cons_linear.c
Go to the documentation of this file.
27 * @brief Constraint handler for linear constraints in their most general form, \f$lhs <= a^T x <= rhs\f$.
57/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
99#define CONSHDLR_ENFOPRIORITY -1000000 /**< priority of the constraint handler for constraint enforcing */
100#define CONSHDLR_CHECKPRIORITY -1000000 /**< priority of the constraint handler for checking feasibility */
101#define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
102#define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
103#define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
105#define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
106#define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
107#define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
108#define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
110#define CONSHDLR_PRESOLTIMING (SCIP_PRESOLTIMING_FAST | SCIP_PRESOLTIMING_EXHAUSTIVE) /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
120#define DEFAULT_TIGHTENBOUNDSFREQ 1 /**< multiplier on propagation frequency, how often the bounds are tightened */
122#define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
124#define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in root node */
125#define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
126#define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
127#define DEFAULT_NMINCOMPARISONS 200000 /**< number for minimal pairwise presolving comparisons */
128#define DEFAULT_MINGAINPERNMINCOMP 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
130#define DEFAULT_SORTVARS TRUE /**< should variables be sorted after presolve w.r.t their coefficient absolute for faster
132#define DEFAULT_CHECKRELMAXABS FALSE /**< should the violation for a constraint with side 0.0 be checked relative
134#define DEFAULT_MAXAGGRNORMSCALE 0.0 /**< maximal allowed relative gain in maximum norm for constraint aggregation
136#define DEFAULT_MAXEASYACTIVITYDELTA 1e6 /**< maximum activity delta to run easy propagation on linear constraint
138#define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
140#define DEFAULT_SEPARATEALL FALSE /**< should all constraints be subject to cardinality cut generation instead of only
142#define DEFAULT_AGGREGATEVARIABLES TRUE /**< should presolving search for redundant variables in equations */
145#define DEFAULT_SINGLETONSTUFFING TRUE /**< should stuffing of singleton continuous variables be performed? */
146#define DEFAULT_SINGLEVARSTUFFING FALSE /**< should single variable stuffing be performed, which tries to fulfill
148#define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
151#define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
154#define DEFAULT_DETECTPARTIALOBJECTIVE TRUE/**< should presolving try to detect subsets of constraints parallel to the
157#define DEFAULT_RANGEDROWARTCONS TRUE /**< should presolving and propagation extract sub-constraints from ranged rows and equations? */
161#define DEFAULT_MULTAGGRREMOVE FALSE /**< should multi-aggregations only be performed if the constraint can be
163#define DEFAULT_MAXMULTAGGRQUOT 1e+03 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
164#define DEFAULT_MAXDUALMULTAGGRQUOT 1e+20 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
169#define MAXSCALEDCOEFINTEGER 0 /**< maximal coefficient value after scaling if all variables are of integral
176#define MAXVALRECOMP 1e+06 /**< maximal abolsute value we trust without recomputing the activity */
177#define MINVALRECOMP 1e-05 /**< minimal abolsute value we trust without recomputing the activity */
180#define NONLINCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of expressions constraints */
182/* @todo add multi-aggregation of variables that are in exactly two equations (, if not numerically an issue),
194 QUAD_MEMBER(SCIP_Real minactivity); /**< minimal value w.r.t. the variable's local bounds for the constraint's
196 QUAD_MEMBER(SCIP_Real maxactivity); /**< maximal value w.r.t. the variable's local bounds for the constraint's
202 QUAD_MEMBER(SCIP_Real glbminactivity); /**< minimal value w.r.t. the variable's global bounds for the constraint's
204 QUAD_MEMBER(SCIP_Real glbmaxactivity); /**< maximal value w.r.t. the variable's global bounds for the constraint's
206 SCIP_Real lastglbminactivity; /**< last global minimal activity which was computed by complete summation
208 SCIP_Real lastglbmaxactivity; /**< last global maximal activity which was computed by complete summation
210 SCIP_Real maxactdelta; /**< maximal activity contribution of a single variable, or SCIP_INVALID if invalid */
211 SCIP_VAR* maxactdeltavar; /**< variable with maximal activity contribution, or NULL if invalid */
219 int minactivityneginf; /**< number of coefficients contributing with neg. infinite value to minactivity */
220 int minactivityposinf; /**< number of coefficients contributing with pos. infinite value to minactivity */
221 int maxactivityneginf; /**< number of coefficients contributing with neg. infinite value to maxactivity */
222 int maxactivityposinf; /**< number of coefficients contributing with pos. infinite value to maxactivity */
223 int minactivityneghuge; /**< number of coefficients contributing with huge neg. value to minactivity */
224 int minactivityposhuge; /**< number of coefficients contributing with huge pos. value to minactivity */
225 int maxactivityneghuge; /**< number of coefficients contributing with huge neg. value to maxactivity */
226 int maxactivityposhuge; /**< number of coefficients contributing with huge pos. value to maxactivity */
227 int glbminactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbminactivity */
228 int glbminactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbminactivity */
229 int glbmaxactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbmaxactivity */
230 int glbmaxactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbmaxactivity */
231 int glbminactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbminactivity */
232 int glbminactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbminactivity */
233 int glbmaxactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbmaxactivity */
234 int glbmaxactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbmaxactivity */
241 unsigned int rangedrowpropagated:2; /**< did we perform ranged row propagation on this constraint?
253 unsigned int changed:1; /**< was constraint changed since last aggregation round in preprocessing? */
256 unsigned int upgraded:1; /**< is the constraint upgraded and will it be removed after preprocessing? */
261 unsigned int coefsorted:1; /**< are variables sorted by type and their absolute activity delta? */
263 unsigned int hascontvar:1; /**< does the constraint contain at least one continuous variable? */
264 unsigned int hasnonbinvar:1; /**< does the constraint contain at least one non-binary variable? */
265 unsigned int hasnonbinvalid:1; /**< is the information stored in hasnonbinvar and hascontvar valid? */
266 unsigned int checkabsolute:1; /**< should the constraint be checked w.r.t. an absolute feasibilty tolerance? */
281 SCIP_LINCONSUPGRADE** linconsupgrades; /**< linear constraint upgrade methods for specializing linear constraints */
282 SCIP_Real maxaggrnormscale; /**< maximal allowed relative gain in maximum norm for constraint aggregation
284 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
286 SCIP_Real mingainpernmincomp; /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise comparison round */
287 SCIP_Real maxeasyactivitydelta;/**< maximum activity delta to run easy propagation on linear constraint
291 int tightenboundsfreq; /**< multiplier on propagation frequency, how often the bounds are tightened */
298 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
299 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
300 SCIP_Bool separateall; /**< should all constraints be subject to cardinality cut generation instead of only
302 SCIP_Bool aggregatevariables; /**< should presolving search for redundant variables in equations */
303 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
305 SCIP_Bool singletonstuffing; /**< should stuffing of singleton continuous variables be performed? */
306 SCIP_Bool singlevarstuffing; /**< should single variable stuffing be performed, which tries to fulfill
309 SCIP_Bool checkrelmaxabs; /**< should the violation for a constraint with side 0.0 be checked relative
311 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
314 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
317 SCIP_Bool detectpartialobjective;/**< should presolving try to detect subsets of constraints parallel to
319 SCIP_Bool rangedrowpropagation;/**< should presolving and propagation try to improve bounds, detect
322 SCIP_Bool rangedrowartcons; /**< should presolving and propagation extract sub-constraints from ranged rows and equations?*/
325 SCIP_Bool multaggrremove; /**< should multi-aggregations only be performed if the constraint can be
327 SCIP_Real maxmultaggrquot; /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for primal multiaggregation */
328 SCIP_Real maxdualmultaggrquot;/**< maximum coefficient dynamism (ie. maxabsval / minabsval) for dual multiaggregation */
351 PROPRULE_1_RANGEDROW = 3, /**< fixed variables and gcd of all left variables tighten bounds of a
354};
431/** constructs an inference information out of a propagation rule and a position number, returns info as int */
463 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->linconsupgrades, conshdlrdata->linconsupgradessize, newsize) );
492 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
582 SCIPfreeBlockMemoryArrayNull(scip, &(*conshdlrdata)->linconsupgrades, (*conshdlrdata)->linconsupgradessize);
608 SCIPwarningMessage(scip, "Try to add already known upgrade message for constraint handler %s.\n", conshdlrname);
631 SCIP_CALL( conshdlrdataEnsureLinconsupgradesSize(scip, conshdlrdata, conshdlrdata->nlinconsupgrades+1) );
649/** installs rounding locks for the given variable associated to the given coefficient in the linear constraint */
682/** removes rounding locks for the given variable associated to the given coefficient in the linear constraint */
922 if( SCIPisConsCompressionEnabled(scip) && SCIPisEQ(scip, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var)) )
964 /* due to compressed copying, we may have fixed variables contributing to the left and right hand side */
1036 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
1122 SCIP_CALL( SCIPwriteVarsLinearsum(scip, file, consdata->vars, consdata->vals, consdata->nvars, TRUE) );
1155 SCIPmessageFPrintInfo(SCIPgetMessagehdlr(scip), file, " [%s] <%s>: ", SCIPconshdlrGetName(SCIPconsGetHdlr(cons)), SCIPconsGetName(cons));
1277 bound = (SCIPvarGetBestBoundType(consdata->vars[i]) == SCIP_BOUNDTYPE_LOWER) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1323 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1325 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1350 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbLocal(consdata->vars[i]) : SCIPvarGetLbLocal(consdata->vars[i]);
1352 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1377 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbGlobal(consdata->vars[i]) : SCIPvarGetUbGlobal(consdata->vars[i]);
1379 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1380 SCIPquadprecSumQD(consdata->glbminactivity, consdata->glbminactivity, consdata->vals[i] * bound);
1404 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbGlobal(consdata->vars[i]) : SCIPvarGetLbGlobal(consdata->vars[i]);
1406 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1407 SCIPquadprecSumQD(consdata->glbmaxactivity, consdata->glbmaxactivity, consdata->vals[i] * bound);
1470/** checks the type of all variables of the constraint and sets hasnonbinvar and hascontvar flags accordingly */
1619 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1671 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1673 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1727 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1729 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1797 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1825 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1850 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1856 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1859 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1865 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1868 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1883 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1889 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1892 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1898 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1901 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1956 /* update the activity, if the current value is valid and there was a change in the finite part */
2009 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2018 consdataUpdateActivities(scip, consdata, var, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, FALSE, checkreliability);
2020 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->minactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->minactivity)));
2021 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->maxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->maxactivity)));
2034 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2043 consdataUpdateActivities(scip, consdata, var, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, FALSE, checkreliability);
2045 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->minactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->minactivity)));
2046 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->maxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->maxactivity)));
2058 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2066 consdataUpdateActivities(scip, consdata, NULL, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, TRUE, checkreliability);
2068 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbminactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbminactivity)));
2069 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbmaxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbmaxactivity)));
2081 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2089 consdataUpdateActivities(scip, consdata, NULL, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, TRUE, checkreliability);
2091 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbminactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbminactivity)));
2092 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbmaxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbmaxactivity)));
2103 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2141 consdataUpdateActivitiesLb(scip, consdata, var, 0.0, SCIPvarGetLbLocal(var), val, checkreliability);
2142 consdataUpdateActivitiesUb(scip, consdata, var, 0.0, SCIPvarGetUbLocal(var), val, checkreliability);
2143 consdataUpdateActivitiesGlbLb(scip, consdata, 0.0, SCIPvarGetLbGlobal(var), val, checkreliability);
2144 consdataUpdateActivitiesGlbUb(scip, consdata, 0.0, SCIPvarGetUbGlobal(var), val, checkreliability);
2172/** updates minimum and maximum activity for coefficient deletion, invalidates maximum absolute value if necessary */
2179 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2223 consdataUpdateActivitiesLb(scip, consdata, var, SCIPvarGetLbLocal(var), 0.0, val, checkreliability);
2224 consdataUpdateActivitiesUb(scip, consdata, var, SCIPvarGetUbLocal(var), 0.0, val, checkreliability);
2225 consdataUpdateActivitiesGlbLb(scip, consdata, SCIPvarGetLbGlobal(var), 0.0, val, checkreliability);
2226 consdataUpdateActivitiesGlbUb(scip, consdata, SCIPvarGetUbGlobal(var), 0.0, val, checkreliability);
2229 /* reset maximum activity delta so that it will be recalculated on the next real propagation */
2237/** updates minimum and maximum activity for coefficient change, invalidates maximum absolute value if necessary */
2245 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2248 /* @todo do something more clever here, e.g. if oldval * newval >= 0, do the update directly */
2347/** gets minimal activity for constraint and given values of counters for infinite and huge contributions
2348 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2361 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2365 SCIP_Bool* issettoinfinity /**< pointer to store whether minactivity was set to infinity or calculated */
2392 /* if we have neg. huge contributions or do not need a good relaxation, we just return -infty as minactivity */
2424 /* we have no infinite and no neg. huge contributions, but pos. huge contributions; a feasible relaxation of the
2425 * minactivity is given by adding the number of positive huge contributions times the huge value
2442/** gets maximal activity for constraint and given values of counters for infinite and huge contributions
2443 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2456 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2460 SCIP_Bool* issettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2487 /* if we have pos. huge contributions or do not need a good relaxation, we just return +infty as maxactivity */
2519 /* we have no infinite and no pos. huge contributions, but neg. huge contributions; a feasible relaxation of the
2520 * maxactivity is given by subtracting the number of negative huge contributions times the huge value
2550 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minactivity was set to infinity or calculated */
2551 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2680 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2681 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2729 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2730 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2767 consdata->minactivityposhuge, consdata->minactivityneghuge, absval * minactbound, FALSE, goodrelax,
2771 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2772 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2809 consdata->maxactivityposhuge, consdata->maxactivityneghuge, absval * maxactbound, FALSE, goodrelax,
2821 SCIP_Real* glbminactivity, /**< pointer to store the minimal activity, or NULL, if not needed */
2822 SCIP_Real* glbmaxactivity, /**< pointer to store the maximal activity, or NULL, if not needed */
2827 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2828 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2883 SCIP_Real* minresactivity, /**< pointer to store the minimal residual activity, or NULL, if not needed */
2884 SCIP_Real* maxresactivity, /**< pointer to store the maximal residual activity, or NULL, if not needed */
2889 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2890 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2932 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2933 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2939 getMinActivity(scip, consdata, consdata->glbminactivityposinf - 1, consdata->glbminactivityneginf,
2947 getMinActivity(scip, consdata, consdata->glbminactivityposinf, consdata->glbminactivityneginf - 1,
2980 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2981 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2987 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf, consdata->glbmaxactivityneginf - 1,
2995 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf - 1, consdata->glbmaxactivityneginf,
3062 else if( (SCIPisInfinity(scip, solval) && negsign) || (SCIPisInfinity(scip, -solval) && !negsign) )
3069 SCIPdebugMsg(scip, "activity of linear constraint: %.15g, %d positive infinity values, %d negative infinity values \n", activity, nposinf, nneginf);
3158/** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3197/** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3253 SCIP_Real abscont1 = REALABS(consdata->vals[ind1] * (SCIPvarGetUbGlobal(var1) - SCIPvarGetLbGlobal(var1)));
3254 SCIP_Real abscont2 = REALABS(consdata->vals[ind2] * (SCIPvarGetUbGlobal(var2) - SCIPvarGetLbGlobal(var2)));
3338 * sorts variables of the remaining problem by binaries, integers, implicit integers, and continuous variables,
3461 /* the left hand side switched from -infinity to a non-infinite value -> install rounding locks */
3486 /* the left hand side switched from a non-infinite value to -infinity -> remove rounding locks */
3507 /* check whether the left hand side is increased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3591 /* the right hand side switched from infinity to a non-infinite value -> install rounding locks */
3616 /* the right hand side switched from a non-infinite value to infinity -> remove rounding locks */
3637 /* check whether the right hand side is decreased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3685 assert(!SCIPvarIsRelaxationOnly(var) || (!SCIPconsIsChecked(cons) && !SCIPconsIsEnforced(cons)));
3770 consdata->indexsorted = consdata->indexsorted && (consdataCompVar((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3776 consdata->coefsorted = consdata->coefsorted && (consdataCompVarProp((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3870 /* if at most one variable is left, the activities should be recalculated (to correspond exactly to the bounds
4030 SCIPwarningMessage(scip, "skipped scaling for linear constraint <%s> to avoid numerical troubles (scalar: %.15g)\n",
4041 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4049 SCIPwarningMessage(scip, "coefficient %.15g of variable <%s> in linear constraint <%s> scaled to zero (scalar: %.15g)\n",
4071 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4083 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasCeil, we subtract 0.5 before ceiling up
4145 * Apply the following rules in the given order, until the sign of the factor is determined. Later rules only apply,
4150 * 4. the number of positive coefficients must not be smaller than the number of negative coefficients
4153 * Try to identify a rational representation of the fractional coefficients, and multiply all coefficients
4225 if( !SCIPisInfinity(scip, consdata->lhs) && SCIPisFeasZero(scip, consdata->lhs) != SCIPisFeasZero(scip, consdata->lhs/maxabsval) )
4227 if( !SCIPisInfinity(scip, consdata->rhs) && SCIPisFeasZero(scip, consdata->rhs) != SCIPisFeasZero(scip, consdata->rhs/maxabsval) )
4243 SCIPdebugMsg(scip, "divide linear constraint with %g, because all coefficients are in absolute value the same\n", maxabsval);
4270 epsilon = SCIPepsilon(scip) * 0.9; /* slightly decrease epsilon to be safe in rational conversion below */
4282 maxmult = MIN(maxmult, (SCIP_Longint) (MAXSCALEDCOEFINTEGER / MAX(maxabsval, 1.0))); /*lint !e835*/
4308 /* 3. the absolute value of the right hand side must be greater than that of the left hand side */
4317 /* 4. the number of positive coefficients must not be smaller than the number of negative coefficients */
4370 /* it might be that we have really big coefficients, but all are integral, in that case we want to divide them by
4390 SCIPdebugMsg(scip, "scale linear constraint with %" SCIP_LONGINT_FORMAT " to make coefficients integral\n", scm);
4439 /* since the lhs/rhs is not respected for gcd calculation it can happen that we detect infeasibility */
4442 if( SCIPisEQ(scip, consdata->lhs, consdata->rhs) && !SCIPisFeasIntegral(scip, consdata->rhs / gcd) )
4446 SCIPdebugMsg(scip, "detected infeasibility of constraint after scaling with gcd=%" SCIP_LONGINT_FORMAT ":\n", gcd);
4454 SCIPdebugMsg(scip, "divide linear constraint by greatest common divisor %" SCIP_LONGINT_FORMAT "\n", gcd);
4584 /* if an unmodifiable row has been added to the LP, then we cannot apply fixing anymore (cannot change a row)
4585 * this should not happen, as applyFixings is called in addRelaxation() before creating and adding a row
4587 assert(consdata->row == NULL || !SCIProwIsInLP(consdata->row) || SCIProwIsModifiable(consdata->row));
4737 else if( SCIPisGE(scip, ABS(consdata->lhs), 1.0) && SCIPisEQ(scip, lhssubtrahend, consdata->lhs) )
4769 else if( SCIPisGE(scip, ABS(consdata->rhs), 1.0) && SCIPisEQ(scip, rhssubtrahend, consdata->rhs) )
4783 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have
4802/** for each variable in the linear constraint, except the inferred variable, adds one bound to the conflict analysis'
4803 * candidate store (bound depends on sign of coefficient and whether the left or right hand side was the reason for the
4804 * inference variable's bound change); the conflict analysis can be initialized with the linear constraint being the
4812 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
4841 /* for each variable, add the bound to the conflict queue, that is responsible for the minimal or maximal
4842 * residual value, depending on whether the left or right hand side is responsible for the bound change:
4847 /* if the variable is integral we only need to add reason bounds until the propagation could be applied */
4860 /* calculate the minimal and maximal global activity of all other variables involved in the constraint */
4865 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, &minresactivity, NULL,
4868 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, NULL, &maxresactivity,
4882 if( (reasonisrhs && !isminsettoinfinity && ismintight) || (!reasonisrhs && !ismaxsettoinfinity && ismaxtight) ) /*lint !e644*/
4889 /* calculate the residual capacity that would be left, if the variable would be set to one more / one less
4944 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound */
4946 rescap -= vals[i] * (SCIPgetVarLbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetLbGlobal(vars[i]));
4950 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound */
4952 rescap -= vals[i] * (SCIPgetVarUbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetUbGlobal(vars[i]));
4972 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound is responsible */
4977 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound is responsible */
4985/** for each variable in the linear ranged row constraint, except the inferred variable, adds the bounds of all fixed
4986 * variables to the conflict analysis' candidate store; the conflict analysis can be initialized
4987 * with the linear constraint being the conflict detecting constraint by using NULL as inferred variable
4994 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5026 if( !SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetLbGlobal(vars[v])) )
5032 if( !SCIPisEQ(scip, SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetUbGlobal(vars[v])) )
5042 if( SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE)) )
5044 /* add all bounds of fixed variables which lead to the boundchange of the given inference variable */
5101/** resolves a propagation on the given variable by supplying the variables needed for applying the corresponding
5112 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5113 SCIP_RESULT* result /**< pointer to store the result of the propagation conflict resolving call */
5154 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5155 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5164 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5165 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5174 /* the bound of the variable was tightened, because some variables were already fixed and the leftover only allow
5186 SCIPerrorMessage("invalid inference information %d in linear constraint <%s> at position %d for %s bound of variable <%s>\n",
5206 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5212 /* add the conflicting bound for each variable of infeasible constraint to conflict candidate queue */
5260 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5284 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
5286 QUAD_TO_DBL(consdata->minactivity), QUAD_TO_DBL(consdata->maxactivity), consdata->lhs, consdata->rhs, newub);
5291 SCIP_CALL( SCIPinferVarUbCons(scip, var, newub, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5330 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5354 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
5356 QUAD_TO_DBL(consdata->minactivity), QUAD_TO_DBL(consdata->maxactivity), consdata->lhs, consdata->rhs, newlb);
5361 SCIP_CALL( SCIPinferVarLbCons(scip, var, newlb, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5397 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5457 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5460 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5472 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5516 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5528 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5564 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5567 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5579 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5622 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5634 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5666/** analyzes conflicting bounds on given ranged row constraint, and adds conflict constraint to problem */
5689 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5695 /* add the conflicting fixed variables of this ranged row constraint to conflict candidate queue */
5709 * Check ranged rows for possible solutions, possibly detect infeasibility, fix variables due to having only one possible
5710 * solution, tighten bounds if having only two possible solutions or add constraints which propagate a subset of
5795 addartconss = conshdlrdata->rangedrowartcons && SCIPgetDepth(scip) < 1 && !SCIPinProbing(scip) && !SCIPinRepropagation(scip);
5800 /* we are not allowed to add artificial constraints during propagation; if nothing changed on this constraint since
5801 * the last rangedrowpropagation, we can stop; otherwise, we mark this constraint to be rangedrowpropagated without
5819 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5848 * coefficient so that all variables in this group will have a gcd greater than 1, this group will be implicitly
5851 * the second group will contain all left unfixed variables and will be saved as infcheckvars with corresponding
5852 * coefficients as infcheckvals, the order of these variables should be the same as in the consdata object
5855 /* find first integral variables with integral coefficient greater than 1, thereby collecting all other unfixed
5865 /* partition the variables, do not change the order of collection, because it might be used later on */
5869 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5897 while( v < consdata->nvars && SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) );
5911 assert(!SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])));
5912 assert(SCIPisIntegral(scip, consdata->vals[v]) && SCIPvarGetType(consdata->vars[v]) != SCIP_VARTYPE_CONTINUOUS && REALABS(consdata->vals[v]) > 1.5);
5919 /* go on to partition the variables, do not change the order of collection, because it might be used later on;
5923 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5936 if( !SCIPisIntegral(scip, consdata->vals[v]) || SCIPvarGetType(consdata->vars[v]) == SCIP_VARTYPE_CONTINUOUS ||
5975 /* it should not happen that all variables are of integral type and have a gcd >= 2, this should be done by
6034 SCIPdebugMsg(scip, "minactinfvarsinvalid = %u, minactinfvars = %g, maxactinfvarsinvalid = %u, maxactinfvars = %g, gcd = %lld, ninfcheckvars = %d, ncontvars = %d\n",
6035 minactinfvarsinvalid, minactinfvars, maxactinfvarsinvalid, maxactinfvars, gcd, ninfcheckvars, ncontvars);
6037 /* @todo maybe we took the wrong variables as infcheckvars we could try to exchange integer variables */
6038 /* @todo if minactinfvarsinvalid or maxactinfvarsinvalid are true, try to exchange both partitions to maybe get valid
6040 /* @todo calculate minactivity and maxactivity for all non-intcheckvars, and use this for better bounding,
6042 * that therefore the conflict variables in addConflictFixedVars() need to be extended by all variables which
6046 /* check if between left hand side and right hand side exist a feasible point, if not the constraint leads to
6051 SCIPdebugMsg(scip, "no feasible value exist, constraint <%s> lead to infeasibility", SCIPconsGetName(cons));
6056 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6073 gcdinfvars = SCIPcalcGreComDiv(gcdinfvars, (SCIP_Longint)(REALABS(infcheckvals[v]) + feastol));
6081 /* compute solutions for this ranged row, if all variables are of integral type with integral coefficients */
6150 SCIPdebugMsg(scip, "here nsols %s %d, minsolvalue = %g, maxsolvalue = %g, ninfcheckvars = %d, nunfixedvars = %d\n",
6158 SCIPdebugMsg(scip, "no solution found; constraint <%s> lead to infeasibility\n", SCIPconsGetName(cons));
6163 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6191 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6212 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6224 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6306 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6313 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6318 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals,
6370 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6391 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6413 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6425 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6532 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newlb) );
6553 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newub) );
6561 /* at least two solutions and more than one variable, so we add a new constraint which bounds the feasible
6564 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6586 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons1_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6591 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6600 /* @todo maybe add constraint for all variables which are not infcheckvars, lhs should be minvalue, rhs
6621 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6671 if( v == consdata->nvars && !SCIPisHugeValue(scip, -minact) && !SCIPisHugeValue(scip, maxact) )
6686 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons2_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6691 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6717 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
6760 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
6773 /* check, if we can tighten the variable's bounds reliably, therefore only consider sides which are small or
6774 * relatively different to the residual activity bound to avoid cancellation leading to numerical difficulties
6784 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6795 (!SCIPisUbBetter(scip, newub, lb, ub) && (!SCIPisFeasLT(scip, newub, ub) || !SCIPvarIsIntegral(var))
6802 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
6803 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6819 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6837 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6852 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6853 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6869 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6880 /* check, if we can tighten the variable's bounds reliably, therefore only consider sides which are small or
6881 * relatively different to the residual activity bound to avoid cancellation leading to numerical difficulties
6890 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6901 || (!SCIPisLbBetter(scip, newlb, lb, ub) && (!SCIPisFeasGT(scip, newlb, lb) || !SCIPvarIsIntegral(var))
6908 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6909 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6925 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6942 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6957 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g], newub=%.15g\n",
6958 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6974 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6994 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7083 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &ismintight, &ismaxtight,
7088 slack = (SCIPisInfinity(scip, consdata->rhs) || isminsettoinfinity) ? SCIPinfinity(scip) : (consdata->rhs - minactivity);
7089 surplus = (SCIPisInfinity(scip, -consdata->lhs) || ismaxsettoinfinity) ? SCIPinfinity(scip) : (maxactivity - consdata->lhs);
7099 /* as long as the bounds might be tightened again, try to tighten them; abort after a maximal number of rounds */
7107 for( nrounds = 0; (force || consdata->boundstightened < tightenmode) && nrounds < MAXTIGHTENROUNDS; ++nrounds ) /*lint !e574*/
7111 * note: it might happen that integer variables become binary during bound tightening at the root node
7122 /* try to tighten the bounds of each variable in the constraint. During solving process, the binary variable
7146 && !SCIPisFeasEQ(scip, SCIPvarGetUbLocal(consdata->vars[v]), SCIPvarGetLbLocal(consdata->vars[v])) )
7153 SCIPdebugMessage("linear constraint <%s> found %d bound changes in round %d\n", SCIPconsGetName(cons),
7161 assert(*cutoff || SCIPisFeasEQ(scip, SCIPvarGetLbLocal(consdata->vars[0]), SCIPvarGetUbLocal(consdata->vars[0])));
7173 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
7174 SCIP_Bool checkrelmaxabs, /**< Should the violation for a constraint with side 0.0 be checked relative
7210 SCIPdebugMsg(scip, " consdata activity=%.15g (lhs=%.15g, rhs=%.15g, row=%p, checklprows=%u, rowinlp=%u, sol=%p, hascurrentnodelp=%u)\n",
7232 /* the activity of pseudo solutions may be invalid if it comprises positive and negative infinity contributions; we
7248 else if( !consdata->checkabsolute && (SCIPisFeasLT(scip, activity, consdata->lhs) || SCIPisFeasGT(scip, activity, consdata->rhs)) )
7261 /* the (much) more complicated check: we try to disregard random noise and violations of a 0.0 side which are
7310 SCIPdebugMsg(scip, " lhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7364 SCIPdebugMsg(scip, " rhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7400 ((!SCIPisInfinity(scip, -consdata->lhs) && SCIPisGT(scip, consdata->lhs-activity, SCIPfeastol(scip))) ||
7401 (!SCIPisInfinity(scip, consdata->rhs) && SCIPisGT(scip, activity-consdata->rhs, SCIPfeastol(scip)))) )
7443 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, cons, SCIPconsGetName(cons), consdata->lhs, consdata->rhs,
7446 SCIP_CALL( SCIPaddVarsToRow(scip, consdata->row, consdata->nvars, consdata->vars, consdata->vals) );
7471 /* replace all fixed variables by active counterparts, as we have no chance to do this anymore after the row has been added to the LP
7525 /* skip deactivated, redundant, or local linear constraints (the NLP does not allow for local rows at the moment) */
7537 0.0, consdata->nvars, consdata->vars, consdata->vals, NULL, consdata->lhs, consdata->rhs, SCIP_EXPRCURV_LINEAR) );
7550/** separates linear constraint: adds linear constraint as cut, if violated by given solution */
7558 SCIP_Bool separateall, /**< should all constraints be subject to cardinality cut generation instead of only
7580 SCIP_CALL( checkCons(scip, cons, sol, (sol != NULL), conshdlrdata->checkrelmaxabs, &violated) );
7593 /* we only want to call the knapsack cardinality cut separator for rows that have a non-zero dual solution */
7647 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7692 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7731 SCIPdebug( SCIPdebugMsg(scip, "linear constraint <%s> found %d bound changes and %d fixings\n", SCIPconsGetName(cons), *nchgbds - oldnchgbds, nfixedvars); )
7741 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
7746 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (rhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7757 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (lhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7766 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
7768 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7771 /* remove the constraint locally unless it has become empty, in which case it is removed globally */
7829 SCIPdebugMsg(scip, "converting variable <%s> with fixed bounds [%.15g,%.15g] into fixed variable fixed at %.15g\n",
7866 * a) if the constraint has a finite right hand side and the negative infinity counters for the minactivity are zero
7867 * then add the variables as a clique for which all successive pairs of coefficients fullfill the following
7872 * and also add the binary to binary implication also for non-successive variables for which the same argument
7877 * e.g. 5.3 x1 + 3.6 x2 + 3.3 x3 + 2.1 x4 <= 5.5 (all x are binary) would lead to the clique (x1, x2, x3) and the
7880 * b) if the constraint has a finite left hand side and the positive infinity counters for the maxactivity are zero
7881 * then add the variables as a clique for which all successive pairs of coefficients fullfill the follwoing
7886 * and also add the binary to binary implication also for non-successive variables for which the same argument
7893 * c) the constraint has a finite right hand side and a finite minactivity then add the variables as a negated
7894 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7899 * and also add the binary to binary implication also for non-successive variables for which the
7904 * e.g. -4 x1 -3 x2 - 2 x3 + 2 x4 <= -4 would lead to the (negated) clique (~x1, ~x2) and the binary to binary
7907 * d) the constraint has a finite left hand side and a finite maxactivity then add the variables as a negated
7908 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7913 * and also add the binary to binary implication also for non-successive variables for which the same argument
7920 * 2. if the linear constraint represents a set-packing or set-partitioning constraint, the whole constraint is added
7928 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7972 * for now we only add binary to non-binary implications, and this is only done for the binary variable with the
7973 * maximal absolute contribution and also only if this variable would force all other variables to their bound
7981 /* @todo we might extract implications/cliques if SCIPvarIsBinary() variables exist and we have integer variables
7985 * "seem to", because there are rare situations in which variables may actually not be sorted by type, even though consdataSort has been called
7986 * this situation can occur if, e.g., the type of consdata->vars[1] has been changed to binary, but the corresponding variable event has
7987 * not been executed yet, because it is the eventExecLinear() which marks the variables array as unsorted (set consdata->indexsorted to FALSE),
7989 * we assume that in this situation the below code may be executed in a future presolve round, after the variable events have been executed
8005 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8007 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8008 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8012 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8075 /* if the right hand side and the minimal activity are finite and changing the variable with the biggest
8076 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8079 if( finiterhs && finiteminact && SCIPisEQ(scip, QUAD_TO_DBL(consdata->glbminactivity), consdata->rhs - maxabscontrib) )
8091 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8098 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8110 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8116 /* if the left hand side and the maximal activity are finite and changing the variable with the biggest
8117 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8120 if( finitelhs && finitemaxact && SCIPisEQ(scip, QUAD_TO_DBL(consdata->glbmaxactivity), consdata->lhs - maxabscontrib) )
8132 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8139 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8151 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8160 SCIPdebugMsg(scip, "extracted %d implications from constraint %s which led to %d bound changes, %scutoff detetcted\n", nimpls, SCIPconsGetName(cons), *nchgbds - oldnchgbds, *cutoff ? "" : "no ");
8165 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8214 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8216 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8217 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8221 /* 1. we wheck whether some variables do not fit together into this constraint and add the corresponding clique
8224 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8261 /* setppc constraints will be handled later; we need at least two binary variables with same sign to extract
8296#ifdef SCIP_DISABLED_CODE /* assertion should only hold when constraints were fully propagated and boundstightened */
8297 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8335 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8372 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8447 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8487 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8498 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), NULL, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8526 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8626 SCIP_CALL( SCIPaddClique(scip, &(binvars[j+1]), values, i - j, FALSE, &infeasible, &nbdchgs) );
8648 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8659 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), values, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8689 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8806 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8852 /* check if all variables are binary, if the coefficients are +1 or -1, and if the right hand side is equal
8853 * to 1 - number of negative coefficients, or if the left hand side is equal to number of positive coefficients - 1
8884 SCIP_CALL( SCIPaddClique(scip, vars, values, nvars, SCIPisEQ(scip, consdata->lhs, consdata->rhs), &infeasible, &nbdchgs) );
8952 SCIPdebugMsg(scip, "rounding sides=[%.15g,%.15g] of linear constraint <%s> with integral coefficients and variables only "
8986/** tightens coefficients of binary, integer, and implicit integer variables due to activity bounds in presolving:
8993 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9002 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9010 * A deviation of only one from their bound makes the lhs/rhs feasible (i.e., redundant), even if all other
9011 * variables are set to their "worst" bound. If all variables which are not relevant cannot make the lhs/rhs
9012 * redundant, even if they are set to their "best" bound, they can be removed from the constraint. E.g., for binary
9013 * variables and an inequality x_1 +x_2 +10y_1 +10y_2 >= 5, setting either of the y_i to one suffices to fulfill the
9016 * @todo use also some tightening procedures for (knapsack) constraints with non-integer coefficients, see
9030 SCIP_Real minactivity; /* minimal value w.r.t. the variable's local bounds for the constraint's
9032 SCIP_Real maxactivity; /* maximal value w.r.t. the variable's local bounds for the constraint's
9034 SCIP_Bool isminacttight; /* are all contributions to the minactivity non-huge or non-contradicting? */
9035 SCIP_Bool ismaxacttight; /* are all contributions to the maxactivity non-huge or non-contradicting? */
9073 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
9099 && SCIPisGE(scip, minactivity + val, consdata->lhs) && SCIPisLE(scip, maxactivity - val, consdata->rhs);
9121 lval -= otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9127 rval += otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9142 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9164 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons),
9174 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons),
9210 && SCIPisGE(scip, minactivity - val, consdata->lhs) && SCIPisLE(scip, maxactivity + val, consdata->rhs);
9232 lval += otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9238 rval -= otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9253 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9275 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons),
9285 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons),
9330 /* if the lhs is finite, we will check in the following whether the not relevant variables can make lhs feasible;
9331 * this is not valid, if the minactivity is -\infty (aggrlhs would be minus infinity in the following computation)
9332 * or if huge values contributed to the minactivity, because the minactivity is then just a relaxation
9336 if( !SCIPisInfinity(scip, -consdata->lhs) && (SCIPisInfinity(scip, -minactivity) || !isminacttight) )
9339 /* if the rhs is finite, we will check in the following whether the not relevant variables can make rhs feasible;
9340 * this is not valid, if the maxactivity is \infty (aggrrhs would be infinity in the following computation)
9341 * or if huge values contributed to the maxactivity, because the maxactivity is then just a relaxation
9345 if( !SCIPisInfinity(scip, consdata->rhs) && (SCIPisInfinity(scip, maxactivity) || !ismaxacttight) )
9349 * relevant variables are all those where a deviation from the bound makes the lhs/rhs redundant
9354 /* check if the constraint contains variables whose coefficient can be removed. The reasoning is the following:
9355 * Each relevant variable can make the lhs/rhs feasible with a deviation of only one in the bound. If _all_ not
9356 * relevant variables together cannot make lhs/rhs redundant, they can be removed from the constraint. aggrrhs may
9382 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> from constraint since it is redundant\n",
9408 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons),
9418 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons),
9438/** processes equality with only one variable by fixing the variable and deleting the constraint */
9494/** processes equality with exactly two variables by aggregating one of the variables and deleting the constraint */
9525 SCIP_CALL( SCIPaggregateVars(scip, consdata->vars[0], consdata->vars[1], consdata->vals[0], consdata->vals[1],
9552/** calculates the new lhs and rhs of the constraint after the given variable is aggregated out */
9600/** processes equality with more than two variables by multi-aggregating one of the variables and converting the equality
9601 * into an inequality; if multi-aggregation is not possible, tries to identify one continuous or integer variable that
9604 * @todo Check whether a more clever way of avoiding aggregation of variables containing implicitly integer variables
9661 SCIPdebugMsg(scip, "linear constraint <%s>: try to multi-aggregate equality\n", SCIPconsGetName(cons));
9665 * maxnlocksstay: maximal sum of lock numbers if the constraint does not become redundant after the aggregation
9666 * maxnlocksremove: maximal sum of lock numbers if the constraint can be deleted after the aggregation
9673 /* If the constraint becomes redundant, 3 non-zeros are removed, and we get 1 additional non-zero for each
9674 * constraint the variable appears in. Thus, the variable must appear in at most 3 other constraints.
9680 /* If the constraint becomes redundant, 4 non-zeros are removed, and we get 2 additional non-zeros for each
9681 * constraint the variable appears in. Thus, the variable must appear in at most 2 other constraints.
9687 /* If the constraint is redundant but has more than 4 variables, we can only accept one other constraint. */
9738 assert(!SCIPconsIsChecked(cons) || SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) >= 1); /* because variable is locked in this equality */
9784 /* check, if variable is used in too many other constraints, even if this constraint could be deleted */
9785 nlocks = SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL);
9833 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
9836 /* do not perform the multi-aggregation due to numerics, if we have huge contributions in the residual
9843 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9848 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
9851 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity)
9855 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9866 /* if the constraint does not become redundant, only accept the variable if it does not appear in
9885 /* if all coefficients and variables are integral, the right hand side must also be integral */
9898 /* check whether the the infimum and the supremum of the multi-aggregation can be get infinite */
9936 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
9937 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
9940 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
9944 /* if the slack variable is of integer type, and the constraint itself may take fractional values,
9988 SCIPdebugMsg(scip, "linear constraint <%s>: multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(slackvar));
9994 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g], nlocks=%d, maxnlocks=%d, removescons=%u\n",
9995 aggrconst, SCIPvarGetName(slackvar), SCIPvarGetLbGlobal(slackvar), SCIPvarGetUbGlobal(slackvar),
10009 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
10019 SCIPdebugMsg(scip, "linear constraint <%s>: redundant after multi-aggregation\n", SCIPconsGetName(cons));
10036 /* upgrade continuous variable to an implicit one, if the absolute value of the coefficient is one */
10040 SCIPdebugMsg(scip, "linear constraint <%s>: converting continuous variable <%s> to implicit integer variable\n",
10046 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10052 /* aggregate continuous variable to an implicit one, if the absolute value of the coefficient is unequal to one */
10053 /* @todo check if the aggregation coefficient should be in some range(, which is not too big) */
10067 SCIP_CALL( SCIPcreateVar(scip, &newvar, newvarname, -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
10068 SCIP_VARTYPE_IMPLINT, SCIPvarIsInitial(var), SCIPvarIsRemovable(var), NULL, NULL, NULL, NULL, NULL) );
10083 SCIPdebugMsg(scip, "linear constraint <%s>: aggregating continuous variable <%s> to newly created implicit integer variable <%s>, aggregation factor = %g\n",
10087 SCIP_CALL( SCIPaggregateVars(scip, var, newvar, absval, -1.0, 0.0, &infeasible, &redundant, &aggregated) );
10091 SCIPdebugMsg(scip, "infeasible aggregation of variable <%s> to implicit variable <%s>, domain is empty\n",
10110 /* we do not have any event on vartype changes, so we need to manually force this constraint to be presolved
10122 /* this seems to help for rococo instances, but does not for rout (where all coefficients are +/- 1.0)
10135 SCIPdebugMsg(scip, "linear constraint <%s>: converting integer variable <%s> to implicit integer variable\n",
10141 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10152/** checks if the given variables and their coefficient are equal (w.r.t. scaling factor) to the objective function */
10190 /* if a variable has a zero objective coefficient the linear constraint is not a subset of the objective
10228/** check if the linear equality constraint is equal to a subset of the objective function; if so we can remove the
10257 /* check if the linear equality constraints does not have more variables than the objective function */
10263 (nvars == nobjvars && (!conshdlrdata->detectcutoffbound || !conshdlrdata->detectlowerbound)) )
10269 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10281 SCIPdebugMsg(scip, "linear equality constraint <%s> == %g (offset %g) is a subset of the objective function\n",
10301/** updates the cutoff if the given primal bound (which is implied by the given constraint) is better */
10311 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are still
10329 /* we cannot disable the enforcement and propagation on ranged rows, because the cutoffbound could only have
10334 /* in case the cutoff bound is worse then the currently known one, we additionally avoid enforcement and
10345/** check if the linear constraint is parallel to objective function; if so update the cutoff bound and avoid that the
10376 /* check if the linear inequality constraints has the same number of variables as the objective function and if the
10385 /* There are no variables in the objective function and in the constraint. Thus, the constraint is redundant or proves
10386 * infeasibility. Since we have a pure feasibility problem, we do not want to set a cutoff or lower bound.
10391 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10409 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10421 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10430 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10443 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10455 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10464 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10522 SCIP_CALL( convertLongEquality(scip, conshdlrdata, cons, cutoff, naggrvars, ndelconss, nchgvartypes) );
10528/** returns whether the linear sum of all variables/coefficients except the given one divided by the given value is always
10547 if( v != pos && (!SCIPvarIsIntegral(consdata->vars[v]) || !SCIPisIntegral(scip, consdata->vals[v]/val)) )
10554/** check if \f$lhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$,
10555 * check if \f$rhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$
10599/** applies dual presolving for variables that are locked only once in a direction, and this locking is due to a
10633 * otherwise we would have to check for variables with nlocks == 0, and these are already processed by the
10645 /* search for a single-locked variable which can be multi-aggregated; if a valid continuous variable was found, we
10652 /* We only want to multi-aggregate variables, if they appear in maximal one additional constraint,
10654 * - If there are only two variables in the constraint from which the multi-aggregation arises, no fill-in will be
10656 * - If there are three variables in the constraint, multi-aggregation in three additional constraints will remove
10657 * six nonzeros (three from the constraint and the three entries of the multi-aggregated variable) and add
10659 * - If there at most four variables in the constraint, multi-aggregation in two additional constraints will remove
10660 * six nonzeros (four from the constraint and the two entries of the multi-aggregated variable) and add
10672 /* if this constraint has both sides, it also provides a lock for the other side and thus we can allow one more lock */
10704 isint = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
10710 /* better do not multi-aggregate binary variables, since most plugins rely on their binary variables to be either
10728 * - fix x_i to the smallest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10732 * - fix x_i to the largest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10736 * - fix x_i to the largest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10740 * - fix x_i to the smallest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10742 * but: all this is only applicable, if the aggregated value is inside x_i's bounds for all possible values
10747 && ((val > 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10749 || (val < 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10752 && ((val > 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10754 || (val < 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10768 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
10781 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10796 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10804 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10816 /* check again if lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10817 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10824 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10827 if( !isint || (SCIPisIntegral(scip, consdata->lhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10841 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10856 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10863 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10872 /* check again if rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10873 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10879 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10882 if( !isint || (SCIPisIntegral(scip, consdata->rhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10920 (SCIPvarGetType(bestvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(bestvar) == SCIP_VARTYPE_INTEGER));
10928 SCIPdebugMsg(scip, "linear constraint <%s> (dual): multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(bestvar));
11001 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g]\n", aggrconst, SCIPvarGetName(bestvar),
11018 /* @todo if multi-aggregate makes them numerical trouble, avoid them if the coefficients differ to much, see
11021 SCIP_CALL( SCIPmultiaggregateVar(scip, bestvar, naggrs, aggrvars, aggrcoefs, aggrconst, &infeasible, &aggregated) );
11023 /* if the multi-aggregate bestvar is integer, we need to convert implicit integers to integers because
11032 /* If the multi-aggregation was not infeasible, then setting implicit integers to integers should not
11046 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
11047 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
11048 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
11057 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
11285/** sorting method for constraint data, compares two variables on given indices, continuous variables will be sorted to
11286 * the end and for all other variables the sortation will be in non-increasing order of their absolute value of the
11319 /* for all non-continuous variables, the variables are sorted after decreasing absolute coefficients */
11325 * 1. lhs <= a^Tx <= rhs, x binary, lhs > 0, forall a_i >= lhs, a_i <= rhs, and forall pairs a_i + a_j > rhs,
11421/** tries to simplify coefficients and delete variables in constraints of the form lhs <= a^Tx <= rhs
11425 * for one-sided constraints there are several different coefficient reduction steps which will be applied
11427 * 1. We try to determine parts of the constraint which will not change anything on (in-)feasibility of the constraint
11433 * e.g. 5.2x1 + 5.1x2 + 3x3 <= 8.3 => will be changed to 5x1 + 5x2 + 3x3 <= 8 if all x are binary
11437 * e.g. 10x1 + 5y2 + 5x3 + 3x4 <= 15 => will be changed to 2x1 + y2 + x3 + x4 <= 3 if all xi are binary and y2 is
11519 /* @todo the following might be too hard, check which steps can be applied and what code must be corrected
11526 /* @todo: change the following: due to vartype changes, the status of the normalization can be wrong, need an event
11567 /* if we have a normalized inequality (not ranged) the one side should be positive, @see normalizeCons() */
11574 /* call sorting method, order continuous variables to the end and all other variables after non-increasing absolute
11588 assert(consdata->validmaxabsval ? (SCIPisFeasEQ(scip, consdata->maxabsval, REALABS(vals[0])) || SCIPvarGetType(vars[nvars - 1]) == SCIP_VARTYPE_CONTINUOUS) : TRUE);
11598 if( SCIPisEQ(scip, REALABS(vals[0]), 1.0) && ((hasrhs && SCIPisIntegral(scip, rhs)) || (haslhs && SCIPisIntegral(scip, lhs))) )
11626 /* we now determine coefficients as large as the side of the constraint to retrieve a better reduction where we
11630 * c1: +5x1 + 5x2 + 3x3 + 3x4 + x5 >= 5 (x5 is redundant and does not change (in-)feasibility of this constraint)
11631 * c2: +4x1 + 4x2 + 3x3 + 3x4 + x5 >= 4 (gcd (without the coefficient of x5) after the large coefficients is 3
11632 * c3: +30x1 + 29x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 30 (gcd (without the coefficient of x2) after the large coefficients is 7
11637 * c2: +6x1 + 6x2 + 3x3 + 3x4 + 3x5 >= 6 (will be changed to c2: +2x1 + 2x2 + x3 + x4 + x5 >= 2)
11638 * c3: +28x1 + 28x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 28 (will be changed to c3: +4x1 + 4x2 + 2x3 + 2z1 + x5 + x6 <= 4)
11641 /* if the minimal activity is negative and we found more than one variable with a coefficient bigger than the left
11644 * e.g. 7x1 + 7x2 - 4x3 - 4x4 >= 7 => xi = 1 for all i is not a solution, but if we would do a change on the
11645 * coefficients due to the gcd on the "small" coefficients we would get 8x1 + 8x2 - 4x3 - 4x4 >= 8 were xi = 1
11656 /* if we have integer variable with "side"-coefficients but also with a lower bound greater than 0 we stop this
11668 /* easy and quick fix: if all coefficients were equal to the side, we cannot apply further simplifications */
11669 /* todo find numerically stable normalization conditions to scale this cons to have coefficients almost equal to 1 */
11681 /* all but one variable are processed or the next variable is continuous we cannot perform the extra coefficient
11708 /* find and remove redundant variables which do not interact with the (in-)feasibility of this constraint
11799 rredundant = hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd);
11800 lredundant = haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd;
11829 SCIPdebugMsg(scip, "stopped at pos %d (of %d), subactivities [%g, %g], redundant = %u, hasrhs = %u, siderest = %g, gcd = %" SCIP_LONGINT_FORMAT ", offset position for 'side' coefficients = %d\n",
11834 numericsok = REALABS(maxact) < MAXACTVAL && REALABS(maxactsub) < MAXACTVAL && REALABS(minact) < MAXACTVAL &&
11837 rredundant = hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd);
11838 lredundant = haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd;
11889 assert((hasrhs && SCIPisFeasLE(scip, tmpmaxactsub, siderest) && tmpminactsub > siderest - gcd) ||
11893 SCIPdebugMsg(scip, "removing %d last variables from constraint <%s>, because they never change anything on the feasibility of this constraint\n",
11993 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12080 /* new coeffcient must not be zero if we would loose the implication that a variable needs to be 0 if
12106 if( (!notchangable && hasrhs && ((!SCIPisFeasIntegral(scip, rhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(rhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd))) ||
12107 ( haslhs && (!SCIPisFeasIntegral(scip, lhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(lhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd)) )
12159 /* @todo we still can remove continuous variables if they are redundant due to the non-integrality argument */
12175 /* check if the non-integrality part of all integral variables is smaller than the non-inegrality part of the right
12176 * hand side or bigger than the left hand side respectively, so we can make all of them integral
12180 if( (hasrhs && !SCIPisFeasIntegral(scip, rhs)) || (haslhs && !SCIPisFeasIntegral(scip, lhs)) )
12225 /* if we exceed the fractional part of the right hand side, we cannot tighten the coefficients
12318 /* the fractional part on each variable need to exceed the fractional part on the left hand side */
12418 /* maximal absolute value of coefficients in constraint is one, so we cannot tighten it further */
12435 if( SCIPisEQ(scip, REALABS(vals[nvars - 1]), 1.0) && SCIPisEQ(scip, REALABS(vals[nvars - 2]), 1.0) )
12440 /* calculate greatest common divisor over all integer variables; note that the onlybin flag needs to be recomputed
12462 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12463 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12484 /* we need at least one binary variable and a gcd greater than 1 to try to perform further coefficient changes */
12493 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
12501 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12502 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12519 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12530 /* if we have only binary variables and both first coefficients have a gcd of 1, both are candidates for
12564 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
12572 /* check again, if we have a normalized inequality (not ranged) the one side should be positive,
12628 assert(SCIPisZero(scip, newcoef) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(newcoef) + feastol)) == gcd);
12630 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restcoef = %" SCIP_LONGINT_FORMAT "; changing coef of variable <%s> to %g and %s by %" SCIP_LONGINT_FORMAT "\n", gcd, rest, restcoef, SCIPvarGetName(vars[candpos]), newcoef, hasrhs ? "reduced rhs" : "increased lhs", hasrhs ? rest : (rest > 0 ? gcd - rest : 0));
12661 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
12669/** tries to aggregate an (in)equality and an equality in order to decrease the number of variables in the (in)equality:
12671 * where a = val1[v] and b = -val0[v] for common variable v which removes most variable weight;
12673 * the variable weight is a weighted sum over all included variables, where each binary variable weighs BINWEIGHT,
12674 * each integer or implicit integer variable weighs INTWEIGHT and each continuous variable weighs CONTWEIGHT
12683 int* diffidx0minus1, /**< array with indices of variables in cons0, that don't appear in cons1 */
12684 int* diffidx1minus0, /**< array with indices of variables in cons1, that don't appear in cons0 */
12687 int diffidx0minus1weight, /**< variable weight sum of variables in cons0, that don't appear in cons1 */
12688 int diffidx1minus0weight, /**< variable weight sum of variables in cons1, that don't appear in cons0 */
12689 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
12703 SCIP_Bool commonvarlindependent; /* indicates whether coefficient vector of common variables in linearly dependent */
12729 SCIPdebugMsg(scip, "try aggregation of <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
12765 /* count the number of variables in the potential new constraint a * consdata0 + b * consdata1 */
12790 * v's common coefficient in cons1 / v's common coefficient in cons0 should be constant, i.e., equal 0's common coefficient in cons1 / 0's common coefficient in cons0
12858 /* setup best* variables that were not setup above because we are in the commonvarlindependent case */
12863 SCIPdebugMsg(scip, "aggregate linear constraints <%s> := %.15g*<%s> + %.15g*<%s> -> nvars: %d -> %d, weight: %d -> %d\n",
12894 /* if we recognized linear dependency of the common coefficients, then the aggregation coefficient should be 0.0 for every common variable */
12947 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, SCIPconsGetName(cons0), newnvars, newvars, newvals, newlhs, newrhs,
12967 if( consdataGetMaxAbsval(SCIPconsGetData(newcons)) <= maxaggrnormscale * consdataGetMaxAbsval(consdata0) )
13002/** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
13108/** returns the key for deciding which of two parallel constraints should be kept (smaller key should be kept);
13109 * prefers non-upgraded constraints and as second criterion the constraint with the smallest position
13123 return (((unsigned int)consdata->upgraded)<<31) + (unsigned int)SCIPconsGetPos(cons); /*lint !e571*/
13133 SCIP_CONS** querycons, /**< pointer to linear constraint used to look for duplicates in the hash table;
13146 while( (parallelcons = (SCIP_CONS*)SCIPhashtableRetrieve(hashtable, (void*)(*querycons))) != NULL )
13188/** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
13249 /* get constraints from current hash table with same variables as cons0 and with coefficients equal
13250 * to the ones of cons0 when both are scaled such that maxabsval is 1.0 and the coefficient of the
13285 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
13318 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with equal coefficients into single ranged row\n",
13332 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with negated coefficients into single ranged row\n",
13344 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13356 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13361 /* ensure that lhs <= rhs holds without tolerances as we only allow such rows to enter the LP */
13401 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
13465 for( c = (cons0changed ? 0 : firstchange); c < chkind && !(*cutoff) && conss[chkind] != NULL; ++c )
13504 /* SCIPdebugMsg(scip, "preprocess linear constraint pair <%s>[chgd:%d, upgd:%d] and <%s>[chgd:%d, upgd:%d]\n",
13531 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13532 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13534 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13535 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13537 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13538 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13540 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13541 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13556 * - if lhs0 >= lhs1 and for each variable v and each solution value x_v val0[v]*x_v <= val1[v]*x_v,
13558 * - if rhs0 <= rhs1 and for each variable v and each solution value x_v val0[v]*x_v >= val1[v]*x_v,
13560 * - if val0[v] == -val1[v] for all variables v, the two inequalities can be replaced by a single
13562 * - if at least one constraint is an equality, count the weighted number of common variables W_c
13563 * and the weighted number of variable in the difference sets W_0 = w(V_0 \ V_1), W_1 = w(V_1 \ V_0),
13564 * where the weight of each variable depends on its type, such that aggregations in order to remove the
13566 * - if W_c > W_1, try to aggregate consdata0 := a * consdata0 + b * consdata1 in order to decrease the
13567 * variable weight in consdata0, where a = +/- val1[v] and b = -/+ val0[v] for common v which leads to
13568 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13570 * - if W_c > W_0, try to aggregate consdata1 := a * consdata1 + b * consdata0 in order to decrease the
13571 * variable weight in consdata1, where a = +/- val0[v] and b = -/+ val1[v] for common v which leads to
13572 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13706 /* the coefficients in both rows are either equal or negated: create a new constraint with same coefficients and
13709 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with %s coefficients into single ranged row\n",
13728 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13769 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13781 /* check for domination: remove dominated sides, but don't touch equalities as long as they are not totally
13784 if( cons1dominateslhs && (!cons0isequality || cons1dominatesrhs || SCIPisInfinity(scip, consdata0->rhs) ) )
13795 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13808 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13815 else if( cons0dominateslhs && (!cons1isequality || cons0dominatesrhs || SCIPisInfinity(scip, consdata1->rhs)) )
13826 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13838 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13845 if( cons1dominatesrhs && (!cons0isequality || cons1dominateslhs || SCIPisInfinity(scip, -consdata0->lhs)) )
13856 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13869 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13876 else if( cons0dominatesrhs && (!cons1isequality || cons0dominateslhs || SCIPisInfinity(scip, -consdata1->lhs)) )
13887 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13899 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13916 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13931 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13953 SCIP_CALL( aggregateConstraints(scip, cons0, cons1, commonidx0, commonidx1, diffidx0minus1, diffidx1minus0,
13968 if( !aggregated && cons0isequality && !consdata1->upgraded && commonidxweight > diffidx0minus1weight )
13971 SCIP_CALL( aggregateConstraints(scip, cons1, cons0, commonidx1, commonidx0, diffidx1minus0, diffidx0minus1,
14003 SCIP_Bool singletonstuffing, /**< should stuffing of singleton continuous variables be performed? */
14004 SCIP_Bool singlevarstuffing, /**< should single variable stuffing be performed, which tries to fulfill
14050 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
14061 /* we want to have a <= constraint, if the rhs is infinite, we implicitly multiply the constraint by -1,
14089 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14123 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14220 if( tryfixing && nsingletons > 0 && (SCIPisGT(scip, rhs, maxcondactivity) || SCIPisLE(scip, rhs, mincondactivity)) )
14282 /* @note: we could in theory tighten the bound of the first singleton variable which does not fall into the above case,
14283 * since it cannot be fully fixed. However, this is not needed and should be done by activity-based bound tightening
14284 * anyway after all other continuous singleton columns were fixed; doing it here may introduce numerical
14315 SCIPdebugMsg(scip, "### stuffing fixed %d variables and changed %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds);
14329 * setting all variables to their upper bound (giving us the maximal activity of the constraint) is worst w.r.t.
14330 * feasibility of the constraint. On the other hand, this gives the best objective function contribution of the
14331 * variables contained in the constraint. The maximal activity should be larger than the rhs, otherwise the constraint
14333 * Now we are searching for a variable x_k with maximal ratio c_k / a_k (note that all these ratios are negative), so
14334 * that by reducing the value of this variable we reduce the activity of the constraint while having the smallest
14335 * objective deterioration per activity unit. If x_k has no downlocks, is continuous, and can be reduced enough to
14336 * render the constraint feasible, and ALL other variables have only the one uplock installed by the current constraint,
14337 * we can reduce the upper bound of x_k such that the maxactivity equals the rhs and fix all other variables to their
14339 * Note that the others variables may have downlocks from other constraints, which we do not need to care
14340 * about since we are setting them to the highest possible value. Also, they may be integer or binary, because the
14341 * computed ratio is still a lower bound on the change in the objective caused by reducing those variable to reach
14342 * constraint feasibility. On the other hand, uplocks on x_k from other constraint do no interfer with the method.
14343 * With a slight adjustment, the procedure even works for integral x_k. If (maxactivity - rhs)/val is integral,
14344 * the variable gets an integral value in order to fulfill the constraint tightly, and we can just apply the procedure.
14345 * If (maxactivity - rhs)/val is fractional, we need to check, if overfulfilling the constraint by setting x_k to
14346 * ceil((maxactivity - rhs)/val) is still better than setting x_k to ceil((maxactivity - rhs)/val) - 1 and
14347 * filling the remaining gap in the constraint with the next-best variable. For this, we check that
14349 * c_k * floor((maxactivity - rhs)/val) + c_j * ((maxactivity - rhs) - (floor((maxactivity - rhs)/val) * val))/a_j.
14351 * If there are variables with a_i < 0 and c_i > 0, they are negated to obtain the above form, variables with same
14378 /* if both objective and constraint push the variable to the same direction, we can do nothing here */
14400 if( ratio > bestratio || ((ratio == bestratio) && downlocks == 0 && (bestdownlocks > 0 /*lint !e777*/
14465 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14466 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/-val) )
14493 SCIPdebugMsg(scip, "tighten the lower bound of <%s> from %g to %g (ub=%g)\n", SCIPvarGetName(var), lb, lb + bounddelta, ub);
14502 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14503 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/val))
14530 SCIPdebugMsg(scip, "tighten the upper bound of <%s> from %g to %g (lb=%g)\n", SCIPvarGetName(var), ub, ub - bounddelta, lb);
14545 SCIPdebugMsg(scip, "cons <%s>: %g <=\n", SCIPconsGetName(cons), factor > 0 ? consdata->lhs : -consdata->rhs);
14548 SCIPdebugMsg(scip, "%+g <%s>([%g,%g],%g,[%d,%d],%s)\n", factor * vals[v], SCIPvarGetName(vars[v]),
14581 SCIPdebug( SCIPdebugMsg(scip, "### new stuffing fixed %d vars, tightened %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds); )
14616 * redlb[v] == k : if x_v >= k, we can always round x_v down to x_v == k without violating any constraint
14617 * redub[v] == k : if x_v <= k, we can always round x_v up to x_v == k without violating any constraint
14630 * This is because then, the value of the variable is either determined by one of its bounds or
14652 /* copy the variable array since this array might change during the curse of this algorithm */
14674 /* Initialize isimplint array: variable may be implicit integer if rounded to their best bound they are integral.
14690 isimplint[v] = (SCIPisInfinity(scip, -lb) || SCIPisIntegral(scip, lb)) && (SCIPisInfinity(scip, ub) || SCIPisIntegral(scip, ub));
14706 /* we only need to consider constraints that have been locked (i.e., checked constraints or constraints that are
14740 assert(0 <= contv && contv < ncontvars); /* variable should be active due to applyFixings() */
14794 consdataGetGlbActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
14804 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastglbminactivity) )
14808 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastglbmaxactivity) )
14814 assert(0 <= arrayindex && arrayindex < nvars); /* variable should be active due to applyFixings() */
14883 /* there is more than one continuous variable or the integer variables have fractional coefficients:
14901 /* there is exactly one continuous variable and the integer variables have integral coefficients:
14902 * this is the interesting case, and we have to check whether the coefficient is +/-1 and the corresponding
14955 * if variable is cost neutral and only upper bounded non-positively or negative largest bound to make
14958 if( ( SCIPisPositive(scip, obj) || SCIPisPositive(scip, SCIPvarGetUbGlobal(var)) || !SCIPisInfinity(scip, -SCIPvarGetLbGlobal(var)) )
14965 /* if x_v >= redlb[v], we can always round x_v down to x_v == redlb[v] without violating any constraint
14968 SCIPdebugMsg(scip, "variable <%s> only locked down in linear constraints: dual presolve <%s>[%.15g,%.15g] <= %.15g\n",
14984 * if variable is cost neutral and only lower bounded non-negatively or positive smallest bound to make
14987 if( ( SCIPisPositive(scip, -obj) || SCIPisPositive(scip, -SCIPvarGetLbGlobal(var)) || !SCIPisInfinity(scip, SCIPvarGetUbGlobal(var)) )
14994 /* if x_v <= redub[v], we can always round x_v up to x_v == redub[v] without violating any constraint
14997 SCIPdebugMsg(scip, "variable <%s> only locked up in linear constraints: dual presolve <%s>[%.15g,%.15g] >= %.15g\n",
15025 /* we can only conclude implicit integrality if the variable appears in no other constraint */
15035 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
15041 SCIPdebugMsg(scip, "dual presolve: converting continuous variable <%s>[%g,%g] to implicit integer\n",
15087 SCIPdebugMsg(scip, "Enforcement method of linear constraints for %s solution\n", sol == NULL ? "LP" : "relaxation");
15126 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
15172 SCIP_CALL( SCIPgetSymActiveVariables(scip, symtype, &vars, &vals, &nlocvars, &constant, SCIPisTransformed(scip)) );
15220/** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
15270/** deinitialization method of constraint handler (called before transformed problem is freed) */
15313 return !(SCIPisEQ(scip, lhs, rhs) || SCIPisInfinity(scip, -lhs) || SCIPisInfinity(scip, rhs) );
15330 * iterates through all linear constraints and stores relevant statistics in the linear constraint statistics \p linconsstats.
15332 * @note only constraints are iterated that belong to the linear constraint handler. If the problem has been presolved already,
15333 * constraints that were upgraded to more special types such as, e.g., varbound constraints, will not be shown correctly anymore.
15334 * Similarly, if specialized constraints were created through the API, these are currently not present.
15420 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_SINGLETON, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15440 /* precedence constraints have the same coefficient, but with opposite sign for the same variable type */
15459 /* is constraint of type SCIP_CONSTYPE_{SETPARTITION, SETPACKING, SETCOVERING, CARDINALITY, INVKNAPSACK}? */
15471 /* scan through variables and detect if all variables are binary and have a coefficient +/-1 */
15547 /* if both sides are infinite at this point, no further classification is necessary for this constraint */
15598 SCIPlinConsStatsIncTypeCount(linconsstats, matched ? SCIP_LINCONSTYPE_BINPACKING : SCIP_LINCONSTYPE_KNAPSACK, 1);
15601 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15633 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15658 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_MIXEDBINARY, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15667 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_GENERAL, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15674/** presolving deinitialization method of constraint handler (called after presolving has been finished) */
15720 SCIPstatisticMessage("below threshold: %d / %d ratio= %g\n", ngoodconss, nallconss, (100.0 * ngoodconss / nallconss));
15736 /* this is no problem reduction, because the upgraded constraint was added to the problem before, and the
15737 * (redundant) linear constraint was only kept in order to support presolving the the linear constraint handler
15743 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
15768/** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
15808 "(restart) converted %d cuts from the global cut pool into linear constraints\n", ncutsadded);
15809 /* an extra blank line should be printed separately since the buffer message handler only handles up to one
15927 SCIP_CALL( consdataCreate(scip, &targetdata, sourcedata->nvars, sourcedata->vars, sourcedata->vals, sourcedata->lhs, sourcedata->rhs) );
15930 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
15940 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
15941 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
15944 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
15950/** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
16003 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
16026 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, NULL, separatecards, conshdlrdata->separateall, &ncuts, &cutoff) );
16069 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
16084 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, sol, TRUE, conshdlrdata->separateall, &ncuts, &cutoff) );
16160 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
16212 SCIPinfoMessage(scip, NULL, "activity invalid due to positive and negative infinity contributions\n");
16214 SCIPinfoMessage(scip, NULL, "violation: left hand side is violated by %.15g\n", consdata->lhs - activity);
16216 SCIPinfoMessage(scip, NULL, "violation: right hand side is violated by %.15g\n", activity - consdata->rhs);
16247 /* check, if we want to tighten variable's bounds (in probing, we always want to tighten the bounds) */
16261 && ((tightenboundsfreq == 0 && depth == 0) || (tightenboundsfreq >= 1 && (depth % tightenboundsfreq == 0)));
16269 && ((rangedrowfreq == 0 && depth == 0) || (rangedrowfreq >= 1 && (depth % rangedrowfreq == 0)));
16397 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16410 /* apply presolving as long as possible on the single constraint (however, abort after a certain number of rounds
16452 SCIP_CALL( tightenBounds(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars, &cutoff, nchgbds) );
16462 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
16464 if( SCIPisFeasGT(scip, minactivity, consdata->rhs) || SCIPisFeasLT(scip, maxactivity, consdata->lhs) )
16466 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16471 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
16473 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16482 else if( !SCIPisInfinity(scip, -consdata->lhs) && SCIPisGE(scip, minactivity, consdata->lhs) )
16484 SCIPdebugMsg(scip, "linear constraint <%s> left hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16492 SCIPdebugMsg(scip, "linear constraint <%s> right hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16521 /* reduce big-M coefficients, that make the constraint redundant if the variable is on a bound */
16564 SCIP_CALL( extractCliques(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars,
16592 SCIP_CALL( convertEquality(scip, cons, conshdlrdata, &cutoff, nfixedvars, naggrvars, ndelconss, nchgvartypes) );
16596 if( !cutoff && SCIPconsIsActive(cons) && conshdlrdata->dualpresolving && SCIPallowStrongDualReds(scip) )
16598 SCIP_CALL( dualPresolve(scip, conshdlrdata, cons, &cutoff, nfixedvars, naggrvars, ndelconss, nchgvartypes) );
16611 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16618 (conshdlrdata->singletonstuffing || conshdlrdata->singlevarstuffing) && SCIPallowStrongDualReds(scip) )
16650 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && (conshdlrdata->presolusehashing || conshdlrdata->presolpairwise) && !SCIPisStopped(scip) )
16656 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
16657 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &firstchange, &cutoff,
16700 npaircomparisons += (SCIPconsGetData(conss[c])->changed) ? c : (c - firstchange); /*lint !e776*/
16703 SCIP_CALL( preprocessConstraintPairs(scip, usefulconss, firstchange, c, conshdlrdata->maxaggrnormscale,
16709 if( ((*ndelconss - oldndelconss) + (*nchgsides - oldnchgsides)/2.0 + (*nchgcoefs - oldnchgcoefs)/10.0) / ((SCIP_Real) npaircomparisons) < conshdlrdata->mingainpernmincomp )
16722 /* before upgrading, check whether we can apply some additional dual presolving, because a variable only appears
16726 && *nfixedvars == oldnfixedvars && *naggrvars == oldnaggrvars && *nchgbds == oldnchgbds && *ndelconss == oldndelconss
16737 * only upgrade constraints, if no reductions were found in this round (otherwise, the linear constraint handler
16738 * may find additional reductions before giving control away to other (less intelligent?) constraint handlers)
16740 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) )
16753 /* only upgrade completely presolved constraints, that changed since the last upgrading call */
16780 * delete upgraded equalities, if we don't need it anymore for aggregation and redundancy checking
16796 else if( *nfixedvars > oldnfixedvars || *naggrvars > oldnaggrvars || *nchgbds > oldnchgbds || *ndelconss > oldndelconss
16814 SCIP_CALL( resolvePropagation(scip, cons, infervar, intToInferInfo(inferinfo), boundtype, bdchgidx, result) );
16920 SCIP_CALL( SCIPcopyConsLinear(scip, cons, sourcescip, consname, nvars, sourcevars, sourcecoefs,
16921 SCIPgetLhsLinear(sourcescip, sourcecons), SCIPgetRhsLinear(sourcescip, sourcecons), varmap, consmap,
16922 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
16932 * There should only be one operator, except for ranged rows for which exactly two operators '<=' must be present.
16989 /* assign the found operator to the first or second pointer and check for violations of the linear constraint grammar */
17070 /* find operators in the line first, all other remaining parsing depends on occurence of the operators '<=', '>=', '==',
17083 /* assign the strings for parsing the left hand side, right hand side, and the linear variable sum */
17124 SCIPerrorMessage("Parsing has wrong operator character '%c', should be one of <=>[", *firstop);
17160 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17169 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17170 assert(!*success || requsize <= coefssize); /* if successful, then should have had enough space now */
17180 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17213/** constraint method of constraint handler which returns the number of variables (if possible) */
17229/** constraint handler method which returns the permutation symmetry detection graph of a constraint */
17238/** constraint handler method which returns the signed permutation symmetry detection graph of a constraint */
17313 /* bound change can turn the constraint infeasible or redundant only if it was a tightening */
17318 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17331 if( (val > 0.0 ? !SCIPisInfinity(scip, consdata->rhs) : !SCIPisInfinity(scip, -consdata->lhs)) )
17335 if( (val > 0.0 ? !SCIPisInfinity(scip, -consdata->lhs) : !SCIPisInfinity(scip, consdata->rhs)) )
17374 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17383 /* there is only one lock left: we may multi-aggregate the variable as slack of an equation */
17414 /* if the variable is binary but not fixed it had to become binary due to this global change */
17415 if( SCIPvarIsBinary(var) && SCIPisGT(scip, SCIPvarGetUbGlobal(var), SCIPvarGetLbGlobal(var)) )
17427 /* for presolving it only matters if a variable type changed from continuous to some kind of integer */
17428 consdata->presolved = (consdata->presolved && SCIPeventGetOldtype(event) < SCIP_VARTYPE_CONTINUOUS);
17430 /* the ordering is preserved if the type changes from something different to binary to binary but SCIPvarIsBinary() is true */
17431 consdata->indexsorted = (consdata->indexsorted && SCIPeventGetNewtype(event) == SCIP_VARTYPE_BINARY && SCIPvarIsBinary(var));
17471 /* create array of variables and coefficients: sum_{i \in P} x_i - sum_{i \in N} x_i >= 1 - |N| */
17503 (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "cf%" SCIP_LONGINT_FORMAT, SCIPgetNConflictConssApplied(scip));
17504 SCIP_CALL( SCIPcreateConsLinear(scip, &cons, consname, nbdchginfos, vars, vals, lhs, SCIPinfinity(scip),
17507 /* try to automatically convert a linear constraint into a more specific and more specialized constraint */
17551 * (unless the expression is a variable or a constant or a constant*variable, but these are simplified away in cons_nonlinear)
17562 lhs = SCIPisInfinity(scip, -SCIPgetLhsNonlinear(cons)) ? -SCIPinfinity(scip) : (SCIPgetLhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17563 rhs = SCIPisInfinity(scip, SCIPgetRhsNonlinear(cons)) ? SCIPinfinity(scip) : (SCIPgetRhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17579 SCIP_CALL( SCIPaddCoefLinear(scip, upgdconss[0], SCIPgetVarExprVar(SCIPexprGetChildren(expr)[i]), SCIPgetCoefsExprSum(expr)[i]) );
17582 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original nonlinear constraint */
17614 SCIP_CALL( SCIPincludeConflicthdlrBasic(scip, &conflicthdlr, CONFLICTHDLR_NAME, CONFLICTHDLR_DESC, CONFLICTHDLR_PRIORITY,
17644 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolLinear, CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
17646 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropLinear, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
17649 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpLinear, consSepasolLinear, CONSHDLR_SEPAFREQ,
17654 SCIP_CALL( SCIPsetConshdlrGetSignedPermsymGraph(scip, conshdlr, consGetSignedPermsymGraphLinear) );
17659 SCIP_CALL( SCIPincludeConsUpgradeNonlinear(scip, upgradeConsNonlinear, NONLINCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17665 "multiplier on propagation frequency, how often the bounds are tightened (-1: never, 0: only at root)",
17666 &conshdlrdata->tightenboundsfreq, TRUE, DEFAULT_TIGHTENBOUNDSFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17701 "maximal allowed relative gain in maximum norm for constraint aggregation (0.0: disable constraint aggregation)",
17702 &conshdlrdata->maxaggrnormscale, TRUE, DEFAULT_MAXAGGRNORMSCALE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17705 "maximum activity delta to run easy propagation on linear constraint (faster, but numerically less stable)",
17706 &conshdlrdata->maxeasyactivitydelta, TRUE, DEFAULT_MAXEASYACTIVITYDELTA, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17709 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cardinality cuts",
17713 "should all constraints be subject to cardinality cut generation instead of only the ones with non-zero dual value?",
17733 "should single variable stuffing be performed, which tries to fulfill constraints using the cheapest variable?",
17736 "constraints/" CONSHDLR_NAME "/sortvars", "apply binaries sorting in decr. order of coeff abs value?",
17740 "should the violation for a constraint with side 0.0 be checked relative to 1.0 (FALSE) or to the maximum absolute value in the activity (TRUE)?",
17744 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
17748 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
17756 "should presolving and propagation try to improve bounds, detect infeasibility, and extract sub-constraints from ranged rows and equations?",
17769 &conshdlrdata->rangedrowfreq, TRUE, DEFAULT_RANGEDROWFREQ, 1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17777 &conshdlrdata->maxmultaggrquot, TRUE, DEFAULT_MAXMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17781 &conshdlrdata->maxdualmultaggrquot, TRUE, DEFAULT_MAXDUALMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17829 (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "constraints/linear/upgrade/%s", conshdlrname);
17830 (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "enable linear upgrading for constraint handler <%s>", conshdlrname);
17841 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17870 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
17872 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
17902 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
17918 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
17926 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
17940 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17950 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17966 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17976 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
18019 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18029 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
18036 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
18037 * method SCIPcreateConsLinear(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
18041 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
18070 SCIP_Real* sourcecoefs, /**< coefficient array of the linear constraint, or NULL if all coefficients are one */
18073 SCIP_HASHMAP* varmap, /**< a SCIP_HASHMAP mapping variables of the source SCIP to corresponding
18075 SCIP_HASHMAP* consmap, /**< a hashmap to store the mapping of source constraints to the corresponding
18085 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup? */
18086 SCIP_Bool stickingatnode, /**< should the constraint always be kept at the node where it was added, even
18111 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18132 /* transform source variable to active variables of the source SCIP since only these can be mapped to variables of
18137 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, nvars, &constant, &requiredsize, TRUE) );
18144 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, requiredsize, &constant, &requiredsize, TRUE) );
18165 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18168 SCIP_CALL( SCIPgetVarCopy(sourcescip, scip, var, &vars[v], varmap, consmap, global, &success) );
18182 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18212 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
18234 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
18242 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
18263 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18273 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18289 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18299 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18352/** changes coefficient of variable in linear constraint; deletes the variable if coefficient is zero; adds variable if
18355 * @note This method may only be called during problem creation stage for an original constraint and variable.
18357 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18381 if( SCIPgetStage(scip) > SCIP_STAGE_PROBLEM || !SCIPconsIsOriginal(cons) || !SCIPvarIsOriginal(var) )
18383 SCIPerrorMessage("method may only be called during problem creation stage for original constraints and variables\n");
18401 /* decrease i by one since otherwise we would skip the coefficient which has been switched to position i */
18423 * @note This method may only be called during problem creation stage for an original constraint and variable.
18425 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18553/** gets the array of variables in the linear constraint; the user must not modify this array! */
18577/** gets the array of coefficient values in the linear constraint; the user must not modify this array! */
18603 * @note if the solution contains values at infinity, this method will return SCIP_INVALID in case the activity
18717/** returns the linear relaxation of the given linear constraint; may return NULL if no LP row was yet created;
18743/** tries to automatically convert a linear constraint into a more specific and more specialized constraint */
18786 /* we cannot upgrade a modifiable linear constraint, since we don't know what additional coefficients to expect */
18808 /* check, if the constraint was already upgraded and will be deleted anyway after preprocessing */
18817 SCIPerrorMessage("cannot upgrade linear constraint that is already stored as row in the LP\n");
18828 /* normalizeCons() can only detect infeasibility when scaling with the gcd. in that case, the scaling was
18833 * TODO: this needs to be fixed on master by changing the API and passing a pointer to whether the constraint is
18951 SCIPdebugMsg(scip, " +bin=%d -bin=%d +int=%d -int=%d +impl=%d -impl=%d +cont=%d -cont=%d +1=%d -1=%d +I=%d -I=%d +F=%d -F=%d possum=%.15g negsum=%.15g integral=%u\n",
18963 nposbin, nnegbin, nposint, nnegint, nposimpl, nnegimpl, nposimplbin, nnegimplbin, nposcont, nnegcont,
18974 SCIPdebugMsg(scip, " -> upgraded to constraint type <%s>\n", SCIPconshdlrGetName(SCIPconsGetHdlr(*upgdcons)));
18986 SCIP_Bool* infeasible /**< pointer to return whether the problem was detected to be infeasible */
19001 nconss = onlychecked ? SCIPconshdlrGetNCheckConss(conshdlr) : SCIPconshdlrGetNActiveConss(conshdlr);
Constraint handler for knapsack constraints of the form , x binary and .
static SCIP_DECL_CONSENFORELAX(consEnforelaxLinear)
Definition: cons_linear.c:16111
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:3670
static SCIP_RETCODE consdataPrint(SCIP *scip, SCIP_CONSDATA *consdata, FILE *file)
Definition: cons_linear.c:1101
static void permSortConsdata(SCIP_CONSDATA *consdata, int *perm, int nvars)
Definition: cons_linear.c:3269
static void consdataRecomputeMaxActivityDelta(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1548
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool checkrelmaxabs, SCIP_Bool *violated)
Definition: cons_linear.c:7169
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_linear.c:7453
static void consdataGetReliableResidualActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *cancelvar, SCIP_Real *resactivity, SCIP_Bool isminresact, SCIP_Bool useglobalbounds)
Definition: cons_linear.c:2586
static SCIP_RETCODE convertEquality(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss, int *nchgvartypes)
Definition: cons_linear.c:10476
static SCIP_Bool checkEqualObjective(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real *scale, SCIP_Real *offset)
Definition: cons_linear.c:10154
static SCIP_RETCODE conshdlrdataIncludeUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_LINCONSUPGRADE *linconsupgrade)
Definition: cons_linear.c:619
static SCIP_RETCODE extractCliques(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, int *nfixedvars, int *nchgbds, SCIP_Bool *cutoff)
Definition: cons_linear.c:7925
static SCIP_DECL_HASHKEYVAL(hashKeyValLinearcons)
Definition: cons_linear.c:13080
static SCIP_DECL_NONLINCONSUPGD(upgradeConsNonlinear)
Definition: cons_linear.c:17535
static SCIP_RETCODE convertBinaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9496
static void consdataRecomputeMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1311
static SCIP_DECL_HASHGETKEY(hashGetKeyLinearcons)
Definition: cons_linear.c:12996
static SCIP_RETCODE addConflictFixedVars(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos)
Definition: cons_linear.c:4990
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyLinear)
Definition: cons_linear.c:15206
static SCIP_RETCODE tightenVarLb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5321
static SCIP_RETCODE fullDualPresolve(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *nchgbds, int *nchgvartypes)
Definition: cons_linear.c:14591
static SCIP_RETCODE convertLongEquality(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss, int *nchgvartypes)
Definition: cons_linear.c:9608
static SCIP_Real consdataComputePseudoActivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1258
static SCIP_RETCODE conshdlrdataEnsureLinconsupgradesSize(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, int num)
Definition: cons_linear.c:448
static SCIP_RETCODE retrieveParallelConstraints(SCIP_HASHTABLE *hashtable, SCIP_CONS **querycons, SCIP_CONS **parallelconss, int *nparallelconss)
Definition: cons_linear.c:13131
static void conshdlrdataFree(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata)
Definition: cons_linear.c:567
static void calculateMinvalAndMaxval(SCIP *scip, SCIP_Real side, SCIP_Real val, SCIP_Real minresactivity, SCIP_Real maxresactivity, SCIP_Real *minval, SCIP_Real *maxval)
Definition: cons_linear.c:10558
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:651
static void consdataRecomputeGlbMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1365
static void consdataUpdateActivitiesUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2027
static SCIP_RETCODE tightenSides(SCIP *scip, SCIP_CONS *cons, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:8898
static void consdataUpdateActivitiesGlbLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2052
static void consdataUpdateActivitiesLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2002
static SCIP_Bool conshdlrdataHasUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_DECL_LINCONSUPGD((*linconsupgd)), const char *conshdlrname)
Definition: cons_linear.c:589
static SCIP_RETCODE chgCoefPos(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Real newval)
Definition: cons_linear.c:3918
static void consdataRecomputeMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1338
static SCIP_RETCODE linconsupgradeCreate(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority)
Definition: cons_linear.c:508
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_linear.c:4101
static SCIP_Bool isFiniteNonnegativeIntegral(SCIP *scip, SCIP_Real x)
Definition: cons_linear.c:15318
static void consdataUpdateSignatures(SCIP_CONSDATA *consdata, int pos)
Definition: cons_linear.c:3115
static SCIP_RETCODE scaleCons(SCIP *scip, SCIP_CONS *cons, SCIP_Real scalar)
Definition: cons_linear.c:4008
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, int *firstchange, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides)
Definition: cons_linear.c:13192
static void linconsupgradeFree(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade)
Definition: cons_linear.c:529
static SCIP_RETCODE aggregateConstraints(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1, int *commonidx0, int *commonidx1, int *diffidx0minus1, int *diffidx1minus0, int nvarscommon, int commonidxweight, int diffidx0minus1weight, int diffidx1minus0weight, SCIP_Real maxaggrnormscale, int *nchgcoefs, SCIP_Bool *aggregated, SCIP_Bool *infeasible)
Definition: cons_linear.c:12677
static SCIP_RETCODE analyzeConflict(SCIP *scip, SCIP_CONS *cons, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:5199
static SCIP_RETCODE rangedRowPropagation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds, int *naddconss)
Definition: cons_linear.c:5726
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:4480
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_SOL *sol, SCIP_Bool separatecards, SCIP_Bool separateall, int *ncuts, SCIP_Bool *cutoff)
Definition: cons_linear.c:7552
static SCIP_RETCODE addSymmetryInformation(SCIP *scip, SYM_SYMTYPE symtype, SCIP_CONS *cons, SYM_GRAPH *graph, SCIP_Bool *success)
Definition: cons_linear.c:15133
static void consdataGetActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Real *maxactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2539
static void consdataCheckNonbinvar(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1472
static SCIP_RETCODE chgLhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:3412
static void consdataUpdateActivitiesGlbUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2075
static SCIP_RETCODE consCatchEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:718
static void consdataCalcMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1443
static SCIP_RETCODE addConflictBounds(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:4808
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num)
Definition: cons_linear.c:473
static SCIP_RETCODE tightenBounds(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:6991
static void consdataCalcMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1419
static SCIP_DECL_CONSGETPERMSYMGRAPH(consGetPermsymGraphLinear)
Definition: cons_linear.c:17231
static SCIP_RETCODE consDropAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:823
static SCIP_DECL_CONSDEACTIVE(consDeactiveLinear)
Definition: cons_linear.c:15836
static SCIP_Real consdataGetActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3026
static SCIP_RETCODE consdataTightenCoefs(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:9020
static SCIP_RETCODE normalizeCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4160
static SCIP_DECL_CONSGETSIGNEDPERMSYMGRAPH(consGetSignedPermsymGraphLinear)
Definition: cons_linear.c:17240
static SCIP_RETCODE presolStuffing(SCIP *scip, SCIP_CONS *cons, SCIP_Bool singletonstuffing, SCIP_Bool singlevarstuffing, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds)
Definition: cons_linear.c:14000
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:684
static void consdataCalcSignatures(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3140
static SCIP_RETCODE addConflictReasonVars(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5055
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool tightenbounds, SCIP_Bool rangedrowpropagation, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7642
static SCIP_RETCODE updateCutoffbound(SCIP *scip, SCIP_CONS *cons, SCIP_Real primalbound)
Definition: cons_linear.c:10303
static void consdataUpdateDelCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2174
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_linear.c:3805
static void consdataUpdateAddCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2098
static void getMinActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Bool *istight, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2351
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:854
static SCIP_RETCODE chgRhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:3540
static SCIP_RETCODE tightenVarBoundsEasy(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5391
static void consdataUpdateActivities(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_Real val, SCIP_BOUNDTYPE boundtype, SCIP_Bool global, SCIP_Bool checkreliability)
Definition: cons_linear.c:1610
static unsigned int getParallelConsKey(SCIP_CONS *cons)
Definition: cons_linear.c:13112
static SCIP_RETCODE fixVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars)
Definition: cons_linear.c:7790
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_linear.c:15061
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata)
Definition: cons_linear.c:1060
static SCIP_DECL_CONSGETNVARS(consGetNVarsLinear)
Definition: cons_linear.c:17215
static void consdataGetActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2667
static SCIP_Real consdataGetMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2255
static SCIP_RETCODE consPrintConsSol(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, FILE *file)
Definition: cons_linear.c:1140
static void getMaxActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *maxactivity, SCIP_Bool *istight, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2446
static void getNewSidesAfterAggregation(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *slackvar, SCIP_Real slackcoef, SCIP_Real *newlhs, SCIP_Real *newrhs)
Definition: cons_linear.c:9554
static SCIP_RETCODE convertUnaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *ndelconss)
Definition: cons_linear.c:9440
static void consdataUpdateChgCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldval, SCIP_Real newval, SCIP_Bool checkreliability)
Definition: cons_linear.c:2239
static SCIP_RETCODE conshdlrdataCreate(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:543
static void consdataRecomputeGlbMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1392
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4543
static void consdataCalcActivities(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2289
static void consdataGetGlbActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2876
static SCIP_RETCODE tightenVarUb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newub, SCIP_Real oldub, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5251
static int inferInfoGetProprule(INFERINFO inferinfo)
Definition: cons_linear.c:396
static SCIP_DECL_CONFLICTEXEC(conflictExecLinear)
Definition: cons_linear.c:17449
static SCIP_RETCODE dualPresolve(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss, int *nchgvartypes)
Definition: cons_linear.c:10603
static SCIP_Real consdataGetFeasibility(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3094
static SCIP_RETCODE rangedRowSimplify(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:11329
static SCIP_RETCODE aggregateVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars)
Definition: cons_linear.c:11119
static void consdataInvalidateActivities(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1212
static SCIP_RETCODE analyzeConflictRangedRow(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5668
static SCIP_RETCODE consDropEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:757
static SCIP_RETCODE tightenVarBounds(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:6711
static SCIP_Real consdataGetMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2271
static SCIP_Bool consdataIsResidualIntegral(SCIP *scip, SCIP_CONSDATA *consdata, int pos, SCIP_Real val)
Definition: cons_linear.c:10532
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, SCIP_Real maxaggrnormscale, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides, int *nchgcoefs)
Definition: cons_linear.c:13396
static SCIP_RETCODE consdataSort(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3345
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10349
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:11441
static SCIP_RETCODE consCatchAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:791
static SCIP_RETCODE resolvePropagation(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, INFERINFO inferinfo, SCIP_BOUNDTYPE boundtype, SCIP_BDCHGIDX *bdchgidx, SCIP_RESULT *result)
Definition: cons_linear.c:5106
static SCIP_Bool isRangedRow(SCIP *scip, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:15305
static SCIP_RETCODE checkPartialObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10232
static void consdataGetGlbActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *glbminactivity, SCIP_Real *glbmaxactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2816
static void findOperators(const char *str, char **firstoperator, char **secondoperator, SCIP_Bool *success)
Definition: cons_linear.c:16935
Constraint handler for linear constraints in their most general form, .
constraint handler for nonlinear constraints specified by algebraic expressions
defines macros for basic operations in double-double arithmetic giving roughly twice the precision of...
methods for debugging
SCIP_Real SCIPgetDualsolLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18662
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17791
SCIP_Real SCIPgetRhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18467
SCIP_RETCODE SCIPupgradeConsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_CONS **upgdcons)
Definition: cons_linear.c:18744
SCIP_VAR ** SCIPgetVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18554
SCIP_RETCODE SCIPchgRhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:18512
SCIP_RETCODE SCIPincludeConsUpgradeNonlinear(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nlconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_nonlinear.c:12594
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18195
SCIP_Real SCIPgetLhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18443
int SCIPgetNVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18530
SCIP_Real * SCIPgetValsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18578
SCIP_ROW * SCIPgetRowLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18720
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:18043
SCIP_EXPR * SCIPgetExprNonlinear(SCIP_CONS *cons)
Definition: cons_nonlinear.c:13783
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5777
SCIP_Real SCIPgetDualfarkasLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18690
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:18063
SCIP_RETCODE SCIPcleanupConssLinear(SCIP *scip, SCIP_Bool onlychecked, SCIP_Bool *infeasible)
Definition: cons_linear.c:18983
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_linear.c:17843
SCIP_Real SCIPgetActivityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18606
SCIP_Real SCIPgetFeasibilityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18634
SCIP_RETCODE SCIPclassifyConstraintTypesLinear(SCIP *scip, SCIP_LINCONSSTATS *linconsstats)
Definition: cons_linear.c:15336
SCIP_RETCODE SCIPchgLhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:18491
SCIP_RETCODE SCIPchgCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18359
SCIP_RETCODE SCIPdelCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_linear.c:18427
SCIP_RETCODE SCIPincludeConshdlrLinear(SCIP *scip)
Definition: cons_linear.c:17598
SCIP_RETCODE SCIPconvertCutsToConss(SCIP *scip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, int *ncutsadded)
Definition: scip_copy.c:2068
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:660
SCIP_RETCODE SCIPgetVarCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR *sourcevar, SCIP_VAR **targetvar, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *success)
Definition: scip_copy.c:711
SCIP_RETCODE SCIPaddObjoffset(SCIP *scip, SCIP_Real addval)
Definition: scip_prob.c:1268
SCIP_RETCODE SCIPhashtableSafeInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2582
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2299
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2611
void SCIPhashtablePrintStatistics(SCIP_HASHTABLE *hashtable, SCIP_MESSAGEHDLR *messagehdlr)
Definition: misc.c:2807
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2680
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2550
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3697
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3475
SCIP_RETCODE SCIPaddConflict(SCIP *scip, SCIP_NODE *node, SCIP_CONS *cons, SCIP_NODE *validnode, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_prob.c:3229
SCIP_RETCODE SCIPaddConsLocal(SCIP *scip, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition: scip_prob.c:3394
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:208
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:225
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:120
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9124
SCIP_Longint SCIPcalcSmaComMul(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9376
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:9397
SCIP_Real SCIPselectSimpleValue(SCIP_Real lb, SCIP_Real ub, SCIP_Longint maxdnom)
Definition: misc.c:9827
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPgetIntParam(SCIP *scip, const char *name, int *value)
Definition: scip_param.c:269
SCIP_RETCODE SCIPaddConflictLb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:352
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:323
SCIP_RETCODE SCIPaddConflictUb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:419
const char * SCIPconflicthdlrGetName(SCIP_CONFLICTHDLR *conflicthdlr)
Definition: conflict_graphanalysis.c:1493
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:301
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:703
SCIP_RETCODE SCIPincludeConflicthdlrBasic(SCIP *scip, SCIP_CONFLICTHDLR **conflicthdlrptr, const char *name, const char *desc, int priority, SCIP_DECL_CONFLICTEXEC((*conflictexec)), SCIP_CONFLICTHDLRDATA *conflicthdlrdata)
Definition: scip_conflict.c:108
int SCIPconshdlrGetNCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4656
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:808
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4227
SCIP_CONS ** SCIPconshdlrGetCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4613
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:540
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:396
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:831
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:235
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:281
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:181
SCIP_RETCODE SCIPsetConshdlrDeactive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDEACTIVE((*consdeactive)))
Definition: scip_cons.c:693
SCIP_RETCODE SCIPsetConshdlrGetPermsymGraph(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETPERMSYMGRAPH((*consgetpermsymgraph)))
Definition: scip_cons.c:900
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:578
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:372
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:323
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:420
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:516
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:347
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:941
SCIP_RETCODE SCIPsetConshdlrGetSignedPermsymGraph(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETSIGNEDPERMSYMGRAPH((*consgetsignedpermsymgraph)))
Definition: scip_cons.c:924
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:468
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:762
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:624
SCIP_RETCODE SCIPsetConshdlrInitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITSOL((*consinitsol)))
Definition: scip_cons.c:444
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4217
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:601
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:647
int SCIPconshdlrGetNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4670
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:854
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4593
SCIP_RETCODE SCIPsetConshdlrActive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSACTIVE((*consactive)))
Definition: scip_cons.c:670
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:785
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2537
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1297
SCIP_Bool SCIPconsIsMarkedPropagate(SCIP_CONS *cons)
Definition: cons.c:8423
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1272
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1322
SCIP_Bool SCIPconsIsLockedType(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8607
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2043
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:998
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1813
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2015
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1525
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1174
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1372
SCIP_RETCODE SCIPsetConsChecked(SCIP *scip, SCIP_CONS *cons, SCIP_Bool check)
Definition: scip_cons.c:1347
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:250
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:104
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:324
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:354
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:400
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:132
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:99
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:111
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:105
SCIP_RETCODE SCIPreleaseNlRow(SCIP *scip, SCIP_NLROW **nlrow)
Definition: scip_nlp.c:1058
SCIP_RETCODE SCIPcreateNlRow(SCIP *scip, SCIP_NLROW **nlrow, const char *name, SCIP_Real constant, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:954
void SCIPlinConsStatsIncTypeCount(SCIP_LINCONSSTATS *linconsstats, SCIP_LINCONSTYPE linconstype, int increment)
Definition: cons.c:8108
void SCIPlinConsStatsReset(SCIP_LINCONSSTATS *linconsstats)
Definition: cons.c:8076
SCIP_RETCODE SCIPchgRowLhs(SCIP *scip, SCIP_ROW *row, SCIP_Real lhs)
Definition: scip_lp.c:1583
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONS *cons, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1422
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1701
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2212
SCIP_Real SCIPgetRowSolFeasibility(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2167
SCIP_RETCODE SCIPchgRowRhs(SCIP *scip, SCIP_ROW *row, SCIP_Real rhs)
Definition: scip_lp.c:1607
SCIP_RETCODE SCIPaddVarsToRow(SCIP *scip, SCIP_ROW *row, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_lp.c:1727
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2144
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1213
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:137
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1609
SCIP_Longint SCIPgetNConflictConssApplied(SCIP *scip)
Definition: scip_solvingstats.c:1152
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1143
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:832
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:497
SCIP_Bool SCIPisSumRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1247
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1221
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:780
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1128
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:471
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:793
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:869
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:806
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:881
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:484
SCIP_Bool SCIPisSumRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1273
SCIP_Bool SCIPisScalingIntegral(SCIP *scip, SCIP_Real val, SCIP_Real scalar)
Definition: scip_numerics.c:606
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:819
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:445
SCIP_Bool SCIPisUpdateUnreliable(SCIP *scip, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: scip_numerics.c:1328
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:458
SCIP_Bool SCIPisSumGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:718
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:857
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:404
SCIP_RETCODE SCIPgetProbvarLinearSum(SCIP *scip, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize, SCIP_Bool mergemultiples)
Definition: scip_var.c:1738
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5326
SCIP_RETCODE SCIPvarGetOrigvarSum(SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:12794
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4474
SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:17902
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:7044
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1480
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3353
SCIP_Bool SCIPdoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8721
SCIP_RETCODE SCIPaggregateVars(SCIP *scip, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *redundant, SCIP_Bool *aggregated)
Definition: scip_var.c:8524
SCIP_RETCODE SCIPinferVarUbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5738
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5443
SCIP_RETCODE SCIPgetProbvarSum(SCIP *scip, SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: scip_var.c:1794
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4382
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4560
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2128
SCIP_RETCODE SCIPmultiaggregateVar(SCIP *scip, SCIP_VAR *var, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: scip_var.c:8658
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:4768
SCIP_RETCODE SCIPparseVarsLinearsum(SCIP *scip, const char *str, SCIP_VAR **vars, SCIP_Real *vals, int *nvars, int varssize, int *requiredsize, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:704
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:4736
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8299
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1693
SCIP_RETCODE SCIPaddVarImplication(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6903
SCIP_RETCODE SCIPcreateVar(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:114
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8399
SCIP_RETCODE SCIPinferVarLbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5624
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1992
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:230
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:4636
SCIP_RETCODE SCIPwriteVarsLinearsum(SCIP *scip, FILE *file, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Bool type)
Definition: scip_var.c:343
SCIP_Real SCIPbdchginfoGetNewbound(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:18690
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3295
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1439
SCIP_RETCODE SCIPinferVarFixCons(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5555
SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:17890
void SCIPsortDownRealPtr(SCIP_Real *realarray, void **ptrarray, int len)
void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
void SCIPsort(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:5541
SCIP_RETCODE SCIPgetSymActiveVariables(SCIP *scip, SYM_SYMTYPE symtype, SCIP_VAR ***vars, SCIP_Real **scalars, int *nvars, SCIP_Real *constant, SCIP_Bool transformed)
Definition: symmetry_graph.c:1686
SCIP_RETCODE SCIPextendPermsymDetectionGraphLinear(SCIP *scip, SYM_GRAPH *graph, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_CONS *cons, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool *success)
Definition: symmetry_graph.c:226
memory allocation routines
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:618
Definition: objbenders.h:44
public methods for conflict analysis handlers
public methods for managing constraints
public methods for managing events
public functions to work with algebraic expressions
public methods for LP management
public methods for message output
public data structures and miscellaneous methods
methods for sorting joint arrays of various types
public methods for problem variables
public methods for branching rule plugins and branching
public methods for conflict handler plugins and conflict analysis
public methods for constraint handler plugins and constraints
public methods for problem copies
public methods for cuts and aggregation rows
public methods for event handler plugins and event handlers
general public methods
public methods for the LP relaxation, rows and columns
public methods for memory management
public methods for message handling
public methods for numerical tolerances
public methods for SCIP parameter handling
public methods for global and local (sub)problems
public methods for the probing mode
public methods for solutions
public methods for querying solving statistics
public methods for the branch-and-bound tree
public methods for SCIP variables
Definition: struct_var.h:109
Definition: struct_conflict.h:50
Definition: struct_cons.h:47
Definition: struct_cons.h:127
Definition: struct_event.h:205
Definition: struct_expr.h:106
Definition: struct_misc.h:138
Definition: struct_misc.h:90
Definition: struct_cons.h:292
Definition: cons_linear.c:334
SCIP_DECL_LINCONSUPGD((*linconsupgd))
Definition: struct_nlp.h:65
Definition: struct_lp.h:202
Definition: struct_sol.h:74
Definition: struct_var.h:208
Definition: struct_symmetry.h:46
Definition: struct_scip.h:70
structs for symmetry computations
methods for dealing with symmetry detection graphs