Scippy

SCIP

Solving Constraint Integer Programs

heur_feaspump.c
Go to the documentation of this file.
1/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2/* */
3/* This file is part of the program and library */
4/* SCIP --- Solving Constraint Integer Programs */
5/* */
6/* Copyright (c) 2002-2024 Zuse Institute Berlin (ZIB) */
7/* */
8/* Licensed under the Apache License, Version 2.0 (the "License"); */
9/* you may not use this file except in compliance with the License. */
10/* You may obtain a copy of the License at */
11/* */
12/* http://www.apache.org/licenses/LICENSE-2.0 */
13/* */
14/* Unless required by applicable law or agreed to in writing, software */
15/* distributed under the License is distributed on an "AS IS" BASIS, */
16/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17/* See the License for the specific language governing permissions and */
18/* limitations under the License. */
19/* */
20/* You should have received a copy of the Apache-2.0 license */
21/* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22/* */
23/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24
25/**@file heur_feaspump.c
26 * @ingroup DEFPLUGINS_HEUR
27 * @brief Objective Feasibility Pump 2.0
28 * @author Timo Berthold
29 * @author Domenico Salvagnin
30 */
31
32/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
33
35#include "scip/cons_linear.h"
36#include "scip/heur_feaspump.h"
37#include "scip/pub_heur.h"
38#include "scip/pub_message.h"
39#include "scip/pub_misc.h"
40#include "scip/pub_misc_sort.h"
41#include "scip/pub_var.h"
42#include "scip/scip_branch.h"
43#include "scip/scip_cons.h"
44#include "scip/scip_copy.h"
45#include "scip/scip_general.h"
46#include "scip/scip_heur.h"
47#include "scip/scip_lp.h"
48#include "scip/scip_mem.h"
49#include "scip/scip_message.h"
50#include "scip/scip_nodesel.h"
51#include "scip/scip_numerics.h"
52#include "scip/scip_param.h"
53#include "scip/scip_pricer.h"
54#include "scip/scip_prob.h"
55#include "scip/scip_probing.h"
57#include "scip/scip_sol.h"
58#include "scip/scip_solve.h"
60#include "scip/scip_tree.h"
61#include "scip/scip_var.h"
62#include <string.h>
63
64#define HEUR_NAME "feaspump"
65#define HEUR_DESC "objective feasibility pump 2.0"
66#define HEUR_DISPCHAR SCIP_HEURDISPCHAR_OBJDIVING
67#define HEUR_PRIORITY -1000000
68#define HEUR_FREQ 20
69#define HEUR_FREQOFS 0
70#define HEUR_MAXDEPTH -1
71#define HEUR_TIMING SCIP_HEURTIMING_AFTERLPPLUNGE
72#define HEUR_USESSUBSCIP FALSE /**< does the heuristic use a secondary SCIP instance? */
73
74#define DEFAULT_MAXLPITERQUOT 0.01 /**< maximal fraction of diving LP iterations compared to node LP iterations */
75#define DEFAULT_MAXLPITEROFS 1000 /**< additional number of allowed LP iterations */
76#define DEFAULT_MAXSOLS 10 /**< total number of feasible solutions found up to which heuristic is called
77 * (-1: no limit) */
78#define DEFAULT_MAXLOOPS 10000 /**< maximal number of pumping rounds (-1: no limit) */
79#define DEFAULT_MAXSTALLLOOPS 10 /**< maximal number of pumping rounds without fractionality improvement (-1: no limit) */
80#define DEFAULT_MINFLIPS 10 /**< minimum number of random variables to flip, if a 1-cycle is encountered */
81#define DEFAULT_CYCLELENGTH 3 /**< maximum length of cycles to be checked explicitly in each round */
82#define DEFAULT_PERTURBFREQ 100 /**< number of iterations until a random perturbation is forced */
83#define DEFAULT_OBJFACTOR 0.1 /**< factor by which the regard of the objective is decreased in each round,
84 * 1.0 for dynamic, depending on solutions already found */
85#define DEFAULT_ALPHA 1.0 /**< initial weight of the objective function in the convex combination */
86#define DEFAULT_ALPHADIFF 1.0 /**< threshold difference for the convex parameter to perform perturbation */
87#define DEFAULT_BEFORECUTS TRUE /**< should the feasibility pump be called at root node before cut separation? */
88#define DEFAULT_USEFP20 FALSE /**< should an iterative round-and-propagate scheme be used to find the integral points? */
89#define DEFAULT_PERTSOLFOUND TRUE /**< should a random perturbation be performed if a feasible solution was found? */
90#define DEFAULT_STAGE3 FALSE /**< should we solve a local branching sub-MIP if no solution could be found? */
91#define DEFAULT_NEIGHBORHOODSIZE 18 /**< radius of the neighborhood to be searched in stage 3 */
92#define DEFAULT_COPYCUTS TRUE /**< should all active cuts from the cutpool of the original SCIP be copied to
93 * constraints of the subscip
94 */
95
96#define MINLPITER 5000 /**< minimal number of LP iterations allowed in each LP solving call */
97
98#define DEFAULT_RANDSEED 13 /**< initial random seed */
99
100/** primal heuristic data */
101struct SCIP_HeurData
102{
103 SCIP_SOL* sol; /**< working solution */
104 SCIP_SOL* roundedsol; /**< rounded solution */
105 SCIP_Longint nlpiterations; /**< number of LP iterations used in this heuristic */
106 SCIP_Real maxlpiterquot; /**< maximal fraction of diving LP iterations compared to node LP iterations */
107 SCIP_Real objfactor; /**< factor by which the regard of the objective is decreased in each round,
108 * 1.0 for dynamic, depending on solutions already found */
109 SCIP_Real alpha; /**< initial weight of the objective function in the convex combination */
110 SCIP_Real alphadiff; /**< threshold difference for the convex parameter to perform perturbation */
111
112 int maxlpiterofs; /**< additional number of allowed LP iterations */
113 int maxsols; /**< total number of feasible solutions found up to which heuristic is called
114 * (-1: no limit) */
115 int maxloops; /**< maximum number of loops (-1: no limit) */
116 int maxstallloops; /**< maximal number of pumping rounds without fractionality improvement (-1: no limit) */
117 int minflips; /**< minimum number of random variables to flip, if a 1-cycle is encountered */
118 int cyclelength; /**< maximum length of cycles to be checked explicitly in each round */
119 int perturbfreq; /**< number of iterations until a random perturbation is forced */
120 int nsuccess; /**< number of runs that produced at least one feasible solution */
121 int neighborhoodsize; /**< radius of the neighborhood to be searched in stage 3 */
122
123 SCIP_RANDNUMGEN* randnumgen; /**< random number generator */
124 SCIP_Bool beforecuts; /**< should the feasibility pump be called at root node before cut separation? */
125 SCIP_Bool usefp20; /**< should an iterative round-and-propagate scheme be used to find the integral points? */
126 SCIP_Bool pertsolfound; /**< should a random perturbation be performed if a feasible solution was found? */
127 SCIP_Bool stage3; /**< should we solve a local branching sub-MIP if no solution could be found? */
128 SCIP_Bool copycuts; /**< should all active cuts from cutpool be copied to constraints in
129 * subproblem?
130 */
131};
132
133/* copies SCIP to probing SCIP and creates variable hashmap */
134static
136 SCIP* scip, /**< SCIP data structure */
137 SCIP** probingscip, /**< sub-SCIP data structure */
138 SCIP_HASHMAP** varmapfw, /**< mapping of SCIP variables to sub-SCIP variables */
139 SCIP_Bool copycuts, /**< should all active cuts from cutpool of scip copied to constraints in subscip */
140 SCIP_Bool* success /**< was copying successful? */
141 )
142{
143 /* check if we are already at the maximal tree depth */
145 {
146 *success = FALSE;
147 return SCIP_OKAY;
148 }
149
150 /* initializing the subproblem */
151 SCIP_CALL( SCIPcreate(probingscip) );
152
153 /* create the variable mapping hash map */
154 SCIP_CALL( SCIPhashmapCreate(varmapfw, SCIPblkmem(*probingscip), SCIPgetNVars(scip)) );
155 *success = FALSE;
156
157 /* copy SCIP instance */
158 SCIP_CALL( SCIPcopyConsCompression(scip, *probingscip, *varmapfw, NULL, "feaspump", NULL, NULL, 0, FALSE, FALSE,
159 FALSE, TRUE, success) );
160
161 if( copycuts )
162 {
163 /* copies all active cuts from cutpool of sourcescip to linear constraints in targetscip */
164 SCIP_CALL( SCIPcopyCuts(scip, *probingscip, *varmapfw, NULL, FALSE, NULL) );
165 }
166
167 return SCIP_OKAY;
168}
169
170/** set appropriate parameters for probing SCIP in FP2 */
171static
173 SCIP* scip, /**< SCIP data structure */
174 SCIP* probingscip /**< sub-SCIP data structure */
175 )
176{
177 if( SCIPisParamFixed(probingscip, "heuristics/" HEUR_NAME "/freq") )
178 {
179 SCIPwarningMessage(scip, "unfixing parameter heuristics/" HEUR_NAME "/freq in probingscip of " HEUR_NAME " heuristic to avoid recursive calls\n");
180 SCIP_CALL( SCIPunfixParam(probingscip, "heuristics/" HEUR_NAME "/freq") );
181 }
182 SCIP_CALL( SCIPsetIntParam(probingscip, "heuristics/" HEUR_NAME "/freq", -1) );
183
184 /* do not abort subproblem on CTRL-C */
185 SCIP_CALL( SCIPsetBoolParam(probingscip, "misc/catchctrlc", FALSE) );
186
187#ifndef SCIP_DEBUG
188 /* disable output to console */
189 SCIP_CALL( SCIPsetIntParam(probingscip, "display/verblevel", 0) );
190#endif
191
192 /* do not multiaggregate variables, because otherwise they have to be skipped in the fix-and-propagate loop */
193 SCIP_CALL( SCIPsetBoolParam(probingscip, "presolving/donotmultaggr", TRUE) );
194
195 /* limit to root node solving */
196 SCIP_CALL( SCIPsetLongintParam(probingscip, "limits/nodes", 1LL) );
197
198 /* disable LP solving and expensive techniques */
199 if( SCIPisParamFixed(probingscip, "lp/solvefreq") )
200 {
201 SCIPwarningMessage(scip, "unfixing parameter lp/solvefreq in probingscip of " HEUR_NAME " heuristic to speed up propagation\n");
202 SCIP_CALL( SCIPunfixParam(probingscip, "lp/solvefreq") );
203 }
204 SCIP_CALL( SCIPsetIntParam(probingscip, "lp/solvefreq", -1) );
205 SCIP_CALL( SCIPsetBoolParam(probingscip, "conflict/enable", FALSE) );
206 SCIP_CALL( SCIPsetBoolParam(probingscip, "constraints/disableenfops", TRUE) );
207 SCIP_CALL( SCIPsetBoolParam(probingscip, "constraints/knapsack/negatedclique", FALSE) );
210
211 return SCIP_OKAY;
212}
213
214/** set appropriate parameters for probing SCIP in Stage 3 */
215static
217 SCIP* scip, /**< SCIP data structure */
218 SCIP* probingscip /**< sub-SCIP data structure */
219 )
220{
221 SCIP_CALL( SCIPcopyParamSettings(scip, probingscip) );
222 /* do not abort subproblem on CTRL-C */
223 SCIP_CALL( SCIPsetBoolParam(probingscip, "misc/catchctrlc", FALSE) );
224
225#ifndef SCIP_DEBUG
226 /* disable output to console */
227 SCIP_CALL( SCIPsetIntParam(probingscip, "display/verblevel", 0) );
228#endif
229 /* set limits for the subproblem */
230 SCIP_CALL( SCIPcopyLimits(scip, probingscip) );
231 SCIP_CALL( SCIPsetLongintParam(probingscip, "limits/nodes", 1000LL) );
232 SCIP_CALL( SCIPsetLongintParam(probingscip, "limits/stallnodes", 100LL) );
233
234 /* forbid recursive call of heuristics and separators solving sub-SCIPs */
235 SCIP_CALL( SCIPsetSubscipsOff(probingscip, TRUE) );
236 if( SCIPisParamFixed(probingscip, "heuristics/" HEUR_NAME "/freq") )
237 {
238 SCIPwarningMessage(scip,"unfixing parameter heuristics/" HEUR_NAME "/freq in probingscip of " HEUR_NAME " heuristic to avoid recursive calls\n");
239 SCIP_CALL( SCIPunfixParam(probingscip, "heuristics/" HEUR_NAME "/freq") );
240 }
241 SCIP_CALL( SCIPsetIntParam(probingscip, "heuristics/feaspump/freq", -1) );
242
243 /* disable heuristics which aim to feasibility instead of optimality */
244 if( !SCIPisParamFixed(probingscip, "heuristics/octane/freq") )
245 {
246 SCIP_CALL( SCIPsetIntParam(probingscip, "heuristics/octane/freq", -1) );
247 }
248 if( !SCIPisParamFixed(probingscip, "heuristics/objpscostdiving/freq") )
249 {
250 SCIP_CALL( SCIPsetIntParam(probingscip, "heuristics/objpscostdiving/freq", -1) );
251 }
252 if( !SCIPisParamFixed(probingscip, "heuristics/rootsoldiving/freq") )
253 {
254 SCIP_CALL( SCIPsetIntParam(probingscip, "heuristics/rootsoldiving/freq", -1) );
255 }
256
257 /* disable cutting plane separation */
259
260 /* disable expensive presolving */
262
263 /* use best estimate node selection */
264 if( SCIPfindNodesel(probingscip, "estimate") != NULL && !SCIPisParamFixed(probingscip, "nodeselection/estimate/stdpriority") )
265 {
266 SCIP_CALL( SCIPsetIntParam(probingscip, "nodeselection/estimate/stdpriority", INT_MAX/4) );
267 }
268
269 /* use inference branching */
270 if( SCIPfindBranchrule(probingscip, "inference") != NULL && !SCIPisParamFixed(probingscip, "branching/inference/priority") )
271 {
272 SCIP_CALL( SCIPsetIntParam(probingscip, "branching/inference/priority", INT_MAX/4) );
273 }
274
275 /* disable conflict analysis */
276 if( !SCIPisParamFixed(probingscip, "conflict/enable") )
277 {
278 SCIP_CALL( SCIPsetBoolParam(probingscip, "conflict/enable", FALSE) );
279 }
280
281 return SCIP_OKAY;
282}
283
284/** checks whether a variable is one of the currently most fractional ones */
285static
287 SCIP_VAR** mostfracvars, /**< sorted array of the currently most fractional variables */
288 SCIP_Real* mostfracvals, /**< array of their fractionality, decreasingly sorted */
289 int* nflipcands, /**< number of fractional variables already labeled to be flipped*/
290 int maxnflipcands, /**< typically randomized number of maximum amount of variables to flip */
291 SCIP_VAR* var, /**< variable to be checked */
292 SCIP_Real frac /**< fractional value of the variable */
293 )
294{
295 int i;
296
297 assert(mostfracvars != NULL);
298 assert(mostfracvals != NULL);
299 assert(nflipcands != NULL);
300
301 /* instead of the fractional value use the fractionality */
302 if( frac > 0.5 )
303 frac = 1 - frac;
304
305 /* if there are already enough candidates and the variable is less fractional, return, else reserve the last entry */
306 if( *nflipcands >= maxnflipcands )
307 {
308 if( frac <= mostfracvals[*nflipcands-1] )
309 return;
310 else
311 (*nflipcands)--;
312 }
313
314 /* shifting var and frac through the (sorted) arrays */
315 for( i = *nflipcands; i > 0 && mostfracvals[i-1] < frac; i-- )
316 {
317 mostfracvars[i] = mostfracvars[i-1];
318 mostfracvals[i] = mostfracvals[i-1];
319 }
320 assert(0 <= i && i <= *nflipcands && *nflipcands < maxnflipcands);
321
322 /* insert the variable and its fractionality */
323 mostfracvars[i] = var;
324 mostfracvals[i] = frac;
325
326 /* we've found another candidate */
327 (*nflipcands)++;
328}
329
330/** set solution value in rounded solution and update objective coefficient accordingly */
331static
333 SCIP* scip, /**< SCIP data structure */
334 SCIP_HEURDATA* heurdata, /**< heuristic data structure */
335 SCIP_VAR* var, /**< variable */
336 SCIP_Real solval, /**< solution value for this variable */
337 SCIP_Real alpha, /**< weight of original objective function */
338 SCIP_Real scalingfactor /**< factor to scale the original objective function with */
339 )
340{
341 SCIP_Real lb;
342 SCIP_Real ub;
343 SCIP_Real newobjcoeff;
344 SCIP_Real orgobjcoeff;
345
346 assert(heurdata != NULL);
347 assert(var != NULL);
348
349 lb = SCIPvarGetLbLocal(var);
350 ub = SCIPvarGetUbLocal(var);
351
352 /* update rounded solution */
353 assert(SCIPisFeasLE(scip, lb, solval) && SCIPisFeasLE(scip, solval, ub));
354 assert(SCIPisIntegral(scip,solval));
355 SCIP_CALL( SCIPsetSolVal(scip, heurdata->roundedsol, var, solval) );
356
357 /* modify objective towards rounded solution value if it is at one of the variable bounds */
358 orgobjcoeff = SCIPvarGetObj(var);
359 if( SCIPisEQ(scip, solval, lb) )
360 newobjcoeff = (1.0 - alpha)/scalingfactor + alpha * orgobjcoeff;
361 else if( SCIPisEQ(scip, solval, ub) )
362 newobjcoeff = - (1.0 - alpha)/scalingfactor + alpha * orgobjcoeff;
363 else
364 newobjcoeff = alpha * orgobjcoeff;
365
366 SCIP_CALL( SCIPchgVarObjDive(scip, var, newobjcoeff) );
367
368 return SCIP_OKAY;
369}
370
371
372/** flips the roundings of the most fractional variables, if a 1-cycle was found */
373static
375 SCIP* scip, /**< SCIP data structure */
376 SCIP_HEURDATA* heurdata, /**< data of this special heuristic */
377 SCIP_VAR** mostfracvars, /**< sorted array of the currently most fractional variables */
378 int nflipcands, /**< number of variables to flip */
379 SCIP_Real alpha, /**< factor how much the original objective is regarded */
380 SCIP_Real scalingfactor /**< factor to scale the original objective function with */
381 )
382{
383 int i;
384
385 /* flip rounding to the opposite side */
386 for( i = 0; i < nflipcands; i++ )
387 {
388 SCIP_VAR* var;
389 SCIP_Real solval;
390 SCIP_Real roundedsolval;
391
392 var = mostfracvars[i];
393 solval = SCIPvarGetLPSol(var);
394 roundedsolval = SCIPgetSolVal(scip, heurdata->roundedsol, var);
395
396 assert(! SCIPisFeasIntegral(scip, solval));
397 assert(SCIPisFeasIntegral(scip, roundedsolval));
398
399 /* flip to the opposite rounded solution value */
400 if( roundedsolval > solval )
401 solval = SCIPfeasFloor(scip, solval);
402 else
403 {
404 solval = SCIPfeasCeil(scip, solval);
405 }
406
407 SCIPdebugMsg(scip, "1-cycle flip: variable <%s> [%g,%g] LP sol %.15g sol %.15g -> %.15g\n",
409 SCIPvarGetLPSol(var), SCIPgetSolVal(scip, heurdata->roundedsol, var), solval);
410
411 SCIP_CALL( updateVariableRounding(scip, heurdata, var, solval, alpha, scalingfactor) );
412 }
413 return SCIP_OKAY;
414}
415
416/** flips the roundings of randomly chosen fractional variables, preferring highly fractional ones,
417 * if a longer cycle was found
418 */
419static
421 SCIP* scip, /**< SCIP data structure */
422 SCIP_HEURDATA* heurdata, /**< data of this special heuristic */
423 SCIP_VAR** vars, /**< array of all variables */
424 int nbinandintvars, /**< number of general integer and 0-1 variables */
425 SCIP_Real alpha, /**< factor how much the original objective is regarded */
426 SCIP_Real scalingfactor /**< factor to scale the original objective function with */
427 )
428{
429 int i;
430
431 /* flip variables randomized biased on their fractionality */
432 for( i = 0; i < nbinandintvars; i++ )
433 {
434 SCIP_VAR* var;
435 SCIP_Real solval;
436 SCIP_Real frac;
437 SCIP_Real flipprob;
438 SCIP_Real roundedsolval;
439
440 var = vars[i];
441 solval = SCIPvarGetLPSol(var);
442
443 /* skip variables with integral solution values */
444 if( SCIPisFeasIntegral(scip, solval) )
445 continue;
446
447 frac = SCIPfeasFrac(scip, solval);
448 flipprob = SCIPrandomGetReal(heurdata->randnumgen, -0.3, 0.7);
449
450 /* flip, iff the sum of the randomized number and the fractionality is big enough */
451 if( MIN(frac, 1.0 - frac) + MAX(flipprob, 0.0) > 0.5 )
452 {
453 roundedsolval = SCIPgetSolVal(scip, heurdata->roundedsol, var);
454 assert(SCIPisFeasIntegral(scip, roundedsolval));
455
456 /* flip the solution to the opposite side */
457 if( roundedsolval > solval )
458 solval = SCIPfloor(scip, solval);
459 else
460 solval = SCIPceil(scip, solval);
461
462 /* update rounded solution value and objective coefficient */
463 SCIP_CALL( updateVariableRounding(scip, heurdata, var, solval, alpha, scalingfactor) );
464 }
465 }
466
467 return SCIP_OKAY;
468}
469
470/** create the extra constraint of local branching and add it to subscip */
471static
473 SCIP* scip, /**< SCIP data structure of the original problem */
474 SCIP* probingscip, /**< SCIP data structure of the subproblem */
475 SCIP_HASHMAP* varmapfw, /**< mapping of SCIP variables to sub-SCIP variables */
476 SCIP_SOL* bestsol, /**< SCIP solution */
477 SCIP_Real neighborhoodsize /**< rhs for LB constraint */
478 )
479{
480 SCIP_CONS* cons; /* local branching constraint to create */
481 SCIP_VAR** consvars;
482 SCIP_VAR** vars;
483
484 int nbinvars;
485 int nconsvars;
486 int i;
487 SCIP_Real lhs;
488 SCIP_Real rhs;
489 SCIP_Real* consvals;
490 char consname[SCIP_MAXSTRLEN];
491
492 (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "%s_localbranchcons", SCIPgetProbName(scip));
493
494 /* get vars data */
495 SCIP_CALL( SCIPgetVarsData(scip, &vars, NULL, &nbinvars, NULL, NULL, NULL) );
496 /* memory allocation */
497 SCIP_CALL( SCIPallocBufferArray(scip, &consvars, nbinvars) );
498 SCIP_CALL( SCIPallocBufferArray(scip, &consvals, nbinvars) );
499 nconsvars = 0;
500
501 /* set initial left and right hand sides of local branching constraint */
502 lhs = 0.0;
503 rhs = neighborhoodsize;
504
505 /* create the distance (to incumbent) function of the binary variables */
506 for( i = 0; i < nbinvars; i++ )
507 {
508 SCIP_Real solval;
509
510 solval = SCIPgetSolVal(scip, bestsol, vars[i]);
511 assert( SCIPisFeasIntegral(scip, solval) );
512
513 /* is variable i part of the binary support of closest sol? */
514 if( SCIPisFeasEQ(scip,solval,1.0) )
515 {
516 consvals[nconsvars] = -1.0;
517 rhs -= 1.0;
518 lhs -= 1.0;
519 }
520 else
521 consvals[nconsvars] = 1.0;
522 consvars[nconsvars] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);
523 if( consvars[nconsvars] == NULL )
524 continue;
525 SCIP_CALL( SCIPchgVarObj(probingscip, consvars[nconsvars], consvals[nconsvars]) );
526 assert( SCIPvarGetType(consvars[nconsvars]) == SCIP_VARTYPE_BINARY );
527 ++nconsvars;
528 }
529
530 /* creates localbranching constraint and adds it to subscip */
531 SCIP_CALL( SCIPcreateConsLinear(probingscip, &cons, consname, nconsvars, consvars, consvals,
532 lhs, rhs, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE) );
533 SCIP_CALL( SCIPaddCons(probingscip, cons) );
534 SCIP_CALL( SCIPreleaseCons(probingscip, &cons) );
535
536 /* free local memory */
537 SCIPfreeBufferArray(scip, &consvals);
538 SCIPfreeBufferArray(scip, &consvars);
539
540 return SCIP_OKAY;
541}
542
543/** creates new solutions for the original problem by copying the solutions of the subproblem */
544static
546 SCIP* scip, /**< original SCIP data structure */
547 SCIP* subscip, /**< SCIP structure of the subproblem */
548 SCIP_HASHMAP* varmapfw, /**< mapping of SCIP variables to sub-SCIP variables */
549 SCIP_HEUR* heur, /**< heuristic structure */
550 SCIP_Bool* success /**< used to store whether new solution was found or not */
551 )
552{
553 SCIP_VAR** vars; /* the original problem's variables */
554 int nvars;
555 SCIP_VAR** subvars;
556 int i;
557
558 assert(scip != NULL);
559 assert(subscip != NULL);
560
561 /* get variables' data */
562 SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, NULL, NULL, NULL, NULL) );
563
564 /* for copying a solution we need an explicit mapping */
565 SCIP_CALL( SCIPallocBufferArray(scip, &subvars, nvars) );
566 for( i = 0; i < nvars; i++ )
567 subvars[i] = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, vars[i]);
568
569 SCIP_CALL( SCIPtranslateSubSols(scip, subscip, heur, subvars, success, NULL) );
570
571 SCIPfreeBufferArray(scip, &subvars);
572
573 return SCIP_OKAY;
574}
575
576/** copy method for primal heuristic plugins (called when SCIP copies plugins) */
577static
578SCIP_DECL_HEURCOPY(heurCopyFeaspump)
579{
580 assert(scip != NULL);
581 assert(heur != NULL);
582 assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
583
584 /* call inclusion method of primal heuristic */
586
587 return SCIP_OKAY;
588}
589
590/** destructor of primal heuristic to free user data (called when SCIP is exiting) */
591static
592SCIP_DECL_HEURFREE(heurFreeFeaspump)
593{
594 SCIP_HEURDATA* heurdata;
595
596 assert(heur != NULL);
597 assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
598 assert(scip != NULL);
599
600 /* free heuristic data */
601 heurdata = SCIPheurGetData(heur);
602 assert(heurdata != NULL);
603 SCIPfreeBlockMemory(scip, &heurdata);
604 SCIPheurSetData(heur, NULL);
605
606 return SCIP_OKAY;
607}
608
609
610/** initialization method of primal heuristic (called after problem was transformed) */
611static
612SCIP_DECL_HEURINIT(heurInitFeaspump)
613{
614 SCIP_HEURDATA* heurdata;
615
616 assert(heur != NULL);
617 assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
618
619 /* get heuristic data */
620 heurdata = SCIPheurGetData(heur);
621 assert(heurdata != NULL);
622
623 /* create working solution */
624 SCIP_CALL( SCIPcreateSol(scip, &heurdata->sol, heur) );
625 SCIP_CALL( SCIPcreateSol(scip, &heurdata->roundedsol, heur) );
626
627 /* initialize data */
628 heurdata->nlpiterations = 0;
629 heurdata->nsuccess = 0;
630
631 /* create random number generator */
632 SCIP_CALL( SCIPcreateRandom(scip, &heurdata->randnumgen,
634
635 return SCIP_OKAY;
636}
637
638/** deinitialization method of primal heuristic (called before transformed problem is freed) */
639static
640SCIP_DECL_HEUREXIT(heurExitFeaspump)
641{
642 SCIP_HEURDATA* heurdata;
643
644 assert(heur != NULL);
645 assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
646
647 /* get heuristic data */
648 heurdata = SCIPheurGetData(heur);
649 assert(heurdata != NULL);
650
651 /* free working solution */
652 SCIP_CALL( SCIPfreeSol(scip, &heurdata->sol) );
653 SCIP_CALL( SCIPfreeSol(scip, &heurdata->roundedsol) );
654
655 /* free random number generator */
656 SCIPfreeRandom(scip, &heurdata->randnumgen);
657
658 return SCIP_OKAY;
659}
660
661
662/** solving process initialization method of primal heuristic (called when branch and bound process is about to begin) */
663static
664SCIP_DECL_HEURINITSOL(heurInitsolFeaspump)
665{
666 SCIP_HEURDATA* heurdata;
667
668 heurdata = SCIPheurGetData(heur);
669 assert(heurdata != NULL);
670
671 /* if the heuristic is called at the root node, we may want to be called directly after the initial root LP solve */
672 if( heurdata->beforecuts && SCIPheurGetFreqofs(heur) == 0 )
674
675 return SCIP_OKAY;
676}
677
678
679/** solving process deinitialization method of primal heuristic (called before branch and bound process data is freed) */
680static
681SCIP_DECL_HEUREXITSOL(heurExitsolFeaspump)
682{
683 /* reset the timing mask to its default value */
685
686 return SCIP_OKAY;
687}
688
689/** calculates an adjusted maximal number of LP iterations */
690static
692 SCIP_Longint maxnlpiterations, /**< regular maximal number of LP iterations */
693 SCIP_Longint nsolsfound, /**< total number of solutions found so far by SCIP */
694 int nstallloops /**< current number of stalling rounds */
695 )
696{
697 if( nstallloops <= 1 )
698 {
699 if( nsolsfound == 0 )
700 return 4*maxnlpiterations;
701 else
702 return 2*maxnlpiterations;
703 }
704 else
705 return maxnlpiterations;
706}
707
708/** execution method of primal heuristic */
709static
710SCIP_DECL_HEUREXEC(heurExecFeaspump)
711{
712 SCIP_HEURDATA* heurdata;
713 SCIP_SOL* tmpsol; /* only used for swapping */
714 SCIP_SOL** lastroundedsols;/* solutions of the last pumping rounds (depending on heurdata->cyclelength) */
715 SCIP_SOL* closestsol; /* rounded solution closest to the LP relaxation: used for stage3 */
716 SCIP_Real* lastalphas; /* alpha values associated to solutions in lastroundedsols */
717
718 SCIP* probingscip; /* copied SCIP structure, used for round-and-propagate loop of feasibility pump 2.0 */
719 SCIP_HASHMAP* varmapfw; /* mapping of SCIP variables to sub-SCIP variables */
720
721 SCIP_VAR** vars;
722 SCIP_VAR** pseudocands;
723 SCIP_VAR** tmppseudocands;
724 SCIP_VAR** mostfracvars; /* the 30 most fractional variables, needed to avoid 1-cycles */
725 SCIP_VAR* var;
726
727 SCIP_Real* mostfracvals; /* the values of the variables above */
728 SCIP_Real oldsolval; /* one value of the last solution */
729 SCIP_Real solval; /* one value of the actual solution */
730 SCIP_Real frac; /* the fractional part of the value above */
731 SCIP_Real objfactor; /* factor by which the regard of the objective is decreased in each round, in [0,0.99] */
732 SCIP_Real alpha; /* factor how the original objective is regarded, used for convex combination of two functions */
733 SCIP_Real objnorm; /* Euclidean norm of the objective function, used for scaling */
734 SCIP_Real scalingfactor; /* factor to scale the original objective function with */
735 SCIP_Real mindistance; /* distance of the closest rounded solution from the LP relaxation: used for stage3 */
736
737 SCIP_Longint nlpiterations; /* number of LP iterations done during one pumping round */
738 SCIP_Longint maxnlpiterations; /* maximum number of LP iterations for this heuristic */
739 SCIP_Longint nsolsfound; /* number of solutions found by this heuristic */
740 SCIP_Longint ncalls; /* number of calls of this heuristic */
741 SCIP_Longint nbestsolsfound; /* current total number of best solution updates in SCIP */
742
743 SCIP_LPSOLSTAT lpsolstat; /* status of the LP solution */
744
745 int nvars; /* number of variables */
746 int nbinvars; /* number of 0-1-variables */
747 int nintvars; /* number of integer variables */
748 int nfracs; /* number of fractional variables updated after each pumping round*/
749 int nflipcands; /* how many flipcands (most frac. var.) have been found */
750 int npseudocands;
751 int maxnflipcands; /* maximal number of candidates to flip in the current pumping round */
752 int nloops; /* how many pumping rounds have been made */
753 int maxflips; /* maximum number of flips, if a 1-cycle is found (depending on heurdata->minflips) */
754 int maxloops; /* maximum number of pumping rounds */
755 int nstallloops; /* number of loops without reducing the current best number of factional variables */
756 int maxstallloops; /* maximal number of allowed stalling loops */
757 int bestnfracs; /* best number of fractional variables */
758 int i;
759 int j;
760
761 SCIP_Bool success;
762 SCIP_Bool lperror;
763 SCIP_Bool* cycles; /* are there short cycles */
764
765 SCIP_RETCODE retcode;
766
767 assert(heur != NULL);
768 assert(strcmp(SCIPheurGetName(heur), HEUR_NAME) == 0);
769 assert(scip != NULL);
770 assert(result != NULL);
771 assert(SCIPhasCurrentNodeLP(scip));
772
773 *result = SCIP_DELAYED;
774
775 /* do not call heuristic of node was already detected to be infeasible */
776 if( nodeinfeasible )
777 return SCIP_OKAY;
778
779 /* only call heuristic, if an optimal LP solution is at hand */
781 return SCIP_OKAY;
782
783 /* only call heuristic, if the LP objective value is smaller than the cutoff bound */
785 return SCIP_OKAY;
786
787 /* only call heuristic, if the LP solution is basic (which allows fast resolve in diving) */
788 if( !SCIPisLPSolBasic(scip) )
789 return SCIP_OKAY;
790
791 *result = SCIP_DIDNOTRUN;
792
793 /* don't dive two times at the same node */
795 return SCIP_OKAY;
796
797 /* only call feaspump once at the root */
798 if( SCIPgetDepth(scip) == 0 && SCIPheurGetNCalls(heur) > 0 )
799 return SCIP_OKAY;
800
801 /* reset the timing mask to its default value (at the root node it could be different) */
803
804 /* only call the heuristic before cutting planes if we do not have an incumbent and no pricer exists */
805 if( heurtiming == SCIP_HEURTIMING_DURINGLPLOOP && SCIPgetNSolsFound(scip) > 0 && SCIPgetNPricers(scip) == 0 )
806 return SCIP_OKAY;
807
808 /* get heuristic's data */
809 heurdata = SCIPheurGetData(heur);
810 assert(heurdata != NULL);
811
812 /* only apply heuristic, if only a few solutions have been found and no pricer exists */
813 if( heurdata->maxsols >= 0 && SCIPgetNSolsFound(scip) > heurdata->maxsols && SCIPgetNPricers(scip) == 0 )
814 return SCIP_OKAY;
815
816 /* get all variables of LP and number of fractional variables in LP solution that should be integral */
817 SCIP_CALL( SCIPgetVarsData(scip, &vars, &nvars, &nbinvars, &nintvars, NULL, NULL) );
818 nfracs = SCIPgetNLPBranchCands(scip);
819 assert(0 <= nfracs && nfracs <= nbinvars + nintvars);
820 if( nfracs == 0 )
821 return SCIP_OKAY;
822
823 /* calculate the maximal number of LP iterations until heuristic is aborted */
824 nlpiterations = SCIPgetNLPIterations(scip);
825 ncalls = SCIPheurGetNCalls(heur);
826 nsolsfound = 10*SCIPheurGetNBestSolsFound(heur) + heurdata->nsuccess;
827 maxnlpiterations = (SCIP_Longint)((1.0 + 10.0*(nsolsfound+1.0)/(ncalls+1.0)) * heurdata->maxlpiterquot * nlpiterations);
828 maxnlpiterations += heurdata->maxlpiterofs;
829
830 /* don't try to dive, if we took too many LP iterations during diving */
831 if( heurdata->nlpiterations >= maxnlpiterations )
832 return SCIP_OKAY;
833
834 /* at the first root call, allow more iterations if there is no feasible solution yet */
835 if( SCIPheurGetNCalls(heur) == 0 && SCIPgetNSolsFound(scip) == 0 && SCIPgetDepth(scip) == 0 )
836 maxnlpiterations += nlpiterations;
837
838 /* allow at least a certain number of LP iterations in this dive */
839 maxnlpiterations = MAX(maxnlpiterations, heurdata->nlpiterations + MINLPITER);
840
841 /* calculate maximal number of flips and loops */
842 maxflips = 3*heurdata->minflips;
843 maxloops = (heurdata->maxloops == -1 ? INT_MAX : heurdata->maxloops);
844 maxstallloops = (heurdata->maxstallloops == -1 ? INT_MAX : heurdata->maxstallloops);
845
846 SCIPdebugMsg(scip, "executing feasibility pump heuristic, nlpiters=%" SCIP_LONGINT_FORMAT ", maxnlpit:%" SCIP_LONGINT_FORMAT ", maxflips:%d \n",
847 nlpiterations, maxnlpiterations, maxflips);
848
849 *result = SCIP_DIDNOTFIND;
850
851 probingscip = NULL;
852 varmapfw = NULL;
853
854 if( heurdata->usefp20 )
855 {
856 SCIP_Bool valid;
857
858 /* ignore value of valid */
859 SCIP_CALL( setupProbingSCIP(scip, &probingscip, &varmapfw, heurdata->copycuts, &valid) );
860
861 if( probingscip != NULL )
862 {
863 SCIP_CALL( setupSCIPparamsFP2(scip, probingscip) );
864
865 retcode = SCIPsolve(probingscip);
866
867 /* errors in solving the subproblem should not kill the overall solving process;
868 * hence, the return code is caught and a warning is printed, only in debug mode, SCIP will stop. */
869 if( retcode != SCIP_OKAY )
870 {
871#ifndef NDEBUG
872 SCIP_CALL( retcode );
873#endif
874 SCIPwarningMessage(scip, "Error while solving subproblem in feaspump heuristic; sub-SCIP terminated with code <%d>\n", retcode);
875
876 /* free hash map and copied SCIP */
877 SCIPhashmapFree(&varmapfw);
878 SCIP_CALL( SCIPfree(&probingscip) );
879 return SCIP_OKAY;
880 }
881
882 if( SCIPgetStage(probingscip) != SCIP_STAGE_SOLVING)
883 {
884 SCIP_STATUS probingstatus = SCIPgetStatus(probingscip);
885
886 if( probingstatus == SCIP_STATUS_OPTIMAL )
887 {
888 assert( SCIPgetNSols(probingscip) > 0 );
889 SCIP_CALL( createNewSols(scip, probingscip, varmapfw, heur, &success) );
890 if( success )
891 *result = SCIP_FOUNDSOL;
892 }
893
894 /* free hash map and copied SCIP */
895 SCIPhashmapFree(&varmapfw);
896 SCIP_CALL( SCIPfree(&probingscip) );
897 return SCIP_OKAY;
898 }
899 SCIP_CALL( SCIPsetLongintParam(probingscip, "limits/nodes", 2LL) );
900
901 /* set SCIP into probing mode and create root node of the probing tree */
902 SCIP_CALL( SCIPstartProbing(probingscip) );
903
904 /* this should always be fulfilled */
905 assert(SCIP_MAXTREEDEPTH > SCIPgetDepth(probingscip));
906
907 SCIP_CALL( SCIPnewProbingNode(probingscip) );
908
909 SCIPdebugMsg(scip, "successfully copied SCIP instance -> feasibility pump 2.0 can be used.\n");
910 }
911 else
912 {
913 assert(varmapfw == NULL);
914
915 SCIPdebugMsg(scip, "SCIP reached the depth limit -> skip heuristic\n");
916 return SCIP_OKAY;
917 }
918 } /*lint !e438*/
919
920 /* memory allocation */
921 SCIP_CALL( SCIPallocBufferArray(scip, &mostfracvars, maxflips) );
922 SCIP_CALL( SCIPallocBufferArray(scip, &mostfracvals, maxflips) );
923 SCIP_CALL( SCIPallocBufferArray(scip, &lastroundedsols, heurdata->cyclelength) );
924 SCIP_CALL( SCIPallocBufferArray(scip, &lastalphas, heurdata->cyclelength) );
925 SCIP_CALL( SCIPallocBufferArray(scip, &cycles, heurdata->cyclelength) );
926
927 for( j = 0; j < heurdata->cyclelength; j++ )
928 {
929 SCIP_CALL( SCIPcreateSol(scip, &lastroundedsols[j], heur) );
930 }
931
932 closestsol = NULL;
933 if( heurdata->stage3 )
934 {
935 SCIP_CALL( SCIPcreateSol(scip, &closestsol, heur) );
936 }
937
938 /* start diving */
940
941 /* lp was solved optimal */
942 lperror = FALSE;
943 lpsolstat = SCIP_LPSOLSTAT_OPTIMAL;
944
945 /* pumping rounds */
946 nsolsfound = SCIPgetNBestSolsFound(scip);
947 if( heurdata->objfactor == 1.0 )
948 objfactor = MIN(1.0 - 0.1 / (SCIP_Real)(1 + nsolsfound), 0.999);
949 else
950 objfactor = heurdata->objfactor;
951
952 /* scale distance function and original objective to the same norm */
953 objnorm = SCIPgetObjNorm(scip);
954 objnorm = MAX(objnorm, 1.0);
955 scalingfactor = sqrt((SCIP_Real)(nbinvars + nintvars)) / objnorm;
956
957 /* data initialization */
958 alpha = heurdata->alpha;
959 nloops = 0;
960 nstallloops = 0;
961 nbestsolsfound = SCIPgetNBestSolsFound(scip);
962 bestnfracs = INT_MAX;
963 mindistance = SCIPinfinity(scip);
964
965 /* pumping loop */
966 while( nfracs > 0
967 && heurdata->nlpiterations < adjustedMaxNLPIterations(maxnlpiterations, nsolsfound, nstallloops)
968 && nloops < maxloops && nstallloops < maxstallloops
969 && !SCIPisStopped(scip) )
970 {
971 int minimum;
972 SCIP_Real* pseudocandsfrac;
973 SCIP_Longint nlpiterationsleft;
974 int iterlimit;
975
976 /* decrease convex combination scalar */
977 nloops++;
978 alpha *= objfactor;
979
980 SCIPdebugMsg(scip, "feasibility pump loop %d: %d fractional variables (alpha: %.4f, stall: %d/%d)\n",
981 nloops, nfracs, alpha, nstallloops, maxstallloops);
982
983 success = FALSE;
984
985 SCIP_CALL( SCIPlinkLPSol(scip, heurdata->roundedsol) );
986
987 /* randomly choose maximum number of variables to flip in current pumping round in case of a 1-cycle */
988 maxnflipcands = SCIPrandomGetInt(heurdata->randnumgen, MIN(nfracs/2+1, heurdata->minflips), MIN(nfracs, maxflips));
989 nflipcands = 0;
990
991 /* get all unfixed integer variables */
992 SCIP_CALL( SCIPgetPseudoBranchCands(scip, &tmppseudocands, &npseudocands, NULL) );
993 SCIP_CALL( SCIPduplicateBufferArray(scip, &pseudocands, tmppseudocands, npseudocands) );
994
995 /* get array of all fractional variables and sort it w.r.t. their fractionalities */
996 if( heurdata->usefp20 )
997 {
998 SCIP_CALL( SCIPallocBufferArray(scip, &pseudocandsfrac, npseudocands) );
999
1000 for( i = 0; i < npseudocands; i++ )
1001 {
1002 frac = SCIPfeasFrac(scip, SCIPvarGetLPSol(pseudocands[i]));
1003 pseudocandsfrac[i] = MIN(frac, 1.0-frac); /* always a number between 0 and 0.5 */
1004 if( SCIPvarGetType(pseudocands[i]) == SCIP_VARTYPE_BINARY )
1005 pseudocandsfrac[i] -= 10.0; /* binaries always come first */
1006 }
1007 SCIPsortRealPtr(pseudocandsfrac, (void**)pseudocands, npseudocands);
1008 SCIPfreeBufferArray(scip, &pseudocandsfrac);
1009
1010 SCIPdebugMsg(scip, "iteratively fix and propagate variables\n");
1011 }
1012
1013 for( i = 0; i < npseudocands; i++ )
1014 {
1015 SCIP_VAR* probingvar;
1016 SCIP_Bool infeasible;
1017 SCIP_Longint ndomreds;
1018
1019 var = pseudocands[i];
1020
1021 /* round the LP solution */
1022 solval = SCIPvarGetLPSol(var);
1023 frac = SCIPfeasFrac(scip, solval);
1024
1025 /* round randomly if the value is close to 0.5 */
1026 if( SCIPisEQ(scip, frac, 0.5) )
1027 {
1028 if( SCIPrandomGetReal(heurdata->randnumgen, 0.0, 1.0) <= 0.5 )
1029 solval = SCIPfloor(scip, solval);
1030 else
1031 solval = SCIPceil(scip, solval);
1032 }
1033 else
1034 solval = SCIPfloor(scip, solval + 0.5);
1035
1036 /* ensure, that the fixing value is inside the local domains */
1037 if( heurdata->usefp20 )
1038 {
1039 SCIP_Real lbprobing;
1040 SCIP_Real ubprobing;
1041
1042 probingvar = (SCIP_VAR*) SCIPhashmapGetImage(varmapfw, var);
1043 /* skip if variable does not exist in probingscip */
1044 if( probingvar != NULL )
1045 {
1046 lbprobing = SCIPvarGetLbLocal(probingvar);
1047 ubprobing = SCIPvarGetUbLocal(probingvar);
1048
1049 solval = MAX(solval, lbprobing);
1050 solval = MIN(solval, ubprobing);
1051
1052 /* fix the variable and propagate the domain change */
1053 if( !SCIPisFeasEQ(probingscip, lbprobing, ubprobing) && SCIPvarIsActive(SCIPvarGetTransVar(probingvar)) )
1054 {
1055 assert(SCIPisFeasLE(probingscip, lbprobing, ubprobing));
1056 SCIPdebugMsg(scip, "try to fix variable <%s> (domain [%f,%f] to %f\n", SCIPvarGetName(probingvar), lbprobing, ubprobing,
1057 solval);
1058 SCIP_CALL( SCIPfixVarProbing(probingscip, probingvar, solval) );
1059 SCIP_CALL( SCIPpropagateProbing(probingscip, -1, &infeasible, &ndomreds) );
1060 SCIPdebugMsg(scip, " -> reduced %" SCIP_LONGINT_FORMAT " domains\n", ndomreds);
1061
1062 if( infeasible )
1063 {
1064 SCIPdebugMsg(scip, " -> infeasible!\n");
1065 SCIP_CALL( SCIPbacktrackProbing(probingscip, 0) );
1066 }
1067 }
1068 else
1069 {
1070 SCIPdebugMsg(scip, "variable <%s> is already fixed to %f\n", SCIPvarGetName(probingvar), solval);
1071 }
1072 }
1073 }
1074
1075 SCIP_CALL( updateVariableRounding(scip, heurdata, var, solval, alpha, scalingfactor) );
1076
1077 /* check whether the variable is one of the most fractionals and label if so */
1078 if( SCIPisFeasPositive(scip, frac) )
1079 insertFlipCand(mostfracvars, mostfracvals, &nflipcands, maxnflipcands, var, frac);
1080 }
1081
1082 if( heurdata->usefp20 )
1083 {
1084 SCIP_CALL( SCIPbacktrackProbing(probingscip, 0) );
1085 }
1086
1087 /* change objective coefficients for continuous variables */
1088 for( i = nbinvars+nintvars; i < nvars; i++ )
1089 {
1090 SCIP_CALL( SCIPchgVarObjDive(scip, vars[i], alpha * SCIPvarGetObj(vars[i])) );
1091 }
1092
1093 SCIPfreeBufferArray(scip, &pseudocands);
1094
1095 /* initialize cycle check */
1096 minimum = MIN(heurdata->cyclelength, nloops-1);
1097 for( j = 0; j < heurdata->cyclelength; j++ )
1098 cycles[j] = (nloops > j+1) && (REALABS(lastalphas[j] - alpha) < heurdata->alphadiff);
1099
1100 /* check for j-cycles */
1101 for( i = 0; i < nbinvars+nintvars; i++ )
1102 {
1103 solval = SCIPgetSolVal(scip, heurdata->roundedsol, vars[i]);
1104
1105 /* cycles exist, iff all solution values are equal */
1106 for( j = 0; j < minimum; j++ )
1107 {
1108 oldsolval = SCIPgetSolVal(scip, lastroundedsols[j], vars[i]);
1109 cycles[j] = cycles[j] && SCIPisFeasEQ(scip, solval, oldsolval);
1110 }
1111 }
1112
1113 /* force to flip variables at random after a couple of pumping rounds,
1114 * or if a new best solution in the current region has been found
1115 */
1116 assert(heurdata->perturbfreq > 0);
1117 if( nloops % heurdata->perturbfreq == 0 || (heurdata->pertsolfound && SCIPgetNBestSolsFound(scip) > nbestsolsfound) )
1118 {
1119 SCIPdebugMsg(scip, " -> random perturbation\n");
1120 SCIP_CALL( handleCycle(scip, heurdata, vars, nintvars+nbinvars, alpha, scalingfactor) );
1121 nbestsolsfound = SCIPgetNBestSolsFound(scip);
1122 }
1123 else
1124 {
1125 minimum = MIN(heurdata->cyclelength, nloops-1);
1126
1127 for( j = 0; j < minimum; j++ )
1128 {
1129 /* if we got the same rounded solution as in some step before, we have to flip some variables */
1130 if( cycles[j] )
1131 {
1132 /* 1-cycles have a special flipping rule (flip most fractional variables) */
1133 if( j == 0 )
1134 {
1135 SCIPdebugMsg(scip, " -> avoiding 1-cycle: flipping %d candidates\n", nflipcands);
1136 SCIP_CALL( handle1Cycle(scip, heurdata, mostfracvars, nflipcands, alpha, scalingfactor) );
1137 }
1138 else
1139 {
1140 SCIPdebugMsg(scip, " -> avoiding %d-cycle by random flip\n", j+1);
1141 SCIP_CALL( handleCycle(scip, heurdata, vars, nintvars+nbinvars, alpha, scalingfactor) );
1142 }
1143 break;
1144 }
1145 }
1146 }
1147
1148 /* the LP with the new (distance) objective is solved */
1149 nlpiterations = SCIPgetNLPIterations(scip);
1150 nlpiterationsleft = adjustedMaxNLPIterations(maxnlpiterations, nsolsfound, nstallloops) - heurdata->nlpiterations;
1151 iterlimit = MAX((int)nlpiterationsleft, MINLPITER);
1152 SCIPdebugMsg(scip, " -> solve LP with iteration limit %d\n", iterlimit);
1153
1154 if( heurdata->stage3 )
1155 {
1156 SCIP_CALL( SCIPunlinkSol(scip, heurdata->roundedsol) );
1157 }
1158
1159 retcode = SCIPsolveDiveLP(scip, iterlimit, &lperror, NULL);
1160 lpsolstat = SCIPgetLPSolstat(scip);
1161
1162 /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
1163 * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
1164 */
1165 if( retcode != SCIP_OKAY )
1166 {
1167#ifndef NDEBUG
1168 if( lpsolstat != SCIP_LPSOLSTAT_UNBOUNDEDRAY )
1169 {
1170 SCIP_CALL( retcode );
1171 }
1172#endif
1173 SCIPwarningMessage(scip, "Error while solving LP in Feaspump heuristic; LP solve terminated with code <%d>\n", retcode);
1174 SCIPwarningMessage(scip, "This does not affect the remaining solution procedure --> continue\n");
1175 }
1176
1177 /* update iteration count */
1178 heurdata->nlpiterations += SCIPgetNLPIterations(scip) - nlpiterations;
1179 SCIPdebugMsg(scip, " -> number of iterations: %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", lperror=%u, lpsolstat=%d\n",
1180 heurdata->nlpiterations, adjustedMaxNLPIterations(maxnlpiterations, nsolsfound, nstallloops), lperror, lpsolstat);
1181
1182 /* check whether LP was solved optimal */
1183 if( lperror || lpsolstat != SCIP_LPSOLSTAT_OPTIMAL )
1184 break;
1185
1186 if( heurdata->stage3 )
1187 {
1188 SCIP_Real distance; /* distance of the current rounded solution from the LP solution */
1189
1190 assert(closestsol != NULL);
1191
1192 /* calculate distance */
1193 distance = 0.0;
1194 for( i = 0; i < nbinvars+nintvars; i++ )
1195 {
1196 SCIP_Real roundedval;
1197 SCIP_Real lpval;
1198
1199 roundedval = SCIPgetSolVal(scip, heurdata->roundedsol, vars[i]);
1200 lpval = SCIPvarGetLPSol(vars[i]);
1201 distance += REALABS(roundedval - lpval);
1202 }
1203
1204 /* copy solution and update minimum distance */
1205 if( SCIPisLT(scip, distance, mindistance) )
1206 {
1207 for( i = 0; i < nbinvars+nintvars; i++ )
1208 {
1209 assert(SCIPisIntegral(scip,SCIPgetSolVal(scip, heurdata->roundedsol, vars[i])));
1210 SCIP_CALL( SCIPsetSolVal(scip, closestsol, vars[i], SCIPgetSolVal(scip, heurdata->roundedsol, vars[i])) );
1211 }
1212 mindistance = distance;
1213 }
1214 }
1215
1216 /* swap the last solutions */
1217 SCIP_CALL( SCIPunlinkSol(scip, heurdata->roundedsol) );
1218 tmpsol = lastroundedsols[heurdata->cyclelength-1];
1219 for( j = heurdata->cyclelength-1; j > 0; j-- )
1220 {
1221 lastroundedsols[j] = lastroundedsols[j-1];
1222 lastalphas[j] = lastalphas[j-1];
1223 }
1224 lastroundedsols[0] = heurdata->roundedsol;
1225 lastalphas[0] = alpha;
1226 heurdata->roundedsol = tmpsol;
1227
1228 /* check for improvement in number of fractionals */
1229 nfracs = SCIPgetNLPBranchCands(scip);
1230 if( nfracs < bestnfracs )
1231 {
1232 bestnfracs = nfracs;
1233 nstallloops = 0;
1234 }
1235 else
1236 nstallloops++;
1237
1238 SCIPdebugMsg(scip, " -> loop finished: %d fractional variables (stall: %d/%d, iterations: %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ")\n",
1239 nfracs, nstallloops, maxstallloops, heurdata->nlpiterations, adjustedMaxNLPIterations(maxnlpiterations, nsolsfound, nstallloops));
1240 }
1241
1242 /* try final solution, if no more fractional variables are left */
1243 if( nfracs == 0 && !lperror && lpsolstat == SCIP_LPSOLSTAT_OPTIMAL )
1244 {
1245 success = FALSE;
1246
1247 SCIP_CALL( SCIPlinkLPSol(scip, heurdata->sol) );
1248 SCIPdebugMsg(scip, "feasibility pump found solution (%d fractional variables)\n", nfracs);
1249 SCIP_CALL( SCIPtrySol(scip, heurdata->sol, FALSE, FALSE, FALSE, FALSE, FALSE, &success) );
1250 if( success )
1251 *result = SCIP_FOUNDSOL;
1252 }
1253
1254 /* end diving */
1256
1257 /* end probing in order to be able to apply stage 3 */
1258 if( heurdata->usefp20 )
1259 {
1260 SCIP_CALL( SCIPendProbing(probingscip) );
1261 }
1262
1263 /* only do stage 3 if we have not found a solution yet */
1264 /* only do stage 3 if the distance of the closest infeasible solution to the polyhedron is below a certain threshold */
1265 if( heurdata->stage3 && (*result != SCIP_FOUNDSOL) && SCIPisLE(scip, mindistance, (SCIP_Real) heurdata->neighborhoodsize) )
1266 {
1267 SCIP_Bool cancopy;
1268 assert(closestsol != NULL);
1269 assert(!SCIPisInfinity(scip, mindistance) || nloops == 0);
1270
1271 /* if we do not use feasibility pump 2.0, we have not created a copied SCIP instance yet */
1272 if( heurdata->usefp20 )
1273 {
1274 assert(probingscip != NULL);
1275 SCIP_CALL( SCIPfreeTransform(probingscip) );
1276 }
1277 else
1278 {
1279 assert(probingscip == NULL);
1280 SCIP_CALL( setupProbingSCIP(scip, &probingscip, &varmapfw, heurdata->copycuts, &success) );
1281 }
1282
1283 /* check whether there is enough time and memory left */
1284 SCIP_CALL( SCIPcheckCopyLimits(scip, &cancopy) );
1285
1286 if( cancopy )
1287 {
1288 SCIP_CALL( setupSCIPparamsStage3(scip, probingscip) );
1289
1290 /* the neighborhood size is double the distance plus another ten percent */
1291 mindistance = SCIPceil(scip, 2.2*mindistance);
1292
1293 SCIP_CALL( addLocalBranchingConstraint(scip, probingscip, varmapfw, closestsol, mindistance) );
1294
1295 /* Errors in the LP solver should not kill the overall solving process, if the LP is just needed for a heuristic.
1296 * Hence in optimized mode, the return code is caught and a warning is printed, only in debug mode, SCIP will stop.
1297 */
1298 SCIP_CALL_ABORT( SCIPsolve(probingscip) );
1299
1300 /* check, whether a solution was found */
1301 if( SCIPgetNSols(probingscip) > 0 )
1302 {
1303 success = FALSE;
1304 SCIP_CALL( createNewSols(scip, probingscip, varmapfw, heur, &success) );
1305 if( success )
1306 *result = SCIP_FOUNDSOL;
1307 }
1308 }
1309 }
1310
1311 if( *result == SCIP_FOUNDSOL )
1312 heurdata->nsuccess++;
1313
1314 /* free hash map and copied SCIP */
1315 if( varmapfw != NULL )
1316 SCIPhashmapFree(&varmapfw);
1317
1318 if( probingscip != NULL )
1319 {
1320 SCIP_CALL( SCIPfree(&probingscip) );
1321 }
1322
1323 if( heurdata->stage3 )
1324 {
1325 SCIP_CALL( SCIPfreeSol(scip, &closestsol) );
1326 }
1327
1328 /* free memory */
1329 for( j = 0; j < heurdata->cyclelength; j++ )
1330 {
1331 SCIP_CALL( SCIPfreeSol(scip, &lastroundedsols[j]) );
1332 }
1333
1334 SCIPfreeBufferArray(scip, &cycles);
1335 SCIPfreeBufferArray(scip, &lastalphas);
1336 SCIPfreeBufferArray(scip, &lastroundedsols);
1337 SCIPfreeBufferArray(scip, &mostfracvals);
1338 SCIPfreeBufferArray(scip, &mostfracvars);
1339
1340 SCIPdebugMsg(scip, "feasibility pump finished [%d iterations done].\n", nloops);
1341
1342#ifdef SCIP_STATISTIC
1343 if( nfracs == 0 )
1344 {
1345 double objval;
1346 double primalBound;
1347
1348 objval = SCIPgetSolOrigObj(scip, heurdata->sol);
1349 primalBound = SCIPgetPrimalbound(scip);
1350 SCIPstatisticMessage("feasibility pump found: 1, objval: %f, iterations: %d, primal bound: %f\n", objval, nloops, primalBound);
1351 }
1352 else
1353 {
1354 double primalBound;
1355
1356 primalBound = SCIPgetPrimalbound(scip);
1357 SCIPstatisticMessage("feasibility pump found: 0, objval: +inf, iterations: %d, primal bound: %f\n", nloops, primalBound);
1358 }
1359
1360#endif /* SCIP_STATISTIC */
1361
1362 return SCIP_OKAY;
1363}
1364
1365
1366/*
1367 * primal heuristic specific interface methods
1368 */
1369
1370/** creates the feaspump primal heuristic and includes it in SCIP */
1372 SCIP* scip /**< SCIP data structure */
1373 )
1374{
1375 SCIP_HEURDATA* heurdata;
1376 SCIP_HEUR* heur;
1377
1378 /* create Feaspump primal heuristic data */
1379 SCIP_CALL( SCIPallocBlockMemory(scip, &heurdata) );
1380
1381 /* include primal heuristic */
1384 HEUR_MAXDEPTH, HEUR_TIMING, HEUR_USESSUBSCIP, heurExecFeaspump, heurdata) );
1385
1386 assert(heur != NULL);
1387
1388 /* set non-NULL pointers to callback methods */
1389 SCIP_CALL( SCIPsetHeurCopy(scip, heur, heurCopyFeaspump) );
1390 SCIP_CALL( SCIPsetHeurFree(scip, heur, heurFreeFeaspump) );
1391 SCIP_CALL( SCIPsetHeurInit(scip, heur, heurInitFeaspump) );
1392 SCIP_CALL( SCIPsetHeurExit(scip, heur, heurExitFeaspump) );
1393 SCIP_CALL( SCIPsetHeurInitsol(scip, heur, heurInitsolFeaspump) );
1394 SCIP_CALL( SCIPsetHeurExitsol(scip, heur, heurExitsolFeaspump) );
1395
1396 /* add feaspump primal heuristic parameters */
1398 "heuristics/" HEUR_NAME "/maxlpiterquot",
1399 "maximal fraction of diving LP iterations compared to node LP iterations",
1400 &heurdata->maxlpiterquot, FALSE, DEFAULT_MAXLPITERQUOT, 0.0, SCIP_REAL_MAX, NULL, NULL) );
1402 "heuristics/" HEUR_NAME "/objfactor",
1403 "factor by which the regard of the objective is decreased in each round, 1.0 for dynamic",
1404 &heurdata->objfactor, FALSE, DEFAULT_OBJFACTOR, 0.0, 1.0, NULL, NULL) );
1406 "heuristics/" HEUR_NAME "/alpha",
1407 "initial weight of the objective function in the convex combination",
1408 &heurdata->alpha, FALSE, DEFAULT_ALPHA, 0.0, 1.0, NULL, NULL) );
1410 "heuristics/" HEUR_NAME "/alphadiff",
1411 "threshold difference for the convex parameter to perform perturbation",
1412 &heurdata->alphadiff, FALSE, DEFAULT_ALPHADIFF, 0.0, 1.0, NULL, NULL) );
1413
1415 "heuristics/" HEUR_NAME "/maxlpiterofs",
1416 "additional number of allowed LP iterations",
1417 &heurdata->maxlpiterofs, FALSE, DEFAULT_MAXLPITEROFS, 0, INT_MAX, NULL, NULL) );
1419 "heuristics/" HEUR_NAME "/maxsols",
1420 "total number of feasible solutions found up to which heuristic is called (-1: no limit)",
1421 &heurdata->maxsols, TRUE, DEFAULT_MAXSOLS, -1, INT_MAX, NULL, NULL) );
1423 "heuristics/" HEUR_NAME "/maxloops",
1424 "maximal number of pumping loops (-1: no limit)",
1425 &heurdata->maxloops, TRUE, DEFAULT_MAXLOOPS, -1, INT_MAX, NULL, NULL) );
1427 "heuristics/" HEUR_NAME "/maxstallloops",
1428 "maximal number of pumping rounds without fractionality improvement (-1: no limit)",
1429 &heurdata->maxstallloops, TRUE, DEFAULT_MAXSTALLLOOPS, -1, INT_MAX, NULL, NULL) );
1431 "heuristics/" HEUR_NAME "/minflips",
1432 "minimum number of random variables to flip, if a 1-cycle is encountered",
1433 &heurdata->minflips, TRUE, DEFAULT_MINFLIPS, 1, INT_MAX, NULL, NULL) );
1435 "heuristics/" HEUR_NAME "/cyclelength",
1436 "maximum length of cycles to be checked explicitly in each round",
1437 &heurdata->cyclelength, TRUE, DEFAULT_CYCLELENGTH, 1, 100, NULL, NULL) );
1439 "heuristics/" HEUR_NAME "/perturbfreq",
1440 "number of iterations until a random perturbation is forced",
1441 &heurdata->perturbfreq, TRUE, DEFAULT_PERTURBFREQ, 1, INT_MAX, NULL, NULL) );
1442 SCIP_CALL( SCIPaddIntParam(scip, "heuristics/" HEUR_NAME "/neighborhoodsize",
1443 "radius (using Manhattan metric) of the neighborhood to be searched in stage 3",
1444 &heurdata->neighborhoodsize, FALSE, DEFAULT_NEIGHBORHOODSIZE, 1, INT_MAX, NULL, NULL) );
1445
1447 "heuristics/" HEUR_NAME "/beforecuts",
1448 "should the feasibility pump be called at root node before cut separation?",
1449 &heurdata->beforecuts, FALSE, DEFAULT_BEFORECUTS, NULL, NULL) );
1451 "heuristics/" HEUR_NAME "/usefp20",
1452 "should an iterative round-and-propagate scheme be used to find the integral points?",
1453 &heurdata->usefp20, FALSE, DEFAULT_USEFP20, NULL, NULL) );
1455 "heuristics/" HEUR_NAME "/pertsolfound",
1456 "should a random perturbation be performed if a feasible solution was found?",
1457 &heurdata->pertsolfound, FALSE, DEFAULT_PERTSOLFOUND, NULL, NULL) );
1459 "heuristics/" HEUR_NAME "/stage3",
1460 "should we solve a local branching sub-MIP if no solution could be found?",
1461 &heurdata->stage3, FALSE, DEFAULT_STAGE3, NULL, NULL) );
1462 SCIP_CALL( SCIPaddBoolParam(scip, "heuristics/" HEUR_NAME "/copycuts",
1463 "should all active cuts from cutpool be copied to constraints in subproblem?",
1464 &heurdata->copycuts, TRUE, DEFAULT_COPYCUTS, NULL, NULL) );
1465
1466 return SCIP_OKAY;
1467}
Constraint handler for linear constraints in their most general form, .
#define NULL
Definition: def.h:266
#define SCIP_MAXSTRLEN
Definition: def.h:287
#define SCIP_Longint
Definition: def.h:157
#define SCIP_MAXTREEDEPTH
Definition: def.h:315
#define SCIP_REAL_MAX
Definition: def.h:173
#define SCIP_Bool
Definition: def.h:91
#define MIN(x, y)
Definition: def.h:242
#define SCIP_Real
Definition: def.h:172
#define TRUE
Definition: def.h:93
#define FALSE
Definition: def.h:94
#define MAX(x, y)
Definition: def.h:238
#define SCIP_CALL_ABORT(x)
Definition: def.h:352
#define SCIP_LONGINT_FORMAT
Definition: def.h:164
#define REALABS(x)
Definition: def.h:196
#define SCIP_CALL(x)
Definition: def.h:373
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
SCIP_RETCODE SCIPtranslateSubSols(SCIP *scip, SCIP *subscip, SCIP_HEUR *heur, SCIP_VAR **subvars, SCIP_Bool *success, int *solindex)
Definition: scip_copy.c:1448
SCIP_RETCODE SCIPcopyConsCompression(SCIP *sourcescip, SCIP *targetscip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, const char *suffix, SCIP_VAR **fixedvars, SCIP_Real *fixedvals, int nfixedvars, SCIP_Bool global, SCIP_Bool enablepricing, SCIP_Bool threadsafe, SCIP_Bool passmessagehdlr, SCIP_Bool *valid)
Definition: scip_copy.c:2969
SCIP_RETCODE SCIPcheckCopyLimits(SCIP *sourcescip, SCIP_Bool *success)
Definition: scip_copy.c:3253
SCIP_RETCODE SCIPcopyCuts(SCIP *sourcescip, SCIP *targetscip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, int *ncutsadded)
Definition: scip_copy.c:2130
SCIP_RETCODE SCIPcopyParamSettings(SCIP *sourcescip, SCIP *targetscip)
Definition: scip_copy.c:2564
SCIP_RETCODE SCIPcopyLimits(SCIP *sourcescip, SCIP *targetscip)
Definition: scip_copy.c:3296
SCIP_Bool SCIPisStopped(SCIP *scip)
Definition: scip_general.c:734
SCIP_RETCODE SCIPfree(SCIP **scip)
Definition: scip_general.c:349
SCIP_RETCODE SCIPcreate(SCIP **scip)
Definition: scip_general.c:317
SCIP_STATUS SCIPgetStatus(SCIP *scip)
Definition: scip_general.c:508
SCIP_STAGE SCIPgetStage(SCIP *scip)
Definition: scip_general.c:390
const char * SCIPgetProbName(SCIP *scip)
Definition: scip_prob.c:1067
SCIP_RETCODE SCIPgetVarsData(SCIP *scip, SCIP_VAR ***vars, int *nvars, int *nbinvars, int *nintvars, int *nimplvars, int *ncontvars)
Definition: scip_prob.c:1866
int SCIPgetNVars(SCIP *scip)
Definition: scip_prob.c:1992
SCIP_RETCODE SCIPaddCons(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:2770
SCIP_Real SCIPgetObjNorm(SCIP *scip)
Definition: scip_prob.c:1641
void SCIPhashmapFree(SCIP_HASHMAP **hashmap)
Definition: misc.c:3111
void * SCIPhashmapGetImage(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3264
SCIP_RETCODE SCIPhashmapCreate(SCIP_HASHMAP **hashmap, BMS_BLKMEM *blkmem, int mapsize)
Definition: misc.c:3077
#define SCIPdebugMsg
Definition: scip_message.h:78
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:120
SCIP_Bool SCIPisParamFixed(SCIP *scip, const char *name)
Definition: scip_param.c:219
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPsetLongintParam(SCIP *scip, const char *name, SCIP_Longint value)
Definition: scip_param.c:545
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPsetHeuristics(SCIP *scip, SCIP_PARAMSETTING paramsetting, SCIP_Bool quiet)
Definition: scip_param.c:927
SCIP_RETCODE SCIPsetIntParam(SCIP *scip, const char *name, int value)
Definition: scip_param.c:487
SCIP_RETCODE SCIPsetSubscipsOff(SCIP *scip, SCIP_Bool quiet)
Definition: scip_param.c:904
SCIP_RETCODE SCIPunfixParam(SCIP *scip, const char *name)
Definition: scip_param.c:385
SCIP_RETCODE SCIPsetPresolving(SCIP *scip, SCIP_PARAMSETTING paramsetting, SCIP_Bool quiet)
Definition: scip_param.c:953
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPsetBoolParam(SCIP *scip, const char *name, SCIP_Bool value)
Definition: scip_param.c:429
SCIP_RETCODE SCIPsetSeparating(SCIP *scip, SCIP_PARAMSETTING paramsetting, SCIP_Bool quiet)
Definition: scip_param.c:979
SCIP_RETCODE SCIPincludeHeurFeaspump(SCIP *scip)
SCIP_BRANCHRULE * SCIPfindBranchrule(SCIP *scip, const char *name)
Definition: scip_branch.c:297
int SCIPgetNLPBranchCands(SCIP *scip)
Definition: scip_branch.c:428
SCIP_RETCODE SCIPgetPseudoBranchCands(SCIP *scip, SCIP_VAR ***pseudocands, int *npseudocands, int *npriopseudocands)
Definition: scip_branch.c:733
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1174
SCIP_RETCODE SCIPsetHeurExitsol(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEUREXITSOL((*heurexitsol)))
Definition: scip_heur.c:242
SCIP_RETCODE SCIPsetHeurCopy(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURCOPY((*heurcopy)))
Definition: scip_heur.c:162
SCIP_HEURDATA * SCIPheurGetData(SCIP_HEUR *heur)
Definition: heur.c:1364
SCIP_RETCODE SCIPincludeHeurBasic(SCIP *scip, SCIP_HEUR **heur, const char *name, const char *desc, char dispchar, int priority, int freq, int freqofs, int maxdepth, SCIP_HEURTIMING timingmask, SCIP_Bool usessubscip, SCIP_DECL_HEUREXEC((*heurexec)), SCIP_HEURDATA *heurdata)
Definition: scip_heur.c:117
SCIP_RETCODE SCIPsetHeurFree(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURFREE((*heurfree)))
Definition: scip_heur.c:178
SCIP_RETCODE SCIPsetHeurExit(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEUREXIT((*heurexit)))
Definition: scip_heur.c:210
SCIP_Longint SCIPheurGetNBestSolsFound(SCIP_HEUR *heur)
Definition: heur.c:1599
void SCIPheurSetTimingmask(SCIP_HEUR *heur, SCIP_HEURTIMING timingmask)
Definition: heur.c:1493
SCIP_Longint SCIPheurGetNCalls(SCIP_HEUR *heur)
Definition: heur.c:1579
SCIP_RETCODE SCIPsetHeurInitsol(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURINITSOL((*heurinitsol)))
Definition: scip_heur.c:226
int SCIPheurGetFreqofs(SCIP_HEUR *heur)
Definition: heur.c:1559
SCIP_RETCODE SCIPsetHeurInit(SCIP *scip, SCIP_HEUR *heur, SCIP_DECL_HEURINIT((*heurinit)))
Definition: scip_heur.c:194
const char * SCIPheurGetName(SCIP_HEUR *heur)
Definition: heur.c:1453
void SCIPheurSetData(SCIP_HEUR *heur, SCIP_HEURDATA *heurdata)
Definition: heur.c:1374
SCIP_RETCODE SCIPstartDive(SCIP *scip)
Definition: scip_lp.c:2242
SCIP_RETCODE SCIPchgVarObjDive(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_lp.c:2378
SCIP_RETCODE SCIPsolveDiveLP(SCIP *scip, int itlim, SCIP_Bool *lperror, SCIP_Bool *cutoff)
Definition: scip_lp.c:2678
SCIP_RETCODE SCIPendDive(SCIP *scip)
Definition: scip_lp.c:2291
SCIP_Longint SCIPgetLastDivenode(SCIP *scip)
Definition: scip_lp.c:2745
SCIP_Bool SCIPhasCurrentNodeLP(SCIP *scip)
Definition: scip_lp.c:83
SCIP_LPSOLSTAT SCIPgetLPSolstat(SCIP *scip)
Definition: scip_lp.c:168
SCIP_Real SCIPgetLPObjval(SCIP *scip)
Definition: scip_lp.c:247
SCIP_Bool SCIPisLPSolBasic(SCIP *scip)
Definition: scip_lp.c:667
#define SCIPallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:124
#define SCIPfreeBufferArray(scip, ptr)
Definition: scip_mem.h:136
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:132
#define SCIPfreeBlockMemory(scip, ptr)
Definition: scip_mem.h:108
#define SCIPallocBlockMemory(scip, ptr)
Definition: scip_mem.h:89
SCIP_NODESEL * SCIPfindNodesel(SCIP *scip, const char *name)
Definition: scip_nodesel.c:234
int SCIPgetNPricers(SCIP *scip)
Definition: scip_pricer.c:337
SCIP_RETCODE SCIPpropagateProbing(SCIP *scip, int maxproprounds, SCIP_Bool *cutoff, SCIP_Longint *ndomredsfound)
Definition: scip_probing.c:580
SCIP_RETCODE SCIPbacktrackProbing(SCIP *scip, int probingdepth)
Definition: scip_probing.c:225
SCIP_RETCODE SCIPstartProbing(SCIP *scip)
Definition: scip_probing.c:119
SCIP_RETCODE SCIPnewProbingNode(SCIP *scip)
Definition: scip_probing.c:165
SCIP_RETCODE SCIPfixVarProbing(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval)
Definition: scip_probing.c:418
SCIP_RETCODE SCIPendProbing(SCIP *scip)
Definition: scip_probing.c:260
SCIP_RETCODE SCIPcreateSol(SCIP *scip, SCIP_SOL **sol, SCIP_HEUR *heur)
Definition: scip_sol.c:180
SCIP_RETCODE SCIPfreeSol(SCIP *scip, SCIP_SOL **sol)
Definition: scip_sol.c:837
int SCIPgetNSols(SCIP *scip)
Definition: scip_sol.c:2066
SCIP_RETCODE SCIPunlinkSol(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1042
SCIP_RETCODE SCIPtrySol(SCIP *scip, SCIP_SOL *sol, SCIP_Bool printreason, SCIP_Bool completely, SCIP_Bool checkbounds, SCIP_Bool checkintegrality, SCIP_Bool checklprows, SCIP_Bool *stored)
Definition: scip_sol.c:2950
SCIP_RETCODE SCIPlinkLPSol(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:878
SCIP_Real SCIPgetSolOrigObj(SCIP *scip, SCIP_SOL *sol)
Definition: scip_sol.c:1296
SCIP_RETCODE SCIPsetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var, SCIP_Real val)
Definition: scip_sol.c:1073
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1213
SCIP_RETCODE SCIPfreeTransform(SCIP *scip)
Definition: scip_solve.c:3350
SCIP_RETCODE SCIPsolve(SCIP *scip)
Definition: scip_solve.c:2502
SCIP_Longint SCIPgetNSolsFound(SCIP *scip)
SCIP_Real SCIPgetPrimalbound(SCIP *scip)
SCIP_Longint SCIPgetNNodes(SCIP *scip)
SCIP_Longint SCIPgetNBestSolsFound(SCIP *scip)
SCIP_Real SCIPgetCutoffbound(SCIP *scip)
SCIP_Longint SCIPgetNLPIterations(SCIP *scip)
SCIP_Real SCIPinfinity(SCIP *scip)
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Bool SCIPisIntegral(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPfeasFrac(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Real SCIPfeasCeil(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Real SCIPfloor(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPfeasFloor(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisInfinity(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPceil(SCIP *scip, SCIP_Real val)
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
int SCIPgetDepth(SCIP *scip)
Definition: scip_tree.c:672
SCIP_Bool SCIPvarIsActive(SCIP_VAR *var)
Definition: var.c:17747
SCIP_Real SCIPvarGetUbLocal(SCIP_VAR *var)
Definition: var.c:18143
SCIP_Real SCIPvarGetObj(SCIP_VAR *var)
Definition: var.c:17925
SCIP_VARTYPE SCIPvarGetType(SCIP_VAR *var)
Definition: var.c:17583
const char * SCIPvarGetName(SCIP_VAR *var)
Definition: var.c:17418
SCIP_Real SCIPvarGetLPSol(SCIP_VAR *var)
Definition: var.c:18451
SCIP_Real SCIPvarGetLbLocal(SCIP_VAR *var)
Definition: var.c:18133
SCIP_VAR * SCIPvarGetTransVar(SCIP_VAR *var)
Definition: var.c:17777
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:4636
void SCIPfreeRandom(SCIP *scip, SCIP_RANDNUMGEN **randnumgen)
SCIP_Real SCIPrandomGetReal(SCIP_RANDNUMGEN *randnumgen, SCIP_Real minrandval, SCIP_Real maxrandval)
Definition: misc.c:10133
int SCIPrandomGetInt(SCIP_RANDNUMGEN *randnumgen, int minrandval, int maxrandval)
Definition: misc.c:10111
SCIP_RETCODE SCIPcreateRandom(SCIP *scip, SCIP_RANDNUMGEN **randnumgen, unsigned int initialseed, SCIP_Bool useglobalseed)
void SCIPsortRealPtr(SCIP_Real *realarray, void **ptrarray, int len)
int SCIPsnprintf(char *t, int len, const char *s,...)
Definition: misc.c:10880
#define DEFAULT_STAGE3
Definition: heur_feaspump.c:90
#define DEFAULT_CYCLELENGTH
Definition: heur_feaspump.c:81
static SCIP_RETCODE setupProbingSCIP(SCIP *scip, SCIP **probingscip, SCIP_HASHMAP **varmapfw, SCIP_Bool copycuts, SCIP_Bool *success)
static SCIP_DECL_HEURINITSOL(heurInitsolFeaspump)
#define DEFAULT_MINFLIPS
Definition: heur_feaspump.c:80
#define DEFAULT_COPYCUTS
Definition: heur_feaspump.c:92
#define HEUR_TIMING
Definition: heur_feaspump.c:71
#define DEFAULT_ALPHADIFF
Definition: heur_feaspump.c:86
#define DEFAULT_MAXLPITERQUOT
Definition: heur_feaspump.c:74
#define HEUR_FREQOFS
Definition: heur_feaspump.c:69
#define HEUR_DESC
Definition: heur_feaspump.c:65
#define MINLPITER
Definition: heur_feaspump.c:96
static SCIP_DECL_HEURFREE(heurFreeFeaspump)
#define DEFAULT_NEIGHBORHOODSIZE
Definition: heur_feaspump.c:91
static SCIP_DECL_HEUREXIT(heurExitFeaspump)
static SCIP_DECL_HEUREXEC(heurExecFeaspump)
static SCIP_RETCODE handle1Cycle(SCIP *scip, SCIP_HEURDATA *heurdata, SCIP_VAR **mostfracvars, int nflipcands, SCIP_Real alpha, SCIP_Real scalingfactor)
static SCIP_DECL_HEUREXITSOL(heurExitsolFeaspump)
#define DEFAULT_USEFP20
Definition: heur_feaspump.c:88
#define HEUR_DISPCHAR
Definition: heur_feaspump.c:66
#define HEUR_MAXDEPTH
Definition: heur_feaspump.c:70
#define HEUR_PRIORITY
Definition: heur_feaspump.c:67
#define DEFAULT_MAXLPITEROFS
Definition: heur_feaspump.c:75
#define DEFAULT_MAXSTALLLOOPS
Definition: heur_feaspump.c:79
#define DEFAULT_PERTURBFREQ
Definition: heur_feaspump.c:82
#define DEFAULT_PERTSOLFOUND
Definition: heur_feaspump.c:89
#define HEUR_NAME
Definition: heur_feaspump.c:64
static void insertFlipCand(SCIP_VAR **mostfracvars, SCIP_Real *mostfracvals, int *nflipcands, int maxnflipcands, SCIP_VAR *var, SCIP_Real frac)
#define DEFAULT_ALPHA
Definition: heur_feaspump.c:85
#define DEFAULT_RANDSEED
Definition: heur_feaspump.c:98
static SCIP_DECL_HEURINIT(heurInitFeaspump)
static SCIP_RETCODE setupSCIPparamsFP2(SCIP *scip, SCIP *probingscip)
static SCIP_Longint adjustedMaxNLPIterations(SCIP_Longint maxnlpiterations, SCIP_Longint nsolsfound, int nstallloops)
#define HEUR_FREQ
Definition: heur_feaspump.c:68
#define DEFAULT_MAXSOLS
Definition: heur_feaspump.c:76
static SCIP_RETCODE setupSCIPparamsStage3(SCIP *scip, SCIP *probingscip)
static SCIP_RETCODE updateVariableRounding(SCIP *scip, SCIP_HEURDATA *heurdata, SCIP_VAR *var, SCIP_Real solval, SCIP_Real alpha, SCIP_Real scalingfactor)
static SCIP_RETCODE addLocalBranchingConstraint(SCIP *scip, SCIP *probingscip, SCIP_HASHMAP *varmapfw, SCIP_SOL *bestsol, SCIP_Real neighborhoodsize)
#define DEFAULT_BEFORECUTS
Definition: heur_feaspump.c:87
#define HEUR_USESSUBSCIP
Definition: heur_feaspump.c:72
static SCIP_RETCODE handleCycle(SCIP *scip, SCIP_HEURDATA *heurdata, SCIP_VAR **vars, int nbinandintvars, SCIP_Real alpha, SCIP_Real scalingfactor)
static SCIP_DECL_HEURCOPY(heurCopyFeaspump)
#define DEFAULT_MAXLOOPS
Definition: heur_feaspump.c:78
#define DEFAULT_OBJFACTOR
Definition: heur_feaspump.c:83
static SCIP_RETCODE createNewSols(SCIP *scip, SCIP *subscip, SCIP_HASHMAP *varmapfw, SCIP_HEUR *heur, SCIP_Bool *success)
Objective Feasibility Pump 2.0.
memory allocation routines
BMS_BLKMEM * SCIPblkmem(SCIP *scip)
Definition: scip_mem.c:57
public methods for primal heuristics
public methods for message output
#define SCIPstatisticMessage
Definition: pub_message.h:123
public data structures and miscellaneous methods
methods for sorting joint arrays of various types
public methods for problem variables
public methods for branching rule plugins and branching
public methods for constraint handler plugins and constraints
public methods for problem copies
general public methods
public methods for primal heuristic plugins and divesets
public methods for the LP relaxation, rows and columns
public methods for memory management
public methods for message handling
public methods for node selector plugins
public methods for numerical tolerances
public methods for SCIP parameter handling
public methods for variable pricer plugins
public methods for global and local (sub)problems
public methods for the probing mode
public methods for random numbers
public methods for solutions
public solving methods
public methods for querying solving statistics
public methods for the branch-and-bound tree
public methods for SCIP variables
struct SCIP_HeurData SCIP_HEURDATA
Definition: type_heur.h:77
enum SCIP_LPSolStat SCIP_LPSOLSTAT
Definition: type_lp.h:51
@ SCIP_LPSOLSTAT_OPTIMAL
Definition: type_lp.h:43
@ SCIP_LPSOLSTAT_UNBOUNDEDRAY
Definition: type_lp.h:45
@ SCIP_PARAMSETTING_OFF
Definition: type_paramset.h:63
@ SCIP_PARAMSETTING_FAST
Definition: type_paramset.h:62
@ SCIP_DIDNOTRUN
Definition: type_result.h:42
@ SCIP_DELAYED
Definition: type_result.h:43
@ SCIP_DIDNOTFIND
Definition: type_result.h:44
@ SCIP_FOUNDSOL
Definition: type_result.h:56
@ SCIP_OKAY
Definition: type_retcode.h:42
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
@ SCIP_STAGE_SOLVING
Definition: type_set.h:53
@ SCIP_STATUS_OPTIMAL
Definition: type_stat.h:61
enum SCIP_Status SCIP_STATUS
Definition: type_stat.h:67
#define SCIP_HEURTIMING_DURINGLPLOOP
Definition: type_timing.h:79
@ SCIP_VARTYPE_BINARY
Definition: type_var.h:62