULL);
977 assert(curv == SCIP_EXPRCURV_CONVEX || curv == SCIP_EXPRCURV_CONCAVE);
978
979 /* create root expression */
980 SCIP_CALL( nlhdlrExprCreate(scip, nlexpr2origexpr, rootnlexpr, rootexpr, curv) );
981
982 *nleafs = 0;
983 if( curvsuccess != NULL )
984 *curvsuccess = TRUE;
985
986 SCIP_CALL( exprstackInit(scip, &stack, 20) );
987 SCIP_CALL( exprstackPush(scip, &stack, 1, rootnlexpr) );
988 while( !exprstackIsEmpty(&stack) )
989 {
990 /* take expression from stack */
991 nlexpr = exprstackPop(&stack);
992 assert(nlexpr != NULL);
993 assert(SCIPexprGetNChildren(nlexpr) == 0);
994
995 oldstackpos = stack.stackpos;
996 if( nlhdlrdata->isnlhdlrconvex && !SCIPexprhdlrHasBwdiff(SCIPexprGetHdlr(nlexpr)) )
997 {
998 /* if bwdiff is not implemented, then we could not generate cuts in the convex nlhdlr, so "stop" (treat nlexpr as variable) */
999 }
1000 else if( !nlhdlrdata->isnlhdlrconvex && exprIsMultivarLinear(scip, (SCIP_EXPR*)SCIPhashmapGetImage(nlexpr2origexpr, (void*)nlexpr)) )
1001 {
1002 /* if we are in the concave handler, we would like to treat linear multivariate subexpressions by a new auxvar always,
1003 * e.g., handle log(x+y) as log(z), z=x+y, because the estimation problem will be smaller then without making the estimator worse
1004 * (cons_nonlinear does this, too)
1005 * this check takes care of this when x and y are original variables
1006 * however, it isn't unlikely that we will have sums that become linear after we add auxvars for some children
1007 * this will be handled in a postprocessing below
1008 * for now, the check is performed on the original expression since there is not enough information in nlexpr yet
1009 */
1010#ifdef SCIP_MORE_DEBUG
1011 SCIPprintExpr(scip, SCIPhashmapGetImage(nlexpr2origexpr, (void*)nlexpr), NULL);
1012 SCIPinfoMessage(scip, NULL, "... is a multivariate linear sum that we'll treat as auxvar\n");
1013#endif
1014 }
1015 else if( SCIPexprGetCurvature(nlexpr) != SCIP_EXPRCURV_UNKNOWN && !assumecurvature )
1016 {
1017 /* if we are here, either convexity or concavity is required; try to check for this curvature */
1018 SCIP_Bool success;
1019 int method;
1020
1021 /* try through curvature check methods until one succeeds */
1022 for( method = 0; method < NCURVCHECKS; ++method )
1023 {
1024 SCIP_CALL( CURVCHECKS[method](scip, nlexpr, isrootexpr, &stack, nlexpr2origexpr, nlhdlrdata, assumevarfixed, &success) );
1025 if( success )
1026 break;
1027 }
1028 }
1029 else
1030 {
1031 /* if we don't care about curvature in this subtree anymore (very unlikely),
1032 * or we are told to assume that the desired curvature is present (assumecurvature==TRUE),
1033 * then only continue iterating this subtree to assemble leaf expressions
1034 */
1035 SCIP_CALL( nlhdlrExprGrowChildren(scip, nlexpr2origexpr, nlexpr, NULL) );
1036
1037 /* add children expressions, if any, to to-do list (stack) */
1039 }
1040 assert(stack.stackpos >= oldstackpos); /* none of the methods above should have removed something from the stack */
1041
1042 isrootexpr = FALSE;
1043
1044 /* if nothing was added, then none of the successors of nlexpr were added to the stack
1045 * this is either because nlexpr was already a variable or value expressions, thus a leaf,
1046 * or because the desired curvature could not be achieved, so it will be handled as variables, thus a leaf
1047 */
1048 if( stack.stackpos == oldstackpos )
1049 {
1050 ++*nleafs;
1051
1052 /* check whether the new leaf is not an original variable (or constant) */
1053 if( curvsuccess != NULL && !SCIPisExprVar(scip, nlexpr) && !SCIPisExprValue(scip, nlexpr) )
1054 *curvsuccess = FALSE;
1055 }
1056 }
1057
1058 exprstackFree(scip, &stack);
1059
1060 if( !nlhdlrdata->isnlhdlrconvex && *rootnlexpr != NULL )
1061 {
1062 /* remove multivariate linear subexpressions, that is, change some f(z1+z2) into f(z3) (z3=z1+z2 will be done by nlhdlr_default)
1063 * this handles the case that was not covered by the above check, which could recognize f(x+y) for x, y original variables
1064 */
1065 SCIP_EXPRITER* it;
1066
1068 SCIP_CALL( SCIPexpriterInit(it, *rootnlexpr, SCIP_EXPRITER_DFS, FALSE) );
1070
1071 while( !SCIPexpriterIsEnd(it) )
1072 {
1073 SCIP_EXPR* child;
1074
1075 child = SCIPexpriterGetChildExprDFS(it);
1076 assert(child != NULL);
1077
1078 /* We want to change some f(x+y+z) into just f(), where f is the expression the iterator points to
1079 * and x+y+z is child. A child of a child, e.g., z, may not be a variable yet (these are added in collectLeafs later),
1080 * but an expression of some nonlinear type without children.
1081 */
1082 if( exprIsMultivarLinear(scip, child) )
1083 {
1084 /* turn child (x+y+z) into a sum without children
1085 * collectLeafs() should then replace this by an auxvar
1086 */
1087#ifdef SCIP_MORE_DEBUG
1088 SCIPprintExpr(scip, child, NULL);
1089 SCIPinfoMessage(scip, NULL, "... is a multivariate linear sum that we'll treat as auxvar instead (postprocess)\n");
1090#endif
1091
1092 /* TODO remove children from nlexpr2origexpr ?
1093 * should also do this if they are not used somewhere else; we could check nuses for this
1094 * however, it shouldn't matter to have some stray entries in the hashmap either
1095 */
1097 assert(SCIPexprGetNChildren(child) == 0);
1098
1099 (void) SCIPexpriterSkipDFS(it);
1100 }
1101 else
1102 {
1103 (void) SCIPexpriterGetNext(it);
1104 }
1105 }
1106
1107 SCIPfreeExpriter(&it);
1108 }
1109
1110 if( *rootnlexpr != NULL )
1111 {
1112 SCIP_Bool istrivial = TRUE;
1113
1114 /* if handletrivial is enabled, then only require that rootnlexpr itself has required curvature (so has children; see below) and
1115 * that we are not a trivial sum (because the previous implementation of this nlhdlr didn't allow this, either)
1116 */
1117 if( !nlhdlrdata->handletrivial || SCIPisExprSum(scip, *rootnlexpr) )
1118 {
1119 /* if all children do not have children, i.e., are variables, or will be replaced by auxvars, then free
1120 * also if rootnlexpr has no children, then free
1121 */
1122 int i;
1123 for( i = 0; i < SCIPexprGetNChildren(*rootnlexpr); ++i )
1124 {
1125 if( SCIPexprGetNChildren(SCIPexprGetChildren(*rootnlexpr)[i]) > 0 )
1126 {
1127 istrivial = FALSE;
1128 break;
1129 }
1130 }
1131 }
1132 else if( SCIPexprGetNChildren(*rootnlexpr) > 0 ) /* if handletrivial, then just require children */
1133 istrivial = FALSE;
1134
1135 if( istrivial )
1136 {
1137 SCIP_CALL( SCIPreleaseExpr(scip, rootnlexpr) );
1138 }
1139 }
1140
1141 return SCIP_OKAY;
1142}
1143
1144/** collects (non-value) leaf expressions and ensure that they correspond to a variable (original or auxiliary)
1145 *
1146 * For children where we could not achieve the desired curvature, get the auxvar and replace the child by a
1147 * var-expression that points to this auxvar.
1148 * Collect all leaf expressions (if not a value-expression) and index them.
1149 */
1150static
1152 SCIP* scip, /**< SCIP data structure */
1153 SCIP_NLHDLREXPRDATA* nlhdlrexprdata /**< nlhdlr expression data */
1154 )
1155{
1156 SCIP_EXPRITER* it;
1157 SCIP_EXPR* nlexpr;
1158 SCIP_HASHMAP* leaf2index;
1159 int i;
1160
1161 assert(nlhdlrexprdata != NULL);
1162 assert(nlhdlrexprdata->nlexpr != NULL);
1163 assert(nlhdlrexprdata->nlexpr2origexpr != NULL);
1164 /* nleafs should be the upper bound on the number of variables given by constructExpr
1165 * leafexprs should be NULL, as this is what we want to setup here
1166 */
1167 assert(nlhdlrexprdata->nleafs > 0);
1168 assert(nlhdlrexprdata->leafexprs == NULL);
1169
1170 /* collect all auxvars and collect all variables */
1171 SCIP_CALL( SCIPhashmapCreate(&leaf2index, SCIPblkmem(scip), nlhdlrexprdata->nleafs) );
1172 nlhdlrexprdata->nleafs = 0; /* we start a new count, this time skipping value-expressions */
1173
1175 SCIP_CALL( SCIPexpriterInit(it, nlhdlrexprdata->nlexpr, SCIP_EXPRITER_DFS, FALSE) );
1177
1178 for( nlexpr = SCIPexpriterGetCurrent(it); !SCIPexpriterIsEnd(it); nlexpr = SCIPexpriterGetNext(it) )
1179 {
1180 SCIP_EXPR* child;
1181 SCIP_EXPR* origexpr;
1182
1183 assert(nlexpr != NULL);
1184
1185 child = SCIPexpriterGetChildExprDFS(it);
1186
1187 /* if the to-be-visited child has children, then it doesn't need to be replaced by a new expression (representing the auxvar) */
1188 if( SCIPexprGetNChildren(child) > 0 )
1189 continue;
1190
1191 origexpr = (SCIP_EXPR*)SCIPhashmapGetImage(nlhdlrexprdata->nlexpr2origexpr, (void*)child);
1192 assert(origexpr != NULL);
1193
1194 if( SCIPexprGetNChildren(origexpr) > 0 )
1195 {
1196 SCIP_EXPR* newchild;
1197 int childidx;
1198 SCIP_VAR* var;
1199
1200 /* having a child that had children in original but not in copy means that we could not achieve the desired curvature
1201 * thus, replace by a new child that points to the auxvar of the original expression
1202 * we registered in createNlhdlrExprData that we need an auxvar, so it should exist now
1203 */
1204 var = SCIPgetExprAuxVarNonlinear(origexpr);
1205 assert(var != NULL);
1206
1207 SCIP_CALL( SCIPcreateExprVar(scip, &newchild, var, NULL, NULL) ); /* this captures newchild once */
1208
1209 childidx = SCIPexpriterGetChildIdxDFS(it);
1210 SCIP_CALL( SCIPreplaceExprChild(scip, nlexpr, childidx, newchild) ); /* this captures newchild again */
1211
1212 /* do not remove child->origexpr from hashmap, as child may appear again due to common subexprs
1213 * (created by curvCheckProductComposite, for example)
1214 * if it doesn't reappear, though, but the memory address is reused, we need to make sure it
1215 * points to the right origexpr
1216 */
1217 /* SCIP_CALL( SCIPhashmapRemove(nlexpr2origexpr, (void*)child) ); */
1218 SCIP_CALL( SCIPhashmapSetImage(nlhdlrexprdata->nlexpr2origexpr, (void*)newchild, (void*)origexpr) );
1219
1220 if( !SCIPhashmapExists(leaf2index, (void*)newchild) )
1221 {
1222 /* new leaf -> new index and remember in hashmap */
1223 SCIP_CALL( SCIPhashmapInsertInt(leaf2index, (void*)newchild, nlhdlrexprdata->nleafs++) );
1224 }
1225
1226 child = newchild;
1227 SCIP_CALL( SCIPreleaseExpr(scip, &newchild) ); /* because it was captured by both create and replace */
1228 }
1229 else if( SCIPisExprVar(scip, child) )
1230 {
1231 /* if variable, then add to hashmap, if not already there */
1232 if( !SCIPhashmapExists(leaf2index, (void*)child) )
1233 {
1234 SCIP_CALL( SCIPhashmapInsertInt(leaf2index, (void*)child, nlhdlrexprdata->nleafs++) );
1235 }
1236 }
1237 /* else: it's probably a value-expression, nothing to do */
1238
1239 /* update integrality flag for future leaf expressions: convex nlhdlr may use this information */
1241 }
1242 assert(nlhdlrexprdata->nleafs > 0);
1243
1244 SCIPfreeExpriter(&it);
1245
1246 /* assemble auxvars array */
1247 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(nlhdlrexprdata->leafexprs), nlhdlrexprdata->nleafs) );
1248 for( i = 0; i < SCIPhashmapGetNEntries(leaf2index); ++i )
1249 {
1250 SCIP_HASHMAPENTRY* entry;
1251 SCIP_EXPR* leaf;
1252 int idx;
1253
1254 entry = SCIPhashmapGetEntry(leaf2index, i);
1255 if( entry == NULL )
1256 continue;
1257
1258 leaf = (SCIP_EXPR*) SCIPhashmapEntryGetOrigin(entry);
1259 assert(leaf != NULL);
1260 assert(SCIPisExprVar(scip, leaf));
1261
1262 idx = SCIPhashmapEntryGetImageInt(entry);
1263 assert(idx >= 0);
1264 assert(idx < nlhdlrexprdata->nleafs);
1265
1266 nlhdlrexprdata->leafexprs[idx] = leaf;
1267
1268 SCIPdebugMsg(scip, "leaf %d: <%s>\n", idx, SCIPvarGetName(SCIPgetVarExprVar(leaf)));
1269 }
1270
1271 SCIPhashmapFree(&leaf2index);
1272
1273 return SCIP_OKAY;
1274}
1275
1276/** creates nonlinear handler expression data structure and registers expr usage */
1277static
1279 SCIP* scip, /**< SCIP data structure */
1280 SCIP_NLHDLRDATA* nlhdlrdata, /**< nlhdlr data */
1281 SCIP_NLHDLREXPRDATA** nlhdlrexprdata, /**< pointer to store nlhdlr expression data */
1282 SCIP_EXPR* expr, /**< original expression */
1283 SCIP_EXPR* nlexpr, /**< our copy of expression */
1284 SCIP_HASHMAP* nlexpr2origexpr, /**< mapping of expression copy to original */
1285 int nleafs, /**< number of leafs as counted by constructExpr */
1286 SCIP_NLHDLR_METHOD participating /**< the enfo methods in which we plan to participate */
1287 )
1288{
1289 SCIP_EXPRITER* it;
1290 SCIP_Bool usingaux;
1291
1292 assert(scip != NULL);
1293 assert(expr != NULL);
1294 assert(nlhdlrexprdata != NULL);
1295 assert(*nlhdlrexprdata == NULL);
1296 assert(nlexpr != NULL);
1297 assert(nlexpr2origexpr != NULL);
1298
1299 assert(SCIPexprGetNChildren(nlexpr) > 0);
1300 assert(SCIPexprGetChildren(nlexpr) != NULL);
1301
1302 SCIP_CALL( SCIPallocClearBlockMemory(scip, nlhdlrexprdata) );
1303 (*nlhdlrexprdata)->nlexpr = nlexpr;
1304 (*nlhdlrexprdata)->nlexpr2origexpr = nlexpr2origexpr;
1305 (*nlhdlrexprdata)->nleafs = nleafs;
1306
1307 usingaux = FALSE;
1308
1312
1313 for( ; !SCIPexpriterIsEnd(it); (void) SCIPexpriterGetNext(it) )
1314 {
1315 SCIP_EXPR* child;
1316 SCIP_EXPR* origexpr;
1317
1318 /* check whether to-be-visited child needs to be replaced by a new expression (representing the auxvar)
1319 * if child has children, then that is not the case
1320 * if child has no children, but also corresponding origexpr has no chilren, then this is also not the case
1321 */
1322 child = SCIPexpriterGetChildExprDFS(it);
1323 if( SCIPexprGetNChildren(child) > 0 )
1324 continue;
1325
1326 origexpr = (SCIP_EXPR*)SCIPhashmapGetImage(nlexpr2origexpr, (void*)child);
1327 assert(origexpr != NULL);
1328
1329 /* if child had children in original but not in copy means that we could not achieve the desired curvature
1330 * thus, we will later replace by a new child that points to the auxvar of the original expression
1331 * as we do not have the auxvar now, we will only register that we will need the auxvar later (if origexpr isn't a variable or constant)
1332 * if we are working for the concave nlhdlr, then we also indicate interest on the exprs activity for estimate (distinguish below or above)
1333 */
1335 SCIPexprGetNChildren(origexpr) > 0, FALSE,
1336 !nlhdlrdata->isnlhdlrconvex && (participating & SCIP_NLHDLR_METHOD_SEPABELOW),
1337 !nlhdlrdata->isnlhdlrconvex && (participating & SCIP_NLHDLR_METHOD_SEPAABOVE)) );
1338
1339 /* remember that we use an auxvar */
1340 if( SCIPexprGetNChildren(origexpr) > 0 )
1341 usingaux = TRUE;
1342 }
1343
1344 SCIPfreeExpriter(&it);
1345
1346#ifdef SCIP_DEBUG
1347 SCIPprintExpr(scip, nlexpr, NULL);
1348 SCIPinfoMessage(scip, NULL, " (%p) is handled as %s\n", SCIPhashmapGetImage(nlexpr2origexpr, (void*)nlexpr),
1350#endif
1351
1352 /* If we don't work on the extended formulation, then set curvature also in original expression
1353 * (in case someone wants to pick this up; this might be removed again).
1354 * This doesn't ensure that every convex or concave original expression is actually marked here.
1355 * Not only because our tests are incomprehensive, but also because we may not detect on sums,
1356 * prefer extended formulations (in nlhdlr_convex), or introduce auxvars for linear subexpressions
1357 * on purpose (in nlhdlr_concave).
1358 */
1359 if( !usingaux )
1361
1362 return SCIP_OKAY;
1363}
1364
1365/** adds an estimator for a vertex-polyhedral (e.g., concave) function to a given rowprep
1366 *
1367 * Calls \ref SCIPcomputeFacetVertexPolyhedralNonlinear() for given function and
1368 * box set to local bounds of auxiliary variables.
1369 */
1370static
1372 SCIP* scip, /**< SCIP data structure */
1373 SCIP_CONSHDLR* conshdlr, /**< nonlinear constraint handler */
1374 SCIP_NLHDLR* nlhdlr, /**< nonlinear handler */
1375 SCIP_NLHDLREXPRDATA* nlhdlrexprdata, /**< nonlinear handler expression data */
1376 SCIP_SOL* sol, /**< solution to use, unless usemidpoint is TRUE */
1377 SCIP_Bool usemidpoint, /**< whether to use the midpoint of the domain instead of sol */
1378 SCIP_Bool overestimate, /**< whether over- or underestimating */
1379 SCIP_Real targetvalue, /**< a target value to achieve; if not reachable, then can give up early */
1380 SCIP_ROWPREP* rowprep, /**< rowprep where to store estimator */
1381 SCIP_Bool* success /**< buffer to store whether successful */
1382 )
1383{
1384 SCIP_NLHDLRDATA* nlhdlrdata;
1385 VERTEXPOLYFUN_EVALDATA evaldata;
1386 SCIP_Real* xstar;
1387 SCIP_Real* box;
1388 SCIP_Real facetconstant;
1389 SCIP_VAR* var;
1390 int i;
1391 SCIP_Bool allfixed;
1392
1393 assert(scip != NULL);
1394 assert(nlhdlr != NULL);
1395 assert(nlhdlrexprdata != NULL);
1396 assert(rowprep != NULL);
1397 assert(success != NULL);
1398
1399 *success = FALSE;
1400
1401 /* caller is responsible to have checked whether we can estimate, i.e., expression curvature and overestimate flag match */
1402 assert( overestimate || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONCAVE); /* if underestimate, then must be concave */
1403 assert(!overestimate || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONVEX); /* if overestimate, then must be convex */
1404
1405#ifdef SCIP_DEBUG
1406 SCIPinfoMessage(scip, NULL, "%sestimate expression ", overestimate ? "over" : "under");
1407 SCIPprintExpr(scip, nlhdlrexprdata->nlexpr, NULL);
1408 SCIPinfoMessage(scip, NULL, " at point\n");
1409 for( i = 0; i < nlhdlrexprdata->nleafs; ++i )
1410 {
1411 var = SCIPgetVarExprVar(nlhdlrexprdata->leafexprs[i]);
1412 assert(var != NULL);
1413
1414 SCIPinfoMessage(scip, NULL, " <%s> = %g [%g,%g]\n", SCIPvarGetName(var),
1415 usemidpoint ? 0.5 * (SCIPvarGetLbLocal(var) + SCIPvarGetUbLocal(var)) : SCIPgetSolVal(scip, sol, var),
1417 }
1418#endif
1419
1420 nlhdlrdata = SCIPnlhdlrGetData(nlhdlr);
1421 assert(nlhdlrdata != NULL);
1422
1423 if( nlhdlrdata->evalsol == NULL )
1424 {
1425 SCIP_CALL( SCIPcreateSol(scip, &nlhdlrdata->evalsol, NULL) );
1426 }
1427
1428 evaldata.nlhdlrexprdata = nlhdlrexprdata;
1429 evaldata.evalsol = nlhdlrdata->evalsol;
1430 evaldata.scip = scip;
1431
1432 SCIP_CALL( SCIPallocBufferArray(scip, &xstar, nlhdlrexprdata->nleafs) );
1433 SCIP_CALL( SCIPallocBufferArray(scip, &box, 2*nlhdlrexprdata->nleafs) );
1434
1435 allfixed = TRUE;
1436 for( i = 0; i < nlhdlrexprdata->nleafs; ++i )
1437 {
1438 var = SCIPgetVarExprVar(nlhdlrexprdata->leafexprs[i]);
1439 assert(var != NULL);
1440
1441 box[2*i] = SCIPvarGetLbLocal(var);
1442 if( SCIPisInfinity(scip, -box[2*i]) )
1443 {
1444 SCIPdebugMsg(scip, "lower bound at -infinity, no estimate possible\n");
1445 goto TERMINATE;
1446 }
1447
1448 box[2*i+1] = SCIPvarGetUbLocal(var);
1449 if( SCIPisInfinity(scip, box[2*i+1]) )
1450 {
1451 SCIPdebugMsg(scip, "upper bound at +infinity, no estimate possible\n");
1452 goto TERMINATE;
1453 }
1454
1455 if( !SCIPisRelEQ(scip, box[2*i], box[2*i+1]) )
1456 allfixed = FALSE;
1457
1458 if( usemidpoint )
1459 xstar[i] = 0.5 * (box[2*i] + box[2*i+1]);
1460 else
1461 xstar[i] = SCIPgetSolVal(scip, sol, var);
1462 assert(xstar[i] != SCIP_INVALID);
1463 }
1464
1465 if( allfixed )
1466 {
1467 /* SCIPcomputeFacetVertexPolyhedralNonlinear prints a warning and does not succeed if all is fixed */
1468 SCIPdebugMsg(scip, "all variables fixed, skip estimate\n");
1469 goto TERMINATE;
1470 }
1471
1472 SCIP_CALL( SCIPensureRowprepSize(scip, rowprep, nlhdlrexprdata->nleafs + 1) );
1473
1474 SCIP_CALL( SCIPcomputeFacetVertexPolyhedralNonlinear(scip, conshdlr, overestimate, nlhdlrExprEvalConcave, (void*)&evaldata,
1475 xstar, box, nlhdlrexprdata->nleafs, targetvalue, success, SCIProwprepGetCoefs(rowprep), &facetconstant) );
1476
1477 if( !*success )
1478 {
1479 SCIPdebugMsg(scip, "failed to compute facet of convex hull\n");
1480 goto TERMINATE;
1481 }
1482
1483 SCIProwprepSetLocal(rowprep, TRUE);
1484 SCIProwprepAddConstant(rowprep, facetconstant);
1485 for( i = 0; i < nlhdlrexprdata->nleafs; ++i )
1486 {
1487 SCIP_CALL( SCIPaddRowprepTerm(scip, rowprep, SCIPgetVarExprVar(nlhdlrexprdata->leafexprs[i]), SCIProwprepGetCoefs(rowprep)[i]) );
1488 }
1489
1490#ifdef SCIP_DEBUG
1491 SCIPinfoMessage(scip, NULL, "computed estimator: ");
1492 SCIPprintRowprep(scip, rowprep, NULL);
1493#endif
1494
1495 TERMINATE:
1497 SCIPfreeBufferArray(scip, &xstar);
1498
1499 return SCIP_OKAY;
1500}
1501
1502/** adds an estimator computed via a gradient to a given rowprep */
1503static
1505 SCIP* scip, /**< SCIP data structure */
1506 SCIP_NLHDLREXPRDATA* nlhdlrexprdata, /**< nonlinear handler expression data */
1507 SCIP_SOL* sol, /**< solution to use */
1508 SCIP_ROWPREP* rowprep, /**< rowprep where to store estimator */
1509 SCIP_Bool* success /**< buffer to store whether successful */
1510 )
1511{
1512 SCIP_EXPR* nlexpr;
1513 SCIP_Real QUAD(constant);
1514 int i;
1515
1516 assert(scip != NULL);
1517 assert(nlhdlrexprdata != NULL);
1518 assert(rowprep != NULL);
1519 assert(success != NULL);
1520
1521 nlexpr = nlhdlrexprdata->nlexpr;
1522 assert(nlexpr != NULL);
1523
1524 /* compute gradient (TODO: this also re-evaluates (soltag=0), which shouldn't be necessary unless we tried ConvexSecant before or are called from Sollinearize callback) */
1525 SCIP_CALL( SCIPevalExprGradient(scip, nlexpr, sol, 0L) );
1526
1527 /* if gradient evaluation error, then return */
1528 if( SCIPexprGetDerivative(nlexpr) == SCIP_INVALID )
1529 {
1530 SCIPdebugMsg(scip, "gradient evaluation error for %p\n", (void*)nlexpr);
1531 return SCIP_OKAY;
1532 }
1533
1534 /* add gradient underestimator to rowprep: f(sol) + (x - sol) \nabla f(sol)
1535 * constant will store f(sol) - sol * \nabla f(sol)
1536 * to avoid some cancellation errors when linear variables take huge values (like 1e20),
1537 * we use double-double arithmetic here
1538 */
1539 QUAD_ASSIGN(constant, SCIPexprGetEvalValue(nlexpr)); /* f(sol) */
1540 for( i = 0; i < nlhdlrexprdata->nleafs; ++i )
1541 {
1542 SCIP_VAR* var;
1543 SCIP_Real deriv;
1544 SCIP_Real varval;
1545
1546 assert(SCIPexprGetDiffTag(nlhdlrexprdata->leafexprs[i]) == SCIPexprGetDiffTag(nlexpr));
1547 deriv = SCIPexprGetDerivative(nlhdlrexprdata->leafexprs[i]);
1548 if( deriv == SCIP_INVALID )
1549 {
1550 SCIPdebugMsg(scip, "gradient evaluation error for component %d of %p\n", i, (void*)nlexpr);
1551 return SCIP_OKAY;
1552 }
1553
1554 var = SCIPgetVarExprVar(nlhdlrexprdata->leafexprs[i]);
1555 assert(var != NULL);
1556
1557 varval = SCIPgetSolVal(scip, sol, var);
1558
1559 SCIPdebugMsg(scip, "add %g * (<%s> - %g) to rowprep\n", deriv, SCIPvarGetName(var), varval);
1560
1561 /* add deriv * var to rowprep and deriv * (-varval) to constant */
1562 SCIP_CALL( SCIPaddRowprepTerm(scip, rowprep, var, deriv) );
1563 SCIPquadprecSumQD(constant, constant, -deriv * varval);
1564 }
1565
1566 SCIProwprepAddConstant(rowprep, QUAD_TO_DBL(constant));
1567 SCIProwprepSetLocal(rowprep, FALSE);
1568
1569 *success = TRUE;
1570
1571 return SCIP_OKAY;
1572}
1573
1574/** adds an estimator computed via a gradient to a given rowprep, possibly perturbing solution */
1575static
1577 SCIP* scip, /**< SCIP data structure */
1578 SCIP_NLHDLR* nlhdlr, /**< nonlinear handler */
1579 SCIP_NLHDLREXPRDATA* nlhdlrexprdata, /**< nonlinear handler expression data */
1580 SCIP_SOL* sol, /**< solution to use */
1581 SCIP_ROWPREP* rowprep, /**< rowprep where to store estimator */
1582 SCIP_Bool* success /**< buffer to store whether successful */
1583 )
1584{
1585 SCIP_NLHDLRDATA* nlhdlrdata;
1586 int i;
1587
1588 assert(nlhdlrexprdata != NULL);
1589 assert(rowprep != NULL);
1590 assert(success != NULL);
1591
1592#ifdef SCIP_DEBUG
1593 SCIPinfoMessage(scip, NULL, "estimate expression ");
1594 SCIPprintExpr(scip, nlhdlrexprdata->nlexpr, NULL);
1595 SCIPinfoMessage(scip, NULL, " by gradient\n");
1596#endif
1597
1598 *success = FALSE;
1599
1600 SCIP_CALL( estimateGradientInner(scip, nlhdlrexprdata, sol, rowprep, success) );
1601
1602 /* if succeeded, then there was no gradient evaluation error, so we are done */
1603 if( *success )
1604 return SCIP_OKAY;
1605
1606 nlhdlrdata = SCIPnlhdlrGetData(nlhdlr);
1607 assert(nlhdlrdata != NULL);
1608
1609 /* we take maxperturb == 0 as signal to not try perturbation */
1610 if( nlhdlrdata->maxperturb == 0.0 )
1611 {
1612 SCIPdebugMsg(scip, "gradient evaluation error, perturbation disabled\n");
1613 return SCIP_OKAY;
1614 }
1615
1616 SCIPdebugMsg(scip, "gradient evaluation error, try perturbed point\n");
1617
1618 if( nlhdlrdata->evalsol == NULL )
1619 {
1620 SCIP_CALL( SCIPcreateSol(scip, &nlhdlrdata->evalsol, NULL) );
1621 }
1622
1623 if( nlhdlrdata->randnumgen == NULL )
1624 {
1625 SCIP_CALL( SCIPcreateRandom(scip, &nlhdlrdata->randnumgen, RANDNUMINITSEED, TRUE) );
1626 }
1627
1628 for( i = 0; i < nlhdlrexprdata->nleafs; ++i )
1629 {
1630 SCIP_VAR* var;
1631 SCIP_Real lb;
1632 SCIP_Real ub;
1633 SCIP_Real val;
1634 SCIP_Real p;
1635
1636 var = SCIPgetVarExprVar(nlhdlrexprdata->leafexprs[i]);
1637 assert(var != NULL);
1638
1639 lb = SCIPvarGetLbGlobal(var);
1640 ub = SCIPvarGetUbGlobal(var);
1641 val = SCIPgetSolVal(scip, sol, var);
1642 val = MIN(ub, MAX(lb, val));
1643
1644 p = SCIPrandomGetReal(nlhdlrdata->randnumgen, -nlhdlrdata->maxperturb, nlhdlrdata->maxperturb);
1645 if( !SCIPisZero(scip, val) )
1646 p *= REALABS(val);
1647
1648 /* if perturbation to left underruns lower bound, then try perturb to right
1649 * if perturbation to right exceeds lower bound, then try perturb to left
1650 */
1651 if( val + p <= lb )
1652 val -= p;
1653 else if( val + p >= ub )
1654 val -= p;
1655 else
1656 val += p;
1657
1658 /* if still exceeding bound, then |ub-lb| < 2*maxperturb and we pick a random value between bounds
1659 * (if ub-lb < 2eps, then SCIPrandomGetReal() still gives a reasonable number in [lb,ub])
1660 */
1661 if( val <= lb || val >= ub )
1662 val = SCIPrandomGetReal(nlhdlrdata->randnumgen, lb + SCIPepsilon(scip), ub - SCIPepsilon(scip));
1663
1664 SCIP_CALL( SCIPsetSolVal(scip, nlhdlrdata->evalsol, var, val) );
1665 }
1666
1667 /* try again with perturbed point */
1668 SCIP_CALL( estimateGradientInner(scip, nlhdlrexprdata, nlhdlrdata->evalsol, rowprep, success) );
1669
1670 return SCIP_OKAY;
1671}
1672
1673/** adds an estimator generated by putting a secant through the coordinates given by the two closest integer points */
1674static
1676 SCIP* scip, /**< SCIP data structure */
1677 SCIP_NLHDLR* nlhdlr, /**< nonlinear handler */
1678 SCIP_NLHDLREXPRDATA* nlhdlrexprdata, /**< nonlinear handler expression data */
1679 SCIP_SOL* sol, /**< solution to use, unless usemidpoint is TRUE */
1680 SCIP_ROWPREP* rowprep, /**< rowprep where to store estimator */
1681 SCIP_Bool* success /**< buffer to store whether successful */
1682 )
1683{
1684 SCIP_NLHDLRDATA* nlhdlrdata;
1685 SCIP_EXPR* nlexpr;
1686 SCIP_VAR* var;
1687 SCIP_Real x;
1688 SCIP_Real left, right;
1689 SCIP_Real fleft, fright;
1690
1691 assert(nlhdlrexprdata != NULL);
1692 assert(nlhdlrexprdata->nleafs == 1);
1693 assert(rowprep != NULL);
1694 assert(success != NULL);
1695
1696 nlexpr = nlhdlrexprdata->nlexpr;
1697 assert(nlexpr != NULL);
1698
1699 *success = FALSE;
1700
1701 nlhdlrdata = SCIPnlhdlrGetData(nlhdlr);
1702 assert(nlhdlrdata != NULL);
1703
1704 var = SCIPgetVarExprVar(nlhdlrexprdata->leafexprs[0]);
1705 assert(var != NULL);
1706
1707 x = SCIPgetSolVal(scip, sol, var);
1708
1709#ifdef SCIP_DEBUG
1710 SCIPinfoMessage(scip, NULL, "estimate expression ");
1711 SCIPprintExpr(scip, nlexpr, NULL);
1712 SCIPinfoMessage(scip, NULL, " by secant\n");
1713 SCIPinfoMessage(scip, NULL, "integral variable <%s> = %g [%g,%g]\n", SCIPvarGetName(var),
1715#endif
1716
1717 /* find out coordinates of var left and right to sol */
1718 if( SCIPisIntegral(scip, x) )
1719 {
1720 x = SCIPround(scip, x);
1721 if( SCIPisEQ(scip, x, SCIPvarGetLbGlobal(var)) )
1722 {
1723 left = x;
1724 right = left + 1.0;
1725 }
1726 else
1727 {
1728 right = x;
1729 left = right - 1.0;
1730 }
1731 }
1732 else
1733 {
1734 left = SCIPfloor(scip, x);
1735 right = SCIPceil(scip, x);
1736 }
1737 assert(left != right);
1738
1739 /* now evaluate at left and right */
1740 if( nlhdlrdata->evalsol == NULL )
1741 {
1742 SCIP_CALL( SCIPcreateSol(scip, &nlhdlrdata->evalsol, NULL) );
1743 }
1744
1745 SCIP_CALL( SCIPsetSolVal(scip, nlhdlrdata->evalsol, var, left) );
1746 SCIP_CALL( SCIPevalExpr(scip, nlexpr, nlhdlrdata->evalsol, 0L) );
1747
1748 /* evaluation error or a too large constant -> skip */
1749 fleft = SCIPexprGetEvalValue(nlexpr);
1750 if( SCIPisInfinity(scip, REALABS(fleft)) )
1751 {
1752 SCIPdebugMsg(scip, "evaluation error / too large value (%g) for %p\n", SCIPexprGetEvalValue(nlexpr), (void*)nlexpr);
1753 return SCIP_OKAY;
1754 }
1755
1756 SCIP_CALL( SCIPsetSolVal(scip, nlhdlrdata->evalsol, var, right) );
1757 SCIP_CALL( SCIPevalExpr(scip, nlexpr, nlhdlrdata->evalsol, 0L) );
1758
1759 /* evaluation error or a too large constant -> skip */
1760 fright = SCIPexprGetEvalValue(nlexpr);
1761 if( SCIPisInfinity(scip, REALABS(fright)) )
1762 {
1763 SCIPdebugMsg(scip, "evaluation error / too large value (%g) for %p\n", SCIPexprGetEvalValue(nlexpr), (void*)nlexpr);
1764 return SCIP_OKAY;
1765 }
1766
1767 SCIPdebugMsg(scip, "f(%g)=%g, f(%g)=%g\n", left, fleft, right, fright);
1768
1769 /* skip if too steep
1770 * for clay0204h, this resulted in a wrong cut from f(0)=1e12 f(1)=0.99998,
1771 * since due to limited precision, this was handled as if f(1)=1
1772 */
1773 if( (!SCIPisZero(scip, fleft) && REALABS(fright/fleft)*SCIPepsilon(scip) > 1.0) ||
1774 (!SCIPisZero(scip, fright) && REALABS(fleft/fright)*SCIPepsilon(scip) > 1.0) )
1775 {
1776 SCIPdebugMsg(scip, "function is too steep, abandoning\n");
1777 return SCIP_OKAY;
1778 }
1779
1780 /* now add f(left) + (f(right) - f(left)) * (x - left) as estimator to rowprep */
1781 SCIP_CALL( SCIPaddRowprepTerm(scip, rowprep, var, fright - fleft) );
1782 SCIProwprepAddConstant(rowprep, fleft - (fright - fleft) * left);
1783 SCIProwprepSetLocal(rowprep, FALSE);
1784
1785 *success = TRUE;
1786
1787 return SCIP_OKAY;
1788}
1789
1790/*
1791 * Callback methods of convex nonlinear handler
1792 */
1793
1794/** free handler data of convex or concave nlhdlr */
1795static
1796SCIP_DECL_NLHDLRFREEHDLRDATA(nlhdlrfreeHdlrDataConvexConcave)
1797{ /*lint --e{715}*/
1798 assert(scip != NULL);
1799 assert(nlhdlrdata != NULL);
1800 assert(*nlhdlrdata != NULL);
1801 assert((*nlhdlrdata)->evalsol == NULL);
1802 assert((*nlhdlrdata)->randnumgen == NULL);
1803
1804 SCIPfreeBlockMemory(scip, nlhdlrdata);
1805
1806 return SCIP_OKAY;
1807}
1808
1809/** callback to free expression specific data */
1810static
1811SCIP_DECL_NLHDLRFREEEXPRDATA(nlhdlrfreeExprDataConvexConcave)
1812{ /*lint --e{715}*/
1813 assert(scip != NULL);
1814 assert(nlhdlrexprdata != NULL);
1815 assert(*nlhdlrexprdata != NULL);
1816
1817 SCIPfreeBlockMemoryArrayNull(scip, &(*nlhdlrexprdata)->leafexprs, (*nlhdlrexprdata)->nleafs);
1818 SCIP_CALL( SCIPreleaseExpr(scip, &(*nlhdlrexprdata)->nlexpr) );
1819 SCIPhashmapFree(&(*nlhdlrexprdata)->nlexpr2origexpr);
1820
1821 SCIPfreeBlockMemory(scip, nlhdlrexprdata);
1822
1823 return SCIP_OKAY;
1824}
1825
1826/** deinitialization of problem-specific data */
1827static
1828SCIP_DECL_NLHDLREXIT(nlhdlrExitConvex)
1829{
1830 SCIP_NLHDLRDATA* nlhdlrdata;
1831
1832 nlhdlrdata = SCIPnlhdlrGetData(nlhdlr);
1833 assert(nlhdlrdata != NULL);
1834
1835 if( nlhdlrdata->evalsol != NULL )
1836 {
1837 SCIP_CALL( SCIPfreeSol(scip, &nlhdlrdata->evalsol) );
1838 }
1839
1840 if( nlhdlrdata->randnumgen != NULL )
1841 SCIPfreeRandom(scip, &nlhdlrdata->randnumgen);
1842
1843 return SCIP_OKAY;
1844}
1845
1846/** checks whether expression (or -expression) is convex, possibly after introducing auxiliary variables */
1847static
1848SCIP_DECL_NLHDLRDETECT(nlhdlrDetectConvex)
1849{ /*lint --e{715}*/
1850 SCIP_NLHDLRDATA* nlhdlrdata;
1851 SCIP_EXPR* nlexpr = NULL;
1852 SCIP_HASHMAP* nlexpr2origexpr;
1853 int nleafs = 0;
1854
1855 assert(scip != NULL);
1856 assert(nlhdlr != NULL);
1857 assert(expr != NULL);
1858 assert(enforcing != NULL);
1859 assert(participating != NULL);
1860 assert(nlhdlrexprdata != NULL);
1861
1862 /* we currently do not participate if only activity computation is required */
1864 return SCIP_OKAY;
1865
1866 /* ignore pure constants and variables */
1867 if( SCIPexprGetNChildren(expr) == 0 )
1868 return SCIP_OKAY;
1869
1870 nlhdlrdata = SCIPnlhdlrGetData(nlhdlr);
1871 assert(nlhdlrdata != NULL);
1872 assert(nlhdlrdata->isnlhdlrconvex);
1873
1874 SCIPdebugMsg(scip, "nlhdlr_convex detect for expr %p\n", (void*)expr);
1875
1876 /* initialize mapping from copied expression to original one
1877 * 20 is not a bad estimate for the size of convex subexpressions that we can usually discover
1878 * when expressions will be allowed to store "user"data, we could get rid of this hashmap (TODO)
1879 */
1880 SCIP_CALL( SCIPhashmapCreate(&nlexpr2origexpr, SCIPblkmem(scip), 20) );
1881
1882 if( (*enforcing & SCIP_NLHDLR_METHOD_SEPABELOW) == 0 ) /* if no separation below yet */
1883 {
1884 SCIP_CALL( constructExpr(scip, nlhdlrdata, &nlexpr, nlexpr2origexpr, &nleafs, expr,
1886 if( nlexpr != NULL )
1887 {
1888 assert(SCIPexprGetNChildren(nlexpr) > 0); /* should not be trivial */
1889
1890 *participating |= SCIP_NLHDLR_METHOD_SEPABELOW;
1891
1892 SCIPdebugMsg(scip, "detected expr %p to be convex -> can enforce expr <= auxvar\n", (void*)expr);
1893 }
1894 else
1895 {
1896 SCIP_CALL( SCIPhashmapRemoveAll(nlexpr2origexpr) );
1897 }
1898 }
1899
1900 if( (*enforcing & SCIP_NLHDLR_METHOD_SEPAABOVE) == 0 && nlexpr == NULL ) /* if no separation above and not convex */
1901 {
1902 SCIP_CALL( constructExpr(scip, nlhdlrdata, &nlexpr, nlexpr2origexpr, &nleafs, expr,
1904 if( nlexpr != NULL )
1905 {
1906 assert(SCIPexprGetNChildren(nlexpr) > 0); /* should not be trivial */
1907
1908 *participating |= SCIP_NLHDLR_METHOD_SEPAABOVE;
1909
1910 SCIPdebugMsg(scip, "detected expr %p to be concave -> can enforce expr >= auxvar\n", (void*)expr);
1911 }
1912 }
1913
1914 /* everything we participate in we also enforce */
1915 *enforcing |= *participating;
1916
1917 assert(*participating || nlexpr == NULL);
1918 if( !*participating )
1919 {
1920 SCIPhashmapFree(&nlexpr2origexpr);
1921 return SCIP_OKAY;
1922 }
1923
1924 /* create the expression data of the nonlinear handler
1925 * notify conshdlr about expr for which we will require auxiliary variables
1926 */
1927 SCIP_CALL( createNlhdlrExprData(scip, nlhdlrdata, nlhdlrexprdata, expr, nlexpr, nlexpr2origexpr, nleafs, *participating) );
1928
1929 return SCIP_OKAY;
1930}
1931
1932/** auxiliary evaluation callback */
1933static
1934SCIP_DECL_NLHDLREVALAUX(nlhdlrEvalAuxConvexConcave)
1935{ /*lint --e{715}*/
1936 assert(nlhdlrexprdata != NULL);
1937 assert(nlhdlrexprdata->nlexpr != NULL);
1938 assert(auxvalue != NULL);
1939
1940 SCIP_CALL( SCIPevalExpr(scip, nlhdlrexprdata->nlexpr, sol, 0L) );
1941 *auxvalue = SCIPexprGetEvalValue(nlhdlrexprdata->nlexpr);
1942
1943 return SCIP_OKAY;
1944}
1945
1946/** init sepa callback that initializes LP */
1947static
1948SCIP_DECL_NLHDLRINITSEPA(nlhdlrInitSepaConvex)
1949{ /*lint --e{715}*/
1950 SCIP_EXPR* nlexpr;
1951 SCIP_EXPRCURV curvature;
1952 SCIP_Bool success;
1953 SCIP_ROWPREP* rowprep = NULL;
1954 SCIP_ROW* row;
1955 SCIP_Real lb;
1956 SCIP_Real ub;
1957 SCIP_Real lambda;
1958 SCIP_SOL* sol;
1959 int k;
1960
1961 assert(scip != NULL);
1962 assert(expr != NULL);
1963 assert(nlhdlrexprdata != NULL);
1964
1965 /* setup nlhdlrexprdata->leafexprs */
1966 SCIP_CALL( collectLeafs(scip, nlhdlrexprdata) );
1967
1968 nlexpr = nlhdlrexprdata->nlexpr;
1969 assert(nlexpr != NULL);
1970 assert(SCIPhashmapGetImage(nlhdlrexprdata->nlexpr2origexpr, (void*)nlexpr) == expr);
1971
1972 curvature = SCIPexprGetCurvature(nlexpr);
1973 assert(curvature == SCIP_EXPRCURV_CONVEX || curvature == SCIP_EXPRCURV_CONCAVE);
1974
1975 /* we can only be estimating on the convex side */
1976 if( curvature == SCIP_EXPRCURV_CONVEX )
1977 overestimate = FALSE;
1978 else if( curvature == SCIP_EXPRCURV_CONCAVE )
1979 underestimate = FALSE;
1980 if( !overestimate && !underestimate )
1981 return SCIP_OKAY;
1982
1983 /* linearizes at 5 different points obtained as convex combination of the lower and upper bound of the variables
1984 * present in the convex expression; whether more weight is given to the lower or upper bound of a variable depends
1985 * on whether the fixing of the variable to that value is better for the objective function
1986 */
1987 SCIP_CALL( SCIPcreateSol(scip, &sol, NULL) );
1988
1989 *infeasible = FALSE;
1990
1991 for( k = 0; k < 5; ++k )
1992 {
1993 int i;
1994 lambda = 0.1 * (k+1); /* lambda = 0.1, 0.2, 0.3, 0.4, 0.5 */
1995
1996 for( i = 0; i < nlhdlrexprdata->nleafs; ++i )
1997 {
1998 SCIP_VAR* var;
1999
2000 var = SCIPgetVarExprVar(nlhdlrexprdata->leafexprs[i]);
2001
2002 lb = SCIPvarGetLbGlobal(var);
2003 ub = SCIPvarGetUbGlobal(var);
2004
2005 /* make sure the absolute values of bounds are not too large */
2006 if( ub > -INITLPMAXVARVAL )
2007 lb = MAX(lb, -INITLPMAXVARVAL);
2008 if( lb < INITLPMAXVARVAL )
2009 ub = MIN(ub, INITLPMAXVARVAL);
2010
2011 /* in the case when ub < -maxabsbnd or lb > maxabsbnd, we still want to at least make bounds finite */
2012 if( SCIPisInfinity(scip, -lb) )
2013 lb = MIN(-10.0, ub - 0.1*REALABS(ub));
2014 if( SCIPisInfinity(scip, ub) )
2015 ub = MAX( 10.0, lb + 0.1*REALABS(lb));
2016
2018 SCIP_CALL( SCIPsetSolVal(scip, sol, var, lambda * ub + (1.0 - lambda) * lb) );
2019 else
2020 SCIP_CALL( SCIPsetSolVal(scip, sol, var, lambda * lb + (1.0 - lambda) * ub) );
2021 }
2022
2024 SCIP_CALL( estimateGradient(scip, nlhdlr, nlhdlrexprdata, sol, rowprep, &success) );
2025 if( !success )
2026 {
2027 SCIPdebugMsg(scip, "failed to linearize for k = %d\n", k);
2028 SCIPfreeRowprep(scip, &rowprep);
2029 continue;
2030 }
2031
2032 /* add auxiliary variable */
2034
2035 /* straighten out numerics */
2036 SCIP_CALL( SCIPcleanupRowprep2(scip, rowprep, NULL, SCIPgetHugeValue(scip), &success) );
2037 if( !success )
2038 {
2039 SCIPdebugMsg(scip, "failed to cleanup rowprep numerics for k = %d\n", k);
2040 SCIPfreeRowprep(scip, &rowprep);
2041 continue;
2042 }
2043
2044 (void) SCIPsnprintf(SCIProwprepGetName(rowprep), SCIP_MAXSTRLEN, "%sestimate_gradient%p_initsepa_%d",
2045 overestimate ? "over" : "under", (void*)expr, k);
2046 SCIP_CALL( SCIPgetRowprepRowCons(scip, &row, rowprep, cons) );
2047 SCIPfreeRowprep(scip, &rowprep);
2048
2049#ifdef SCIP_DEBUG
2050 SCIPinfoMessage(scip, NULL, "initsepa computed row: ");
2051 SCIPprintRow(scip, row, NULL);
2052#endif
2053
2054 SCIP_CALL( SCIPaddRow(scip, row, FALSE, infeasible) );
2055 SCIP_CALL( SCIPreleaseRow(scip, &row) );
2056
2057 if( *infeasible )
2058 break;
2059 }
2060
2061 SCIP_CALL( SCIPfreeSol(scip, &sol) );
2062
2063 return SCIP_OKAY;
2064}
2065
2066/** estimator callback */
2067static
2068SCIP_DECL_NLHDLRESTIMATE(nlhdlrEstimateConvex)
2069{ /*lint --e{715}*/
2070 SCIP_ROWPREP* rowprep;
2071
2072 assert(scip != NULL);
2073 assert(expr != NULL);
2074 assert(nlhdlrexprdata != NULL);
2075 assert(nlhdlrexprdata->nlexpr != NULL);
2076 assert(rowpreps != NULL);
2077 assert(success != NULL);
2078
2079 assert(SCIPhashmapGetImage(nlhdlrexprdata->nlexpr2origexpr, (void*)nlhdlrexprdata->nlexpr) == expr);
2080
2081 /* we must be called only for the side that we indicated to participate in during DETECT */
2082 assert(SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONVEX
2083 || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONCAVE);
2084 assert(!overestimate || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONCAVE);
2085 assert( overestimate || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONVEX);
2086
2087 *success = FALSE;
2088 *addedbranchscores = FALSE;
2089
2090 /* we can skip eval as nlhdlrEvalAux should have been called for same solution before */
2091 /* SCIP_CALL( nlhdlrExprEval(scip, nlexpr, sol) ); */
2092 assert(auxvalue == SCIPexprGetEvalValue(nlhdlrexprdata->nlexpr)); /* given value (originally from
2093 nlhdlrEvalAuxConvexConcave) should coincide with the one stored in nlexpr */
2094
2096
2097 if( nlhdlrexprdata->nleafs == 1 && SCIPexprIsIntegral(nlhdlrexprdata->leafexprs[0]) )
2098 {
2099 SCIP_CALL( estimateConvexSecant(scip, nlhdlr, nlhdlrexprdata, sol, rowprep, success) );
2100
2101 (void) SCIPsnprintf(SCIProwprepGetName(rowprep), SCIP_MAXSTRLEN, "%sestimate_convexsecant%p_%s%" SCIP_LONGINT_FORMAT,
2102 overestimate ? "over" : "under",
2103 (void*)expr,
2104 sol != NULL ? "sol" : "lp",
2105 sol != NULL ? (SCIP_Longint) SCIPsolGetIndex(sol) : SCIPgetNLPs(scip));
2106 }
2107
2108 /* if secant method was not used or failed, then try with gradient (unless we had an evaluation error in sol before) */
2109 if( !*success && auxvalue != SCIP_INVALID )
2110 {
2111 SCIP_CALL( estimateGradient(scip, nlhdlr, nlhdlrexprdata, sol, rowprep, success) );
2112
2113 (void) SCIPsnprintf(SCIProwprepGetName(rowprep), SCIP_MAXSTRLEN, "%sestimate_convexgradient%p_%s%" SCIP_LONGINT_FORMAT,
2114 overestimate ? "over" : "under",
2115 (void*)expr,
2116 sol != NULL ? "sol" : "lp",
2117 sol != NULL ? (SCIP_Longint) SCIPsolGetIndex(sol) : SCIPgetNLPs(scip));
2118 }
2119
2120 if( *success )
2121 {
2122 SCIP_CALL( SCIPsetPtrarrayVal(scip, rowpreps, 0, rowprep) );
2123 }
2124 else
2125 {
2126 SCIPfreeRowprep(scip, &rowprep);
2127 }
2128
2129 return SCIP_OKAY;
2130}
2131
2132/** solution notification callback */
2133static
2134SCIP_DECL_NLHDLRSOLLINEARIZE(nlhdlrSollinearizeConvex)
2135{ /*lint --e{715}*/
2136 SCIP_ROWPREP* rowprep;
2137 SCIP_Bool success = FALSE;
2138
2139 assert(scip != NULL);
2140 assert(expr != NULL);
2141 assert(nlhdlrexprdata != NULL);
2142 assert(nlhdlrexprdata->nlexpr != NULL);
2143 assert(SCIPhashmapGetImage(nlhdlrexprdata->nlexpr2origexpr, (void*)nlhdlrexprdata->nlexpr) == expr);
2144 assert(sol != NULL);
2145
2146 /* we must be called only for the side that we indicated to participate in during DETECT */
2147 assert(SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONVEX
2148 || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONCAVE);
2149 assert(!overestimate || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONCAVE);
2150 assert(!underestimate || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONVEX);
2151 assert(underestimate == !overestimate); /* should be exactly one of under- and overestimate */
2152
2153 /* evaluate nlexpr in solution */
2154 SCIP_CALL( SCIPevalExpr(scip, nlhdlrexprdata->nlexpr, sol, 0L) );
2155
2157
2158 if( nlhdlrexprdata->nleafs == 1 && SCIPexprIsIntegral(nlhdlrexprdata->leafexprs[0]) )
2159 {
2160 SCIP_CALL( estimateConvexSecant(scip, nlhdlr, nlhdlrexprdata, sol, rowprep, &success) );
2161
2162 (void) SCIPsnprintf(SCIProwprepGetName(rowprep), SCIP_MAXSTRLEN, "%sestimate_convexsecant%p_sol%dnotify",
2163 overestimate ? "over" : "under", (void*)expr, SCIPsolGetIndex(sol));
2164 }
2165
2166 /* if secant method was not used or failed, then try with gradient */
2167 if( !success )
2168 {
2169 SCIP_CALL( estimateGradient(scip, nlhdlr, nlhdlrexprdata, sol, rowprep, &success) );
2170
2171 (void) SCIPsnprintf(SCIProwprepGetName(rowprep), SCIP_MAXSTRLEN, "%sestimate_convexgradient%p_sol%dnotify",
2172 overestimate ? "over" : "under", (void*)expr, SCIPsolGetIndex(sol));
2173 }
2174
2175 if( success )
2176 {
2177 /* complete estimator to cut and clean it up */
2179 SCIP_CALL( SCIPcleanupRowprep2(scip, rowprep, sol, SCIPgetHugeValue(scip), &success) );
2180 }
2181
2182 /* if cleanup succeeded and rowprep is still global, add to cutpool */
2183 if( success && !SCIProwprepIsLocal(rowprep) )
2184 {
2185 SCIP_ROW* row;
2186
2187 SCIP_CALL( SCIPgetRowprepRowCons(scip, &row, rowprep, cons) );
2188 SCIP_CALL( SCIPaddPoolCut(scip, row) );
2189 SCIP_CALL( SCIPreleaseRow(scip, &row) );
2190 }
2191
2192 SCIPfreeRowprep(scip, &rowprep);
2193
2194 return SCIP_OKAY;
2195}
2196
2197/** include nlhdlr in another scip instance */
2198static
2199SCIP_DECL_NLHDLRCOPYHDLR(nlhdlrCopyhdlrConvex)
2200{ /*lint --e{715}*/
2201 assert(targetscip != NULL);
2202 assert(sourcenlhdlr != NULL);
2203 assert(strcmp(SCIPnlhdlrGetName(sourcenlhdlr), CONVEX_NLHDLR_NAME) == 0);
2204
2205 SCIP_CALL( SCIPincludeNlhdlrConvex(targetscip) );
2206
2207 return SCIP_OKAY;
2208}
2209
2210/** includes convex nonlinear handler in nonlinear constraint handler */
2212 SCIP* scip /**< SCIP data structure */
2213 )
2214{
2215 SCIP_NLHDLR* nlhdlr;
2216 SCIP_NLHDLRDATA* nlhdlrdata;
2217
2218 assert(scip != NULL);
2219
2220 SCIP_CALL( SCIPallocBlockMemory(scip, &nlhdlrdata) );
2221 nlhdlrdata->isnlhdlrconvex = TRUE;
2222 nlhdlrdata->evalsol = NULL;
2223 nlhdlrdata->randnumgen = NULL;
2224
2226 CONVEX_NLHDLR_DETECTPRIORITY, CONVEX_NLHDLR_ENFOPRIORITY, nlhdlrDetectConvex, nlhdlrEvalAuxConvexConcave, nlhdlrdata) );
2227 assert(nlhdlr != NULL);
2228
2229 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONVEX_NLHDLR_NAME "/detectsum",
2230 "whether to run convexity detection when the root of an expression is a non-quadratic sum",
2231 &nlhdlrdata->detectsum, FALSE, DEFAULT_DETECTSUM, NULL, NULL) );
2232
2233 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONVEX_NLHDLR_NAME "/extendedform",
2234 "whether to create extended formulations instead of looking for maximal convex expressions",
2235 &nlhdlrdata->extendedform, FALSE, DEFAULT_EXTENDEDFORM, NULL, NULL) );
2236
2237 SCIP_CALL( SCIPaddRealParam(scip, "nlhdlr/" CONVEX_NLHDLR_NAME "/maxperturb",
2238 "maximal relative perturbation of non-differentiable reference point",
2239 &nlhdlrdata->maxperturb, FALSE, DEFAULT_MAXPERTURB, 0.0, 1.0, NULL, NULL) );
2240
2241 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONVEX_NLHDLR_NAME "/cvxquadratic",
2242 "whether to use convexity check on quadratics",
2243 &nlhdlrdata->cvxquadratic, TRUE, DEFAULT_CVXQUADRATIC_CONVEX, NULL, NULL) );
2244
2245 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONVEX_NLHDLR_NAME "/cvxsignomial",
2246 "whether to use convexity check on signomials",
2247 &nlhdlrdata->cvxsignomial, TRUE, DEFAULT_CVXSIGNOMIAL, NULL, NULL) );
2248
2249 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONVEX_NLHDLR_NAME "/cvxprodcomp",
2250 "whether to use convexity check on product composition f(h)*h",
2251 &nlhdlrdata->cvxprodcomp, TRUE, DEFAULT_CVXPRODCOMP, NULL, NULL) );
2252
2253 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONVEX_NLHDLR_NAME "/handletrivial",
2254 "whether to also handle trivial convex expressions",
2255 &nlhdlrdata->handletrivial, TRUE, DEFAULT_HANDLETRIVIAL, NULL, NULL) );
2256
2257 SCIPnlhdlrSetFreeHdlrData(nlhdlr, nlhdlrfreeHdlrDataConvexConcave);
2258 SCIPnlhdlrSetCopyHdlr(nlhdlr, nlhdlrCopyhdlrConvex);
2259 SCIPnlhdlrSetFreeExprData(nlhdlr, nlhdlrfreeExprDataConvexConcave);
2260 SCIPnlhdlrSetSepa(nlhdlr, nlhdlrInitSepaConvex, NULL, nlhdlrEstimateConvex, NULL);
2261 SCIPnlhdlrSetSollinearize(nlhdlr, nlhdlrSollinearizeConvex);
2262 SCIPnlhdlrSetInitExit(nlhdlr, NULL, nlhdlrExitConvex);
2263
2264 return SCIP_OKAY;
2265}
2266
2267/*
2268 * Callback methods of concave nonlinear handler
2269 */
2270
2271/** deinitialization of problem-specific data */
2272static
2273SCIP_DECL_NLHDLREXIT(nlhdlrExitConcave)
2274{
2275 SCIP_NLHDLRDATA* nlhdlrdata;
2276
2277 nlhdlrdata = SCIPnlhdlrGetData(nlhdlr);
2278 assert(nlhdlrdata != NULL);
2279 assert(nlhdlrdata->randnumgen == NULL); /* not used for concave nlhdlr so far */
2280
2281 if( nlhdlrdata->evalsol != NULL )
2282 {
2283 SCIP_CALL( SCIPfreeSol(scip, &nlhdlrdata->evalsol) );
2284 }
2285
2286 return SCIP_OKAY;
2287}
2288
2289/** checks whether expression (or -expression) is concave, possibly after introducing auxiliary variables */
2290static
2291SCIP_DECL_NLHDLRDETECT(nlhdlrDetectConcave)
2292{ /*lint --e{715}*/
2293 SCIP_NLHDLRDATA* nlhdlrdata;
2294 SCIP_EXPR* nlexpr = NULL;
2295 SCIP_HASHMAP* nlexpr2origexpr;
2296 int nleafs = 0;
2297
2298 assert(scip != NULL);
2299 assert(nlhdlr != NULL);
2300 assert(expr != NULL);
2301 assert(enforcing != NULL);
2302 assert(participating != NULL);
2303 assert(nlhdlrexprdata != NULL);
2304
2305 /* we currently do not participate if only activity computation is required */
2307 return SCIP_OKAY;
2308
2309 /* ignore pure constants and variables */
2310 if( SCIPexprGetNChildren(expr) == 0 )
2311 return SCIP_OKAY;
2312
2313 nlhdlrdata = SCIPnlhdlrGetData(nlhdlr);
2314 assert(nlhdlrdata != NULL);
2315 assert(!nlhdlrdata->isnlhdlrconvex);
2316
2317 SCIPdebugMsg(scip, "nlhdlr_concave detect for expr %p\n", (void*)expr);
2318
2319 /* initialize mapping from copied expression to original one
2320 * 20 is not a bad estimate for the size of concave subexpressions that we can usually discover
2321 * when expressions will be allowed to store "user"data, we could get rid of this hashmap (TODO)
2322 */
2323 SCIP_CALL( SCIPhashmapCreate(&nlexpr2origexpr, SCIPblkmem(scip), 20) );
2324
2325 if( (*enforcing & SCIP_NLHDLR_METHOD_SEPABELOW) == 0 ) /* if no separation below yet */
2326 {
2327 SCIP_CALL( constructExpr(scip, nlhdlrdata, &nlexpr, nlexpr2origexpr, &nleafs, expr,
2329
2330 if( nlexpr != NULL && nleafs > SCIP_MAXVERTEXPOLYDIM )
2331 {
2332 SCIPdebugMsg(scip, "Too many variables (%d) in constructed expression. Will not be able to estimate. Rejecting.\n", nleafs);
2333 SCIP_CALL( SCIPreleaseExpr(scip, &nlexpr) );
2334 }
2335
2336 if( nlexpr != NULL )
2337 {
2338 assert(SCIPexprGetNChildren(nlexpr) > 0); /* should not be trivial */
2339
2340 *participating |= SCIP_NLHDLR_METHOD_SEPABELOW;
2341
2342 SCIPdebugMsg(scip, "detected expr %p to be concave -> can enforce expr <= auxvar\n", (void*)expr);
2343 }
2344 else
2345 {
2346 SCIP_CALL( SCIPhashmapRemoveAll(nlexpr2origexpr) );
2347 }
2348 }
2349
2350 if( (*enforcing & SCIP_NLHDLR_METHOD_SEPAABOVE) == 0 && nlexpr == NULL ) /* if no separation above and not concave */
2351 {
2352 SCIP_CALL( constructExpr(scip, nlhdlrdata, &nlexpr, nlexpr2origexpr, &nleafs, expr,
2354
2355 if( nlexpr != NULL && nleafs > SCIP_MAXVERTEXPOLYDIM )
2356 {
2357 SCIPdebugMsg(scip, "Too many variables (%d) in constructed expression. Will not be able to estimate. Rejecting.\n", nleafs);
2358 SCIP_CALL( SCIPreleaseExpr(scip, &nlexpr) );
2359 }
2360
2361 if( nlexpr != NULL )
2362 {
2363 assert(SCIPexprGetNChildren(nlexpr) > 0); /* should not be trivial */
2364
2365 *participating |= SCIP_NLHDLR_METHOD_SEPAABOVE;
2366
2367 SCIPdebugMsg(scip, "detected expr %p to be convex -> can enforce expr >= auxvar\n", (void*)expr);
2368 }
2369 }
2370
2371 /* everything we participate in we also enforce (at the moment) */
2372 *enforcing |= *participating;
2373
2374 assert(*participating || nlexpr == NULL);
2375 if( !*participating )
2376 {
2377 SCIPhashmapFree(&nlexpr2origexpr);
2378 return SCIP_OKAY;
2379 }
2380
2381 /* create the expression data of the nonlinear handler
2382 * notify conshdlr about expr for which we will require auxiliary variables and use activity
2383 */
2384 SCIP_CALL( createNlhdlrExprData(scip, nlhdlrdata, nlhdlrexprdata, expr, nlexpr, nlexpr2origexpr, nleafs, *participating) );
2385
2386 return SCIP_OKAY;
2387}
2388
2389/** init sepa callback that initializes LP */
2390static
2391SCIP_DECL_NLHDLRINITSEPA(nlhdlrInitSepaConcave)
2392{
2393 SCIP_EXPR* nlexpr;
2394 SCIP_EXPRCURV curvature;
2395 SCIP_Bool success;
2396 SCIP_ROWPREP* rowprep = NULL;
2397 SCIP_ROW* row;
2398
2399 assert(scip != NULL);
2400 assert(expr != NULL);
2401 assert(nlhdlrexprdata != NULL);
2402
2403 nlexpr = nlhdlrexprdata->nlexpr;
2404 assert(nlexpr != NULL);
2405 assert(SCIPhashmapGetImage(nlhdlrexprdata->nlexpr2origexpr, (void*)nlexpr) == expr);
2406
2407 /* setup nlhdlrexprdata->leafexprs */
2408 SCIP_CALL( collectLeafs(scip, nlhdlrexprdata) );
2409
2410 curvature = SCIPexprGetCurvature(nlexpr);
2411 assert(curvature == SCIP_EXPRCURV_CONVEX || curvature == SCIP_EXPRCURV_CONCAVE);
2412 /* we can only be estimating on non-convex side */
2413 if( curvature == SCIP_EXPRCURV_CONCAVE )
2414 overestimate = FALSE;
2415 else if( curvature == SCIP_EXPRCURV_CONVEX )
2416 underestimate = FALSE;
2417 if( !overestimate && !underestimate )
2418 return SCIP_OKAY;
2419
2420 /* compute estimator and store in rowprep */
2422 SCIP_CALL( estimateVertexPolyhedral(scip, conshdlr, nlhdlr, nlhdlrexprdata, NULL, TRUE, overestimate,
2423 overestimate ? SCIPinfinity(scip) : -SCIPinfinity(scip), rowprep, &success) );
2424 if( !success )
2425 {
2426 SCIPdebugMsg(scip, "failed to compute facet of convex hull\n");
2427 goto TERMINATE;
2428 }
2429
2430 /* add auxiliary variable */
2432
2433 /* straighten out numerics */
2434 SCIP_CALL( SCIPcleanupRowprep2(scip, rowprep, NULL, SCIPgetHugeValue(scip), &success) );
2435 if( !success )
2436 {
2437 SCIPdebugMsg(scip, "failed to cleanup rowprep numerics\n");
2438 goto TERMINATE;
2439 }
2440
2441 (void) SCIPsnprintf(SCIProwprepGetName(rowprep), SCIP_MAXSTRLEN, "%sestimate_concave%p_initsepa",
2442 overestimate ? "over" : "under", (void*)expr);
2443 SCIP_CALL( SCIPgetRowprepRowCons(scip, &row, rowprep, cons) );
2444
2445#ifdef SCIP_DEBUG
2446 SCIPinfoMessage(scip, NULL, "initsepa computed row: ");
2447 SCIPprintRow(scip, row, NULL);
2448#endif
2449
2450 SCIP_CALL( SCIPaddRow(scip, row, FALSE, infeasible) );
2451 SCIP_CALL( SCIPreleaseRow(scip, &row) );
2452
2453 TERMINATE:
2454 if( rowprep != NULL )
2455 SCIPfreeRowprep(scip, &rowprep);
2456
2457 return SCIP_OKAY;
2458}
2459
2460/** estimator callback */
2461static
2462SCIP_DECL_NLHDLRESTIMATE(nlhdlrEstimateConcave)
2463{ /*lint --e{715}*/
2464 SCIP_ROWPREP* rowprep;
2465
2466 assert(scip != NULL);
2467 assert(expr != NULL);
2468 assert(nlhdlrexprdata != NULL);
2469 assert(nlhdlrexprdata->nlexpr != NULL);
2470 assert(rowpreps != NULL);
2471 assert(success != NULL);
2472
2473 assert(SCIPhashmapGetImage(nlhdlrexprdata->nlexpr2origexpr, (void*)nlhdlrexprdata->nlexpr) == expr);
2474
2475 /* we must be called only for the side that we indicated to participate in during DETECT */
2476 assert(SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONVEX
2477 || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONCAVE);
2478 assert(!overestimate || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONVEX);
2479 assert( overestimate || SCIPexprGetCurvature(nlhdlrexprdata->nlexpr) == SCIP_EXPRCURV_CONCAVE);
2480
2481 *success = FALSE;
2482 *addedbranchscores = FALSE;
2483
2485
2486 SCIP_CALL( estimateVertexPolyhedral(scip, conshdlr, nlhdlr, nlhdlrexprdata, sol, FALSE, overestimate, targetvalue, rowprep, success) );
2487
2488 if( *success )
2489 {
2490 SCIP_CALL( SCIPsetPtrarrayVal(scip, rowpreps, 0, rowprep) );
2491
2492 (void) SCIPsnprintf(SCIProwprepGetName(rowprep), SCIP_MAXSTRLEN, "%sestimate_concave%p_%s%" SCIP_LONGINT_FORMAT,
2493 overestimate ? "over" : "under",
2494 (void*)expr,
2495 sol != NULL ? "sol" : "lp",
2496 sol != NULL ? (SCIP_Longint) SCIPsolGetIndex(sol) : SCIPgetNLPs(scip));
2497 }
2498 else
2499 {
2500 SCIPfreeRowprep(scip, &rowprep);
2501 }
2502
2503 if( addbranchscores )
2504 {
2505 SCIP_Real violation;
2506
2507 /* check how much is the violation on the side that we estimate */
2508 if( auxvalue == SCIP_INVALID )
2509 {
2510 /* if cannot evaluate, then always branch */
2511 violation = SCIPinfinity(scip);
2512 }
2513 else
2514 {
2515 SCIP_Real auxval;
2516
2517 /* get value of auxiliary variable of this expression */
2518 assert(SCIPgetExprAuxVarNonlinear(expr) != NULL);
2519 auxval = SCIPgetSolVal(scip, sol, SCIPgetExprAuxVarNonlinear(expr));
2520
2521 /* compute the violation
2522 * if we underestimate, then we enforce expr <= auxval, so violation is (positive part of) auxvalue - auxval
2523 * if we overestimate, then we enforce expr >= auxval, so violation is (positive part of) auxval - auxvalue
2524 */
2525 if( !overestimate )
2526 violation = MAX(0.0, auxvalue - auxval);
2527 else
2528 violation = MAX(0.0, auxval - auxvalue);
2529 }
2530 assert(violation >= 0.0);
2531
2532 /* add violation as branching-score to expressions; the core will take care distributing this onto variables */
2533 if( nlhdlrexprdata->nleafs == 1 )
2534 {
2535 SCIP_EXPR* e;
2536 e = (SCIP_EXPR*)SCIPhashmapGetImage(nlhdlrexprdata->nlexpr2origexpr, nlhdlrexprdata->leafexprs[0]);
2537 SCIP_CALL( SCIPaddExprsViolScoreNonlinear(scip, &e, 1, violation, sol, addedbranchscores) );
2538 }
2539 else
2540 {
2541 SCIP_EXPR** exprs;
2542 int c;
2543
2544 /* map leaf expressions back to original expressions
2545 * TODO do this once at end of detect and store in nlhdlrexprdata
2546 */
2547 SCIP_CALL( SCIPallocBufferArray(scip, &exprs, nlhdlrexprdata->nleafs) );
2548 for( c = 0; c < nlhdlrexprdata->nleafs; ++c )
2549 exprs[c] = (SCIP_EXPR*)SCIPhashmapGetImage(nlhdlrexprdata->nlexpr2origexpr, nlhdlrexprdata->leafexprs[c]);
2550
2551 SCIP_CALL( SCIPaddExprsViolScoreNonlinear(scip, exprs, nlhdlrexprdata->nleafs, violation, sol, addedbranchscores) );
2552
2553 SCIPfreeBufferArray(scip, &exprs);
2554 }
2555 }
2556
2557 return SCIP_OKAY;
2558}
2559
2560/** includes nonlinear handler in another scip instance */
2561static
2562SCIP_DECL_NLHDLRCOPYHDLR(nlhdlrCopyhdlrConcave)
2563{ /*lint --e{715}*/
2564 assert(targetscip != NULL);
2565 assert(sourcenlhdlr != NULL);
2566 assert(strcmp(SCIPnlhdlrGetName(sourcenlhdlr), CONCAVE_NLHDLR_NAME) == 0);
2567
2568 SCIP_CALL( SCIPincludeNlhdlrConcave(targetscip) );
2569
2570 return SCIP_OKAY;
2571}
2572
2573/** includes concave nonlinear handler in nonlinear constraint handler */
2575 SCIP* scip /**< SCIP data structure */
2576 )
2577{
2578 SCIP_NLHDLR* nlhdlr;
2579 SCIP_NLHDLRDATA* nlhdlrdata;
2580
2581 assert(scip != NULL);
2582
2583 SCIP_CALL( SCIPallocBlockMemory(scip, &nlhdlrdata) );
2584 nlhdlrdata->isnlhdlrconvex = FALSE;
2585 nlhdlrdata->evalsol = NULL;
2586 nlhdlrdata->randnumgen = NULL;
2587
2589 CONCAVE_NLHDLR_DETECTPRIORITY, CONCAVE_NLHDLR_ENFOPRIORITY, nlhdlrDetectConcave, nlhdlrEvalAuxConvexConcave, nlhdlrdata) );
2590 assert(nlhdlr != NULL);
2591
2592 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONCAVE_NLHDLR_NAME "/detectsum",
2593 "whether to run convexity detection when the root of an expression is a sum",
2594 &nlhdlrdata->detectsum, FALSE, DEFAULT_DETECTSUM, NULL, NULL) );
2595
2596 /* "extended" formulations of a concave expressions can give worse estimators */
2597 nlhdlrdata->extendedform = FALSE;
2598
2599 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONCAVE_NLHDLR_NAME "/cvxquadratic",
2600 "whether to use convexity check on quadratics",
2601 &nlhdlrdata->cvxquadratic, TRUE, DEFAULT_CVXQUADRATIC_CONCAVE, NULL, NULL) );
2602
2603 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONCAVE_NLHDLR_NAME "/cvxsignomial",
2604 "whether to use convexity check on signomials",
2605 &nlhdlrdata->cvxsignomial, TRUE, DEFAULT_CVXSIGNOMIAL, NULL, NULL) );
2606
2607 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONCAVE_NLHDLR_NAME "/cvxprodcomp",
2608 "whether to use convexity check on product composition f(h)*h",
2609 &nlhdlrdata->cvxprodcomp, TRUE, DEFAULT_CVXPRODCOMP, NULL, NULL) );
2610
2611 SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" CONCAVE_NLHDLR_NAME "/handletrivial",
2612 "whether to also handle trivial convex expressions",
2613 &nlhdlrdata->handletrivial, TRUE, DEFAULT_HANDLETRIVIAL, NULL, NULL) );
2614
2615 SCIPnlhdlrSetFreeHdlrData(nlhdlr, nlhdlrfreeHdlrDataConvexConcave);
2616 SCIPnlhdlrSetCopyHdlr(nlhdlr, nlhdlrCopyhdlrConcave);
2617 SCIPnlhdlrSetFreeExprData(nlhdlr, nlhdlrfreeExprDataConvexConcave);
2618 SCIPnlhdlrSetSepa(nlhdlr, nlhdlrInitSepaConcave, NULL, nlhdlrEstimateConcave, NULL);
2619 SCIPnlhdlrSetInitExit(nlhdlr, NULL, nlhdlrExitConcave);
2620
2621 return SCIP_OKAY;
2622}
2623
2624/** checks whether a given expression is convex or concave w.r.t. the original variables
2625 *
2626 * This function uses the methods that are used in the detection algorithm of the convex nonlinear handler.
2627 */
2629 SCIP* scip, /**< SCIP data structure */
2630 SCIP_EXPR* expr, /**< expression */
2631 SCIP_EXPRCURV curv, /**< curvature to check for */
2632 SCIP_Bool* success, /**< buffer to store whether expression has curvature curv (w.r.t. original variables) */
2633 SCIP_HASHMAP* assumevarfixed /**< hashmap containing variables that should be assumed to be fixed, or NULL */
2634 )
2635{
2636 SCIP_NLHDLRDATA nlhdlrdata;
2637 SCIP_EXPR* rootnlexpr;
2638 SCIP_HASHMAP* nlexpr2origexpr;
2639 int nleafs;
2640
2641 assert(expr != NULL);
2642 assert(curv != SCIP_EXPRCURV_UNKNOWN);
2643 assert(success != NULL);
2644
2645 /* create temporary hashmap */
2646 SCIP_CALL( SCIPhashmapCreate(&nlexpr2origexpr, SCIPblkmem(scip), 20) );
2647
2648 /* prepare nonlinear handler data */
2649 nlhdlrdata.isnlhdlrconvex = TRUE;
2650 nlhdlrdata.evalsol = NULL;
2651 nlhdlrdata.detectsum = TRUE;
2652 nlhdlrdata.extendedform = FALSE;
2653 nlhdlrdata.cvxquadratic = TRUE;
2654 nlhdlrdata.cvxsignomial = TRUE;
2655 nlhdlrdata.cvxprodcomp = TRUE;
2656 nlhdlrdata.handletrivial = TRUE;
2657
2658 SCIP_CALL( constructExpr(scip, &nlhdlrdata, &rootnlexpr, nlexpr2origexpr, &nleafs, expr, curv, assumevarfixed, FALSE, success) );
2659
2660 /* free created expression */
2661 if( rootnlexpr != NULL )
2662 {
2663 SCIP_CALL( SCIPreleaseExpr(scip, &rootnlexpr) );
2664 }
2665
2666 /* free hashmap */
2667 SCIPhashmapFree(&nlexpr2origexpr);
2668
2669 return SCIP_OKAY;
2670}
SCIP_VAR * h
Definition: circlepacking.c:68
SCIP_VAR ** x
Definition: circlepacking.c:63
constraint handler for nonlinear constraints specified by algebraic expressions
defines macros for basic operations in double-double arithmetic giving roughly twice the precision of...
#define SCIPquadprecSumQD(r, a, b)
Definition: dbldblarith.h:62
#define QUAD_ASSIGN(a, constant)
Definition: dbldblarith.h:51
#define QUAD(x)
Definition: dbldblarith.h:47
#define QUAD_TO_DBL(x)
Definition: dbldblarith.h:49
#define NULL
Definition: def.h:266
#define SCIP_MAXSTRLEN
Definition: def.h:287
#define SCIP_Longint
Definition: def.h:157
#define SCIP_INVALID
Definition: def.h:192
#define SCIP_Bool
Definition: def.h:91
#define MIN(x, y)
Definition: def.h:242
#define SCIP_Real
Definition: def.h:172
#define TRUE
Definition: def.h:93
#define FALSE
Definition: def.h:94
#define MAX(x, y)
Definition: def.h:238
#define SCIP_CALL_ABORT(x)
Definition: def.h:352
#define SCIP_LONGINT_FORMAT
Definition: def.h:164
#define REALABS(x)
Definition: def.h:196
#define SCIP_CALL(x)
Definition: def.h:373
absolute expression handler
variable expression handler
SCIP_Bool SCIPassumeConvexNonlinear(SCIP_CONSHDLR *conshdlr)
SCIP_VAR * SCIPgetExprAuxVarNonlinear(SCIP_EXPR *expr)
SCIP_RETCODE SCIPaddExprsViolScoreNonlinear(SCIP *scip, SCIP_EXPR **exprs, int nexprs, SCIP_Real violscore, SCIP_SOL *sol, SCIP_Bool *success)
SCIP_RETCODE SCIPregisterExprUsageNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool useauxvar, SCIP_Bool useactivityforprop, SCIP_Bool useactivityforsepabelow, SCIP_Bool useactivityforsepaabove)
SCIP_RETCODE SCIPcomputeFacetVertexPolyhedralNonlinear(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_Bool overestimate, SCIP_DECL_VERTEXPOLYFUN((*function)), void *fundata, SCIP_Real *xstar, SCIP_Real *box, int nallvars, SCIP_Real targetvalue, SCIP_Bool *success, SCIP_Real *facetcoefs, SCIP_Real *facetconstant)
#define SCIP_MAXVERTEXPOLYDIM
SCIP_RETCODE SCIPcreateExprVar(SCIP *scip, SCIP_EXPR **expr, SCIP_VAR *var, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: expr_var.c:390
SCIP_Bool SCIPisExprAbs(SCIP *scip, SCIP_EXPR *expr)
Definition: expr_abs.c:546
void SCIPhashmapFree(SCIP_HASHMAP **hashmap)
Definition: misc.c:3111
void * SCIPhashmapGetImage(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3264
SCIP_RETCODE SCIPhashmapInsert(SCIP_HASHMAP *hashmap, void *origin, void *image)
Definition: misc.c:3159
SCIP_RETCODE SCIPhashmapSetImage(SCIP_HASHMAP *hashmap, void *origin, void *image)
Definition: misc.c:3326
int SCIPhashmapEntryGetImageInt(SCIP_HASHMAPENTRY *entry)
Definition: misc.c:3583
int SCIPhashmapGetNEntries(SCIP_HASHMAP *hashmap)
Definition: misc.c:3544
SCIP_HASHMAPENTRY * SCIPhashmapGetEntry(SCIP_HASHMAP *hashmap, int entryidx)
Definition: misc.c:3552
SCIP_RETCODE SCIPhashmapCreate(SCIP_HASHMAP **hashmap, BMS_BLKMEM *blkmem, int mapsize)
Definition: misc.c:3077
void * SCIPhashmapEntryGetOrigin(SCIP_HASHMAPENTRY *entry)
Definition: misc.c:3563
SCIP_Bool SCIPhashmapExists(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3426
SCIP_RETCODE SCIPhashmapInsertInt(SCIP_HASHMAP *hashmap, void *origin, int image)
Definition: misc.c:3195
SCIP_RETCODE SCIPhashmapRemoveAll(SCIP_HASHMAP *hashmap)
Definition: misc.c:3636
void SCIPhashsetFree(SCIP_HASHSET **hashset, BMS_BLKMEM *blkmem)
Definition: misc.c:3793
SCIP_Bool SCIPhashsetExists(SCIP_HASHSET *hashset, void *element)
Definition: misc.c:3820
SCIP_RETCODE SCIPhashsetInsert(SCIP_HASHSET *hashset, BMS_BLKMEM *blkmem, void *element)
Definition: misc.c:3803
SCIP_RETCODE SCIPhashsetCreate(SCIP_HASHSET **hashset, BMS_BLKMEM *blkmem, int size)
Definition: misc.c:3762
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:208
#define SCIPdebugMsg
Definition: scip_message.h:78
SCIP_RETCODE SCIPhasExprCurvature(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPRCURV curv, SCIP_Bool *success, SCIP_HASHMAP *assumevarfixed)
SCIP_RETCODE SCIPincludeNlhdlrConvex(SCIP *scip)
SCIP_RETCODE SCIPincludeNlhdlrConcave(SCIP *scip)
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPaddPoolCut(SCIP *scip, SCIP_ROW *row)
Definition: scip_cut.c:361
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:250
SCIP_RETCODE SCIPsetPtrarrayVal(SCIP *scip, SCIP_PTRARRAY *ptrarray, int idx, void *val)
const char * SCIPexprhdlrGetName(SCIP_EXPRHDLR *exprhdlr)
Definition: expr.c:545
SCIP_Bool SCIPexprhdlrHasBwdiff(SCIP_EXPRHDLR *exprhdlr)
Definition: expr.c:595
const char * SCIPexprcurvGetName(SCIP_EXPRCURV curv)
Definition: exprcurv.c:586
SCIP_RETCODE SCIPappendExprChild(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPR *child)
Definition: scip_expr.c:1230
SCIP_RETCODE SCIPevalExpr(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Longint soltag)
Definition: scip_expr.c:1635
int SCIPexprGetNChildren(SCIP_EXPR *expr)
Definition: expr.c:3860
SCIP_RETCODE SCIPcomputeExprIntegrality(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:2015
SCIP_Real SCIPgetExponentExprPow(SCIP_EXPR *expr)
Definition: expr_pow.c:3456
SCIP_Bool SCIPisExprProduct(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1464
SCIP_RETCODE SCIPevalExprGradient(SCIP *scip, SCIP_EXPR *expr, SCIP_SOL *sol, SCIP_Longint soltag)
Definition: scip_expr.c:1667
SCIP_Bool SCIPexpriterIsEnd(SCIP_EXPRITER *iterator)
Definition: expriter.c:969
void SCIPexprSetCurvature(SCIP_EXPR *expr, SCIP_EXPRCURV curvature)
Definition: expr.c:4068
SCIP_EXPR * SCIPexpriterSkipDFS(SCIP_EXPRITER *iterator)
Definition: expriter.c:930
SCIP_Real SCIPexprGetDerivative(SCIP_EXPR *expr)
Definition: expr.c:3960
SCIP_Bool SCIPisExprSum(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1453
SCIP_RETCODE SCIPduplicateExprShallow(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPR **copyexpr, SCIP_DECL_EXPR_OWNERCREATE((*ownercreate)), void *ownercreatedata)
Definition: scip_expr.c:1301
SCIP_Bool SCIPexprIsIntegral(SCIP_EXPR *expr)
Definition: expr.c:4079
void SCIPexprGetQuadraticData(SCIP_EXPR *expr, SCIP_Real *constant, int *nlinexprs, SCIP_EXPR ***linexprs, SCIP_Real **lincoefs, int *nquadexprs, int *nbilinexprs, SCIP_Real **eigenvalues, SCIP_Real **eigenvectors)
Definition: expr.c:4119
SCIP_RETCODE SCIPreplaceExprChild(SCIP *scip, SCIP_EXPR *expr, int childidx, SCIP_EXPR *newchild)
Definition: scip_expr.c:1248
SCIP_Real * SCIPgetCoefsExprSum(SCIP_EXPR *expr)
Definition: expr_sum.c:1552
SCIP_Bool SCIPisExprValue(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1442
SCIP_Real SCIPgetCoefExprProduct(SCIP_EXPR *expr)
int SCIPcompareExpr(SCIP *scip, SCIP_EXPR *expr1, SCIP_EXPR *expr2)
Definition: scip_expr.c:1734
SCIP_RETCODE SCIPreleaseExpr(SCIP *scip, SCIP_EXPR **expr)
Definition: scip_expr.c:1417
SCIP_EXPR * SCIPexpriterGetCurrent(SCIP_EXPRITER *iterator)
Definition: expriter.c:683
SCIP_Bool SCIPexprcurvMonomialInv(SCIP_EXPRCURV monomialcurv, int nfactors, SCIP_Real *exponents, SCIP_INTERVAL *factorbounds, SCIP_EXPRCURV *factorcurv)
Definition: exprcurv.c:457
void SCIPexpriterSetStagesDFS(SCIP_EXPRITER *iterator, SCIP_EXPRITER_STAGE stopstages)
Definition: expriter.c:664
SCIP_Bool SCIPisExprVar(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1431
SCIP_RETCODE SCIPcomputeExprQuadraticCurvature(SCIP *scip, SCIP_EXPR *expr, SCIP_EXPRCURV *curv, SCIP_HASHMAP *assumevarfixed, SCIP_Bool storeeigeninfo)
Definition: scip_expr.c:2586
SCIP_EXPRCURV SCIPexprcurvMultiply(SCIP_Real factor, SCIP_EXPRCURV curvature)
Definition: exprcurv.c:88
SCIP_RETCODE SCIPcreateExpriter(SCIP *scip, SCIP_EXPRITER **iterator)
Definition: scip_expr.c:2337
SCIP_RETCODE SCIPprintExpr(SCIP *scip, SCIP_EXPR *expr, FILE *file)
Definition: scip_expr.c:1486
SCIP_EXPRCURV SCIPexprGetCurvature(SCIP_EXPR *expr)
Definition: expr.c:4058
SCIP_Bool SCIPisExprPower(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1475
SCIP_Real SCIPexprGetEvalValue(SCIP_EXPR *expr)
Definition: expr.c:3934
SCIP_EXPR * SCIPexpriterGetNext(SCIP_EXPRITER *iterator)
Definition: expriter.c:858
SCIP_RETCODE SCIPcheckExprQuadratic(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool *isquadratic)
Definition: scip_expr.c:2377
SCIP_EXPR ** SCIPexprGetChildren(SCIP_EXPR *expr)
Definition: expr.c:3870
SCIP_Real SCIPgetConstantExprSum(SCIP_EXPR *expr)
Definition: expr_sum.c:1567
SCIP_VAR * SCIPgetVarExprVar(SCIP_EXPR *expr)
Definition: expr_var.c:416
SCIP_INTERVAL SCIPexprGetActivity(SCIP_EXPR *expr)
Definition: expr.c:4016
void SCIPexprGetQuadraticQuadTerm(SCIP_EXPR *quadexpr, int termidx, SCIP_EXPR **expr, SCIP_Real *lincoef, SCIP_Real *sqrcoef, int *nadjbilin, int **adjbilin, SCIP_EXPR **sqrexpr)
Definition: expr.c:4164
int SCIPexpriterGetChildIdxDFS(SCIP_EXPRITER *iterator)
Definition: expriter.c:707
void SCIPfreeExpriter(SCIP_EXPRITER **iterator)
Definition: scip_expr.c:2351
void SCIPcaptureExpr(SCIP_EXPR *expr)
Definition: scip_expr.c:1409
SCIP_RETCODE SCIPexpriterInit(SCIP_EXPRITER *iterator, SCIP_EXPR *expr, SCIP_EXPRITER_TYPE type, SCIP_Bool allowrevisit)
Definition: expriter.c:501
SCIP_Longint SCIPexprGetDiffTag(SCIP_EXPR *expr)
Definition: expr.c:4003
SCIP_RETCODE SCIPremoveExprChildren(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1267
SCIP_RETCODE SCIPevalExprActivity(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1717
SCIP_EXPRHDLR * SCIPexprGetHdlr(SCIP_EXPR *expr)
Definition: expr.c:3883
SCIP_EXPR * SCIPexpriterGetChildExprDFS(SCIP_EXPRITER *iterator)
Definition: expriter.c:721
#define SCIPallocClearBlockMemory(scip, ptr)
Definition: scip_mem.h:91
int SCIPcalcMemGrowSize(SCIP *scip, int num)
Definition: scip_mem.c:139
#define SCIPallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:124
#define SCIPreallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:128
#define SCIPfreeBufferArray(scip, ptr)
Definition: scip_mem.h:136
#define SCIPallocBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:93
#define SCIPfreeBlockMemory(scip, ptr)
Definition: scip_mem.h:108
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:111
#define SCIPallocBlockMemory(scip, ptr)
Definition: scip_mem.h:89
void SCIPnlhdlrSetCopyHdlr(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRCOPYHDLR((*copy)))
Definition: nlhdlr.c:76
void SCIPnlhdlrSetFreeExprData(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRFREEEXPRDATA((*freeexprdata)))
Definition: nlhdlr.c:98
void SCIPnlhdlrSetSollinearize(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRSOLLINEARIZE((*sollinearize)))
Definition: nlhdlr.c:154
SCIP_NLHDLRDATA * SCIPnlhdlrGetData(SCIP_NLHDLR *nlhdlr)
Definition: nlhdlr.c:216
void SCIPnlhdlrSetFreeHdlrData(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRFREEHDLRDATA((*freehdlrdata)))
Definition: nlhdlr.c:87
void SCIPnlhdlrSetSepa(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRINITSEPA((*initsepa)), SCIP_DECL_NLHDLRENFO((*enfo)), SCIP_DECL_NLHDLRESTIMATE((*estimate)), SCIP_DECL_NLHDLREXITSEPA((*exitsepa)))
Definition: nlhdlr.c:136
void SCIPnlhdlrSetInitExit(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRINIT((*init)), SCIP_DECL_NLHDLREXIT((*exit_)))
Definition: nlhdlr.c:110
const char * SCIPnlhdlrGetName(SCIP_NLHDLR *nlhdlr)
Definition: nlhdlr.c:166
SCIP_RETCODE SCIPincludeNlhdlrNonlinear(SCIP *scip, SCIP_NLHDLR **nlhdlr, const char *name, const char *desc, int detectpriority, int enfopriority, SCIP_DECL_NLHDLRDETECT((*detect)), SCIP_DECL_NLHDLREVALAUX((*evalaux)), SCIP_NLHDLRDATA *nlhdlrdata)
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2212
SCIP_RETCODE SCIPreleaseRow(SCIP *scip, SCIP_ROW **row)
Definition: scip_lp.c:1562
SCIP_RETCODE SCIPcreateSol(SCIP *scip, SCIP_SOL **sol, SCIP_HEUR *heur)
Definition: scip_sol.c:180
SCIP_RETCODE SCIPfreeSol(SCIP *scip, SCIP_SOL **sol)
Definition: scip_sol.c:837
int SCIPsolGetIndex(SCIP_SOL *sol)
Definition: sol.c:2835
SCIP_RETCODE SCIPsetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var, SCIP_Real val)
Definition: scip_sol.c:1073
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1213
SCIP_Longint SCIPgetNLPs(SCIP *scip)
SCIP_Bool SCIPisRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Real SCIPinfinity(SCIP *scip)
SCIP_Bool SCIPisIntegral(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPfloor(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisInfinity(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPround(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPgetHugeValue(SCIP *scip)
SCIP_Real SCIPceil(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Bool SCIPisZero(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPepsilon(SCIP *scip)
SCIP_BOUNDTYPE SCIPvarGetBestBoundType(SCIP_VAR *var)
Definition: var.c:18189
SCIP_Real SCIPvarGetUbLocal(SCIP_VAR *var)
Definition: var.c:18143
SCIP_Real SCIPvarGetUbGlobal(SCIP_VAR *var)
Definition: var.c:18087
const char * SCIPvarGetName(SCIP_VAR *var)
Definition: var.c:17418
SCIP_Real SCIPvarGetLbLocal(SCIP_VAR *var)
Definition: var.c:18133
SCIP_Real SCIPvarGetLbGlobal(SCIP_VAR *var)
Definition: var.c:18077
void SCIPfreeRandom(SCIP *scip, SCIP_RANDNUMGEN **randnumgen)
SCIP_Real SCIPrandomGetReal(SCIP_RANDNUMGEN *randnumgen, SCIP_Real minrandval, SCIP_Real maxrandval)
Definition: misc.c:10133
SCIP_RETCODE SCIPcreateRandom(SCIP *scip, SCIP_RANDNUMGEN **randnumgen, unsigned int initialseed, SCIP_Bool useglobalseed)
SCIP_RETCODE SCIPcleanupRowprep2(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_SOL *sol, SCIP_Real maxcoefbound, SCIP_Bool *success)
SCIP_RETCODE SCIPensureRowprepSize(SCIP *scip, SCIP_ROWPREP *rowprep, int size)
Definition: misc_rowprep.c:887
SCIP_Real * SCIProwprepGetCoefs(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:649
char * SCIProwprepGetName(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:689
SCIP_Bool SCIProwprepIsLocal(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:679
void SCIProwprepAddConstant(SCIP_ROWPREP *rowprep, SCIP_Real constant)
Definition: misc_rowprep.c:760
SCIP_RETCODE SCIPaddRowprepTerm(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_VAR *var, SCIP_Real coef)
Definition: misc_rowprep.c:913
SCIP_RETCODE SCIPgetRowprepRowCons(SCIP *scip, SCIP_ROW **row, SCIP_ROWPREP *rowprep, SCIP_CONS *cons)
SCIP_RETCODE SCIPcreateRowprep(SCIP *scip, SCIP_ROWPREP **rowprep, SCIP_SIDETYPE sidetype, SCIP_Bool local)
Definition: misc_rowprep.c:563
void SCIProwprepSetLocal(SCIP_ROWPREP *rowprep, SCIP_Bool islocal)
Definition: misc_rowprep.c:780
void SCIPfreeRowprep(SCIP *scip, SCIP_ROWPREP **rowprep)
Definition: misc_rowprep.c:583
void SCIPprintRowprep(SCIP *scip, SCIP_ROWPREP *rowprep, FILE *file)
Definition: misc_rowprep.c:801
int SCIPsnprintf(char *t, int len, const char *s,...)
Definition: misc.c:10880
static SCIP_DECL_NLHDLREXIT(nlhdlrExitConvex)
#define DEFAULT_HANDLETRIVIAL
Definition: nlhdlr_convex.c:60
static SCIP_RETCODE exprstackInit(SCIP *scip, EXPRSTACK *exprstack, int initsize)
static SCIP_DECL_NLHDLREVALAUX(nlhdlrEvalAuxConvexConcave)
static SCIP_DECL_VERTEXPOLYFUN(nlhdlrExprEvalConcave)
static SCIP_RETCODE estimateGradientInner(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_SOL *sol, SCIP_ROWPREP *rowprep, SCIP_Bool *success)
#define CONCAVE_NLHDLR_NAME
Definition: nlhdlr_convex.c:49
static SCIP_Bool exprIsMultivarLinear(SCIP *scip, SCIP_EXPR *expr)
#define CONCAVE_NLHDLR_DESC
Definition: nlhdlr_convex.c:50
static SCIP_DECL_NLHDLRFREEHDLRDATA(nlhdlrfreeHdlrDataConvexConcave)
static SCIP_RETCODE exprstackPush(SCIP *scip, EXPRSTACK *exprstack, int nexprs, SCIP_EXPR **exprs)
static void exprstackFree(SCIP *scip, EXPRSTACK *exprstack)
#define CONVEX_NLHDLR_DETECTPRIORITY
Definition: nlhdlr_convex.c:46
#define DEFAULT_EXTENDEDFORM
Definition: nlhdlr_convex.c:55
static SCIP_RETCODE estimateVertexPolyhedral(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_NLHDLR *nlhdlr, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_SOL *sol, SCIP_Bool usemidpoint, SCIP_Bool overestimate, SCIP_Real targetvalue, SCIP_ROWPREP *rowprep, SCIP_Bool *success)
static SCIP_RETCODE createNlhdlrExprData(SCIP *scip, SCIP_NLHDLRDATA *nlhdlrdata, SCIP_NLHDLREXPRDATA **nlhdlrexprdata, SCIP_EXPR *expr, SCIP_EXPR *nlexpr, SCIP_HASHMAP *nlexpr2origexpr, int nleafs, SCIP_NLHDLR_METHOD participating)
static SCIP_DECL_NLHDLRCOPYHDLR(nlhdlrCopyhdlrConvex)
#define CONVEX_NLHDLR_DESC
Definition: nlhdlr_convex.c:45
#define CONVEX_NLHDLR_NAME
Definition: nlhdlr_convex.c:44
static SCIP_DECL_NLHDLRFREEEXPRDATA(nlhdlrfreeExprDataConvexConcave)
#define DEFAULT_MAXPERTURB
Definition: nlhdlr_convex.c:61
#define CONCAVE_NLHDLR_DETECTPRIORITY
Definition: nlhdlr_convex.c:51
static SCIP_DECL_NLHDLRINITSEPA(nlhdlrInitSepaConvex)
static const int NCURVCHECKS
static SCIP_DECL_NLHDLRESTIMATE(nlhdlrEstimateConvex)
#define RANDNUMINITSEED
Definition: nlhdlr_convex.c:64
#define CONVEX_NLHDLR_ENFOPRIORITY
Definition: nlhdlr_convex.c:47
#define DEFAULT_CVXSIGNOMIAL
Definition: nlhdlr_convex.c:58
static SCIP_RETCODE constructExpr(SCIP *scip, SCIP_NLHDLRDATA *nlhdlrdata, SCIP_EXPR **rootnlexpr, SCIP_HASHMAP *nlexpr2origexpr, int *nleafs, SCIP_EXPR *rootexpr, SCIP_EXPRCURV curv, SCIP_HASHMAP *assumevarfixed, SCIP_Bool assumecurvature, SCIP_Bool *curvsuccess)
static SCIP_RETCODE collectLeafs(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata)
#define DEFAULT_DETECTSUM
Definition: nlhdlr_convex.c:54
static SCIP_RETCODE nlhdlrExprCreate(SCIP *scip, SCIP_HASHMAP *nlexpr2origexpr, SCIP_EXPR **nlhdlrexpr, SCIP_EXPR *origexpr, SCIP_EXPRCURV curv)
#define DEFAULT_CVXPRODCOMP
Definition: nlhdlr_convex.c:59
#define INITLPMAXVARVAL
Definition: nlhdlr_convex.c:63
#define DEFAULT_CVXQUADRATIC_CONCAVE
Definition: nlhdlr_convex.c:57
#define DEFAULT_CVXQUADRATIC_CONVEX
Definition: nlhdlr_convex.c:56
static SCIP_RETCODE estimateConvexSecant(SCIP *scip, SCIP_NLHDLR *nlhdlr, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_SOL *sol, SCIP_ROWPREP *rowprep, SCIP_Bool *success)
static SCIP_DECL_NLHDLRSOLLINEARIZE(nlhdlrSollinearizeConvex)
static SCIP_RETCODE nlhdlrExprGrowChildren(SCIP *scip, SCIP_HASHMAP *nlexpr2origexpr, SCIP_EXPR *nlhdlrexpr, SCIP_EXPRCURV *childrencurv)
#define DECL_CURVCHECK(x)
static SCIP_Bool exprstackIsEmpty(EXPRSTACK *exprstack)
static SCIP_EXPR * exprstackPop(EXPRSTACK *exprstack)
#define CONCAVE_NLHDLR_ENFOPRIORITY
Definition: nlhdlr_convex.c:52
static SCIP_DECL_NLHDLRDETECT(nlhdlrDetectConvex)
static SCIP_RETCODE estimateGradient(SCIP *scip, SCIP_NLHDLR *nlhdlr, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_SOL *sol, SCIP_ROWPREP *rowprep, SCIP_Bool *success)
nonlinear handlers for convex and concave expressions, respectively
BMS_BLKMEM * SCIPblkmem(SCIP *scip)
Definition: scip_mem.c:57
preparation of a linear inequality to become a SCIP_ROW
public functions of nonlinear handlers of nonlinear constraints
public functions to work with algebraic expressions
SCIP_EXPR ** stack
SCIP_Real sup
Definition: intervalarith.h:56
SCIP_Real inf
Definition: intervalarith.h:55
SCIP_NLHDLREXPRDATA * nlhdlrexprdata
SCIP_EXPRCURV
Definition: type_expr.h:61
@ SCIP_EXPRCURV_CONVEX
Definition: type_expr.h:63
@ SCIP_EXPRCURV_LINEAR
Definition: type_expr.h:65
@ SCIP_EXPRCURV_UNKNOWN
Definition: type_expr.h:62
@ SCIP_EXPRCURV_CONCAVE
Definition: type_expr.h:64
#define SCIP_EXPRITER_VISITINGCHILD
Definition: type_expr.h:693
SCIP_MONOTONE
Definition: type_expr.h:70
@ SCIP_MONOTONE_UNKNOWN
Definition: type_expr.h:71
@ SCIP_MONOTONE_INC
Definition: type_expr.h:72
@ SCIP_MONOTONE_DEC
Definition: type_expr.h:73
@ SCIP_EXPRITER_DFS
Definition: type_expr.h:716
@ SCIP_BOUNDTYPE_LOWER
Definition: type_lp.h:56
@ SCIP_SIDETYPE_RIGHT
Definition: type_lp.h:65
@ SCIP_SIDETYPE_LEFT
Definition: type_lp.h:64
#define SCIP_NLHDLR_METHOD_SEPAABOVE
Definition: type_nlhdlr.h:52
struct SCIP_NlhdlrData SCIP_NLHDLRDATA
Definition: type_nlhdlr.h:452
#define SCIP_NLHDLR_METHOD_SEPABOTH
Definition: type_nlhdlr.h:53
unsigned int SCIP_NLHDLR_METHOD
Definition: type_nlhdlr.h:57
struct SCIP_NlhdlrExprData SCIP_NLHDLREXPRDATA
Definition: type_nlhdlr.h:453
#define SCIP_NLHDLR_METHOD_SEPABELOW
Definition: type_nlhdlr.h:51
@ SCIP_OKAY
Definition: type_retcode.h:42
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63