cons_linear.c
Go to the documentation of this file.
27 * @brief Constraint handler for linear constraints in their most general form, \f$lhs <= a^T x <= rhs\f$.
57/*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
99#define CONSHDLR_ENFOPRIORITY -1000000 /**< priority of the constraint handler for constraint enforcing */
100#define CONSHDLR_CHECKPRIORITY -1000000 /**< priority of the constraint handler for checking feasibility */
101#define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
102#define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
103#define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
105#define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
106#define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
107#define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
108#define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
110#define CONSHDLR_PRESOLTIMING (SCIP_PRESOLTIMING_FAST | SCIP_PRESOLTIMING_EXHAUSTIVE) /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
120#define DEFAULT_TIGHTENBOUNDSFREQ 1 /**< multiplier on propagation frequency, how often the bounds are tightened */
122#define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
124#define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in root node */
125#define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
126#define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
127#define DEFAULT_NMINCOMPARISONS 200000 /**< number for minimal pairwise presolving comparisons */
128#define DEFAULT_MINGAINPERNMINCOMP 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
130#define DEFAULT_SORTVARS TRUE /**< should variables be sorted after presolve w.r.t their coefficient absolute for faster
132#define DEFAULT_CHECKRELMAXABS FALSE /**< should the violation for a constraint with side 0.0 be checked relative
134#define DEFAULT_MAXAGGRNORMSCALE 0.0 /**< maximal allowed relative gain in maximum norm for constraint aggregation
136#define DEFAULT_MAXEASYACTIVITYDELTA 1e6 /**< maximum activity delta to run easy propagation on linear constraint
138#define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
140#define DEFAULT_SEPARATEALL FALSE /**< should all constraints be subject to cardinality cut generation instead of only
142#define DEFAULT_AGGREGATEVARIABLES TRUE /**< should presolving search for redundant variables in equations */
145#define DEFAULT_SINGLETONSTUFFING TRUE /**< should stuffing of singleton continuous variables be performed? */
146#define DEFAULT_SINGLEVARSTUFFING FALSE /**< should single variable stuffing be performed, which tries to fulfill
148#define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
151#define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
154#define DEFAULT_DETECTPARTIALOBJECTIVE TRUE/**< should presolving try to detect subsets of constraints parallel to the
157#define DEFAULT_RANGEDROWARTCONS TRUE /**< should presolving and propagation extract sub-constraints from ranged rows and equations? */
161#define DEFAULT_MULTAGGRREMOVE FALSE /**< should multi-aggregations only be performed if the constraint can be
163#define DEFAULT_MAXMULTAGGRQUOT 1e+03 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
164#define DEFAULT_MAXDUALMULTAGGRQUOT 1e+20 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
169#define MAXSCALEDCOEFINTEGER 0 /**< maximal coefficient value after scaling if all variables are of integral
176#define MAXVALRECOMP 1e+06 /**< maximal abolsute value we trust without recomputing the activity */
177#define MINVALRECOMP 1e-05 /**< minimal abolsute value we trust without recomputing the activity */
180#define NONLINCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of expressions constraints */
182/* @todo add multi-aggregation of variables that are in exactly two equations (, if not numerically an issue),
194 QUAD_MEMBER(SCIP_Real minactivity); /**< minimal value w.r.t. the variable's local bounds for the constraint's
196 QUAD_MEMBER(SCIP_Real maxactivity); /**< maximal value w.r.t. the variable's local bounds for the constraint's
202 QUAD_MEMBER(SCIP_Real glbminactivity); /**< minimal value w.r.t. the variable's global bounds for the constraint's
204 QUAD_MEMBER(SCIP_Real glbmaxactivity); /**< maximal value w.r.t. the variable's global bounds for the constraint's
206 SCIP_Real lastglbminactivity; /**< last global minimal activity which was computed by complete summation
208 SCIP_Real lastglbmaxactivity; /**< last global maximal activity which was computed by complete summation
210 SCIP_Real maxactdelta; /**< maximal activity contribution of a single variable, or SCIP_INVALID if invalid */
211 SCIP_VAR* maxactdeltavar; /**< variable with maximal activity contribution, or NULL if invalid */
219 int minactivityneginf; /**< number of coefficients contributing with neg. infinite value to minactivity */
220 int minactivityposinf; /**< number of coefficients contributing with pos. infinite value to minactivity */
221 int maxactivityneginf; /**< number of coefficients contributing with neg. infinite value to maxactivity */
222 int maxactivityposinf; /**< number of coefficients contributing with pos. infinite value to maxactivity */
223 int minactivityneghuge; /**< number of coefficients contributing with huge neg. value to minactivity */
224 int minactivityposhuge; /**< number of coefficients contributing with huge pos. value to minactivity */
225 int maxactivityneghuge; /**< number of coefficients contributing with huge neg. value to maxactivity */
226 int maxactivityposhuge; /**< number of coefficients contributing with huge pos. value to maxactivity */
227 int glbminactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbminactivity */
228 int glbminactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbminactivity */
229 int glbmaxactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbmaxactivity */
230 int glbmaxactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbmaxactivity */
231 int glbminactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbminactivity */
232 int glbminactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbminactivity */
233 int glbmaxactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbmaxactivity */
234 int glbmaxactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbmaxactivity */
241 unsigned int rangedrowpropagated:2; /**< did we perform ranged row propagation on this constraint?
253 unsigned int changed:1; /**< was constraint changed since last aggregation round in preprocessing? */
256 unsigned int upgraded:1; /**< is the constraint upgraded and will it be removed after preprocessing? */
261 unsigned int coefsorted:1; /**< are variables sorted by type and their absolute activity delta? */
263 unsigned int hascontvar:1; /**< does the constraint contain at least one continuous variable? */
264 unsigned int hasnonbinvar:1; /**< does the constraint contain at least one non-binary variable? */
265 unsigned int hasnonbinvalid:1; /**< is the information stored in hasnonbinvar and hascontvar valid? */
266 unsigned int checkabsolute:1; /**< should the constraint be checked w.r.t. an absolute feasibilty tolerance? */
281 SCIP_LINCONSUPGRADE** linconsupgrades; /**< linear constraint upgrade methods for specializing linear constraints */
282 SCIP_Real maxaggrnormscale; /**< maximal allowed relative gain in maximum norm for constraint aggregation
284 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
286 SCIP_Real mingainpernmincomp; /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise comparison round */
287 SCIP_Real maxeasyactivitydelta;/**< maximum activity delta to run easy propagation on linear constraint
291 int tightenboundsfreq; /**< multiplier on propagation frequency, how often the bounds are tightened */
298 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
299 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
300 SCIP_Bool separateall; /**< should all constraints be subject to cardinality cut generation instead of only
302 SCIP_Bool aggregatevariables; /**< should presolving search for redundant variables in equations */
303 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
305 SCIP_Bool singletonstuffing; /**< should stuffing of singleton continuous variables be performed? */
306 SCIP_Bool singlevarstuffing; /**< should single variable stuffing be performed, which tries to fulfill
309 SCIP_Bool checkrelmaxabs; /**< should the violation for a constraint with side 0.0 be checked relative
311 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
314 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
317 SCIP_Bool detectpartialobjective;/**< should presolving try to detect subsets of constraints parallel to
319 SCIP_Bool rangedrowpropagation;/**< should presolving and propagation try to improve bounds, detect
322 SCIP_Bool rangedrowartcons; /**< should presolving and propagation extract sub-constraints from ranged rows and equations?*/
325 SCIP_Bool multaggrremove; /**< should multi-aggregations only be performed if the constraint can be
327 SCIP_Real maxmultaggrquot; /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for primal multiaggregation */
328 SCIP_Real maxdualmultaggrquot;/**< maximum coefficient dynamism (ie. maxabsval / minabsval) for dual multiaggregation */
351 PROPRULE_1_RANGEDROW = 3, /**< fixed variables and gcd of all left variables tighten bounds of a
354};
431/** constructs an inference information out of a propagation rule and a position number, returns info as int */
463 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->linconsupgrades, conshdlrdata->linconsupgradessize, newsize) );
492 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
582 SCIPfreeBlockMemoryArrayNull(scip, &(*conshdlrdata)->linconsupgrades, (*conshdlrdata)->linconsupgradessize);
608 SCIPwarningMessage(scip, "Try to add already known upgrade message for constraint handler %s.\n", conshdlrname);
631 SCIP_CALL( conshdlrdataEnsureLinconsupgradesSize(scip, conshdlrdata, conshdlrdata->nlinconsupgrades+1) );
649/** installs rounding locks for the given variable associated to the given coefficient in the linear constraint */
682/** removes rounding locks for the given variable associated to the given coefficient in the linear constraint */
922 if( SCIPisConsCompressionEnabled(scip) && SCIPisEQ(scip, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var)) )
964 /* due to compressed copying, we may have fixed variables contributing to the left and right hand side */
1036 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
1122 SCIP_CALL( SCIPwriteVarsLinearsum(scip, file, consdata->vars, consdata->vals, consdata->nvars, TRUE) );
1155 SCIPmessageFPrintInfo(SCIPgetMessagehdlr(scip), file, " [%s] <%s>: ", SCIPconshdlrGetName(SCIPconsGetHdlr(cons)), SCIPconsGetName(cons));
1277 bound = (SCIPvarGetBestBoundType(consdata->vars[i]) == SCIP_BOUNDTYPE_LOWER) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1323 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1325 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1350 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbLocal(consdata->vars[i]) : SCIPvarGetLbLocal(consdata->vars[i]);
1352 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1377 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbGlobal(consdata->vars[i]) : SCIPvarGetUbGlobal(consdata->vars[i]);
1379 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1380 SCIPquadprecSumQD(consdata->glbminactivity, consdata->glbminactivity, consdata->vals[i] * bound);
1404 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbGlobal(consdata->vars[i]) : SCIPvarGetLbGlobal(consdata->vars[i]);
1406 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1407 SCIPquadprecSumQD(consdata->glbmaxactivity, consdata->glbmaxactivity, consdata->vals[i] * bound);
1470/** checks the type of all variables of the constraint and sets hasnonbinvar and hascontvar flags accordingly */
1619 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1671 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1673 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1727 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1729 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1797 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1825 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1850 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1856 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1859 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1865 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1868 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1883 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1889 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1892 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1898 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1901 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1956 /* update the activity, if the current value is valid and there was a change in the finite part */
2009 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2018 consdataUpdateActivities(scip, consdata, var, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, FALSE, checkreliability);
2020 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->minactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->minactivity)));
2021 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->maxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->maxactivity)));
2034 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2043 consdataUpdateActivities(scip, consdata, var, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, FALSE, checkreliability);
2045 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->minactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->minactivity)));
2046 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->maxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->maxactivity)));
2058 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2066 consdataUpdateActivities(scip, consdata, NULL, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, TRUE, checkreliability);
2068 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbminactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbminactivity)));
2069 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbmaxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbmaxactivity)));
2081 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2089 consdataUpdateActivities(scip, consdata, NULL, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, TRUE, checkreliability);
2091 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbminactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbminactivity)));
2092 assert(!SCIPisInfinity(scip, -QUAD_TO_DBL(consdata->glbmaxactivity)) && !SCIPisInfinity(scip, QUAD_TO_DBL(consdata->glbmaxactivity)));
2103 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2141 consdataUpdateActivitiesLb(scip, consdata, var, 0.0, SCIPvarGetLbLocal(var), val, checkreliability);
2142 consdataUpdateActivitiesUb(scip, consdata, var, 0.0, SCIPvarGetUbLocal(var), val, checkreliability);
2143 consdataUpdateActivitiesGlbLb(scip, consdata, 0.0, SCIPvarGetLbGlobal(var), val, checkreliability);
2144 consdataUpdateActivitiesGlbUb(scip, consdata, 0.0, SCIPvarGetUbGlobal(var), val, checkreliability);
2172/** updates minimum and maximum activity for coefficient deletion, invalidates maximum absolute value if necessary */
2179 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2223 consdataUpdateActivitiesLb(scip, consdata, var, SCIPvarGetLbLocal(var), 0.0, val, checkreliability);
2224 consdataUpdateActivitiesUb(scip, consdata, var, SCIPvarGetUbLocal(var), 0.0, val, checkreliability);
2225 consdataUpdateActivitiesGlbLb(scip, consdata, SCIPvarGetLbGlobal(var), 0.0, val, checkreliability);
2226 consdataUpdateActivitiesGlbUb(scip, consdata, SCIPvarGetUbGlobal(var), 0.0, val, checkreliability);
2229 /* reset maximum activity delta so that it will be recalculated on the next real propagation */
2237/** updates minimum and maximum activity for coefficient change, invalidates maximum absolute value if necessary */
2245 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2248 /* @todo do something more clever here, e.g. if oldval * newval >= 0, do the update directly */
2347/** gets minimal activity for constraint and given values of counters for infinite and huge contributions
2348 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2361 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2365 SCIP_Bool* issettoinfinity /**< pointer to store whether minactivity was set to infinity or calculated */
2392 /* if we have neg. huge contributions or do not need a good relaxation, we just return -infty as minactivity */
2424 /* we have no infinite and no neg. huge contributions, but pos. huge contributions; a feasible relaxation of the
2425 * minactivity is given by adding the number of positive huge contributions times the huge value
2442/** gets maximal activity for constraint and given values of counters for infinite and huge contributions
2443 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2456 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2460 SCIP_Bool* issettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2487 /* if we have pos. huge contributions or do not need a good relaxation, we just return +infty as maxactivity */
2519 /* we have no infinite and no pos. huge contributions, but neg. huge contributions; a feasible relaxation of the
2520 * maxactivity is given by subtracting the number of negative huge contributions times the huge value
2550 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minactivity was set to infinity or calculated */
2551 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2680 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2681 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2729 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2730 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2767 consdata->minactivityposhuge, consdata->minactivityneghuge, absval * minactbound, FALSE, goodrelax,
2771 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2772 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2809 consdata->maxactivityposhuge, consdata->maxactivityneghuge, absval * maxactbound, FALSE, goodrelax,
2821 SCIP_Real* glbminactivity, /**< pointer to store the minimal activity, or NULL, if not needed */
2822 SCIP_Real* glbmaxactivity, /**< pointer to store the maximal activity, or NULL, if not needed */
2827 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2828 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2883 SCIP_Real* minresactivity, /**< pointer to store the minimal residual activity, or NULL, if not needed */
2884 SCIP_Real* maxresactivity, /**< pointer to store the maximal residual activity, or NULL, if not needed */
2889 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2890 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2932 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2933 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2939 getMinActivity(scip, consdata, consdata->glbminactivityposinf - 1, consdata->glbminactivityneginf,
2947 getMinActivity(scip, consdata, consdata->glbminactivityposinf, consdata->glbminactivityneginf - 1,
2980 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2981 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2987 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf, consdata->glbmaxactivityneginf - 1,
2995 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf - 1, consdata->glbmaxactivityneginf,
3062 else if( (SCIPisInfinity(scip, solval) && negsign) || (SCIPisInfinity(scip, -solval) && !negsign) )
3069 SCIPdebugMsg(scip, "activity of linear constraint: %.15g, %d positive infinity values, %d negative infinity values \n", activity, nposinf, nneginf);
3158/** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3197/** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3253 SCIP_Real abscont1 = REALABS(consdata->vals[ind1] * (SCIPvarGetUbGlobal(var1) - SCIPvarGetLbGlobal(var1)));
3254 SCIP_Real abscont2 = REALABS(consdata->vals[ind2] * (SCIPvarGetUbGlobal(var2) - SCIPvarGetLbGlobal(var2)));
3338 * sorts variables of the remaining problem by binaries, integers, implicit integers, and continuous variables,
3461 /* the left hand side switched from -infinity to a non-infinite value -> install rounding locks */
3486 /* the left hand side switched from a non-infinite value to -infinity -> remove rounding locks */
3507 /* check whether the left hand side is increased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3591 /* the right hand side switched from infinity to a non-infinite value -> install rounding locks */
3616 /* the right hand side switched from a non-infinite value to infinity -> remove rounding locks */
3637 /* check whether the right hand side is decreased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3685 assert(!SCIPvarIsRelaxationOnly(var) || (!SCIPconsIsChecked(cons) && !SCIPconsIsEnforced(cons)));
3770 consdata->indexsorted = consdata->indexsorted && (consdataCompVar((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3776 consdata->coefsorted = consdata->coefsorted && (consdataCompVarProp((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3870 /* if at most one variable is left, the activities should be recalculated (to correspond exactly to the bounds
4030 SCIPwarningMessage(scip, "skipped scaling for linear constraint <%s> to avoid numerical troubles (scalar: %.15g)\n",
4041 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4049 SCIPwarningMessage(scip, "coefficient %.15g of variable <%s> in linear constraint <%s> scaled to zero (scalar: %.15g)\n",
4071 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4083 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasCeil, we subtract 0.5 before ceiling up
4145 * Apply the following rules in the given order, until the sign of the factor is determined. Later rules only apply,
4150 * 4. the number of positive coefficients must not be smaller than the number of negative coefficients
4153 * Try to identify a rational representation of the fractional coefficients, and multiply all coefficients
4225 if( !SCIPisInfinity(scip, consdata->lhs) && SCIPisFeasZero(scip, consdata->lhs) != SCIPisFeasZero(scip, consdata->lhs/maxabsval) )
4227 if( !SCIPisInfinity(scip, consdata->rhs) && SCIPisFeasZero(scip, consdata->rhs) != SCIPisFeasZero(scip, consdata->rhs/maxabsval) )
4243 SCIPdebugMsg(scip, "divide linear constraint with %g, because all coefficients are in absolute value the same\n", maxabsval);
4270 epsilon = SCIPepsilon(scip) * 0.9; /* slightly decrease epsilon to be safe in rational conversion below */
4282 maxmult = MIN(maxmult, (SCIP_Longint) (MAXSCALEDCOEFINTEGER / MAX(maxabsval, 1.0))); /*lint !e835*/
4308 /* 3. the absolute value of the right hand side must be greater than that of the left hand side */
4317 /* 4. the number of positive coefficients must not be smaller than the number of negative coefficients */
4370 /* it might be that we have really big coefficients, but all are integral, in that case we want to divide them by
4390 SCIPdebugMsg(scip, "scale linear constraint with %" SCIP_LONGINT_FORMAT " to make coefficients integral\n", scm);
4439 /* since the lhs/rhs is not respected for gcd calculation it can happen that we detect infeasibility */
4442 if( SCIPisEQ(scip, consdata->lhs, consdata->rhs) && !SCIPisFeasIntegral(scip, consdata->rhs / gcd) )
4446 SCIPdebugMsg(scip, "detected infeasibility of constraint after scaling with gcd=%" SCIP_LONGINT_FORMAT ":\n", gcd);
4454 SCIPdebugMsg(scip, "divide linear constraint by greatest common divisor %" SCIP_LONGINT_FORMAT "\n", gcd);
4592 /* if an unmodifiable row has been added to the LP, then we cannot apply fixing anymore (cannot change a row)
4593 * this should not happen, as applyFixings is called in addRelaxation() before creating and adding a row
4595 assert(consdata->row == NULL || !SCIProwIsInLP(consdata->row) || SCIProwIsModifiable(consdata->row));
4760 else if( SCIPisGE(scip, ABS(consdata->lhs), 1.0) && SCIPisEQ(scip, lhssubtrahend, consdata->lhs) )
4792 else if( SCIPisGE(scip, ABS(consdata->rhs), 1.0) && SCIPisEQ(scip, rhssubtrahend, consdata->rhs) )
4806 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have
4825/** for each variable in the linear constraint, except the inferred variable, adds one bound to the conflict analysis'
4826 * candidate store (bound depends on sign of coefficient and whether the left or right hand side was the reason for the
4827 * inference variable's bound change); the conflict analysis can be initialized with the linear constraint being the
4835 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
4864 /* for each variable, add the bound to the conflict queue, that is responsible for the minimal or maximal
4865 * residual value, depending on whether the left or right hand side is responsible for the bound change:
4870 /* if the variable is integral we only need to add reason bounds until the propagation could be applied */
4883 /* calculate the minimal and maximal global activity of all other variables involved in the constraint */
4888 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, &minresactivity, NULL,
4891 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, NULL, &maxresactivity,
4905 if( (reasonisrhs && !isminsettoinfinity && ismintight) || (!reasonisrhs && !ismaxsettoinfinity && ismaxtight) ) /*lint !e644*/
4912 /* calculate the residual capacity that would be left, if the variable would be set to one more / one less
4967 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound */
4969 rescap -= vals[i] * (SCIPgetVarLbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetLbGlobal(vars[i]));
4973 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound */
4975 rescap -= vals[i] * (SCIPgetVarUbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetUbGlobal(vars[i]));
4995 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound is responsible */
5000 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound is responsible */
5008/** for each variable in the linear ranged row constraint, except the inferred variable, adds the bounds of all fixed
5009 * variables to the conflict analysis' candidate store; the conflict analysis can be initialized
5010 * with the linear constraint being the conflict detecting constraint by using NULL as inferred variable
5017 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5049 if( !SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetLbGlobal(vars[v])) )
5055 if( !SCIPisEQ(scip, SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetUbGlobal(vars[v])) )
5065 if( SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE)) )
5067 /* add all bounds of fixed variables which lead to the boundchange of the given inference variable */
5124/** resolves a propagation on the given variable by supplying the variables needed for applying the corresponding
5135 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5136 SCIP_RESULT* result /**< pointer to store the result of the propagation conflict resolving call */
5177 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5178 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5187 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5188 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5197 /* the bound of the variable was tightened, because some variables were already fixed and the leftover only allow
5209 SCIPerrorMessage("invalid inference information %d in linear constraint <%s> at position %d for %s bound of variable <%s>\n",
5229 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5235 /* add the conflicting bound for each variable of infeasible constraint to conflict candidate queue */
5283 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5307 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
5309 QUAD_TO_DBL(consdata->minactivity), QUAD_TO_DBL(consdata->maxactivity), consdata->lhs, consdata->rhs, newub);
5314 SCIP_CALL( SCIPinferVarUbCons(scip, var, newub, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5353 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5377 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
5379 QUAD_TO_DBL(consdata->minactivity), QUAD_TO_DBL(consdata->maxactivity), consdata->lhs, consdata->rhs, newlb);
5384 SCIP_CALL( SCIPinferVarLbCons(scip, var, newlb, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5420 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5480 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5483 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5495 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5539 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5551 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5587 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5590 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5602 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5645 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5657 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5689/** analyzes conflicting bounds on given ranged row constraint, and adds conflict constraint to problem */
5712 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5718 /* add the conflicting fixed variables of this ranged row constraint to conflict candidate queue */
5732 * Check ranged rows for possible solutions, possibly detect infeasibility, fix variables due to having only one possible
5733 * solution, tighten bounds if having only two possible solutions or add constraints which propagate a subset of
5818 addartconss = conshdlrdata->rangedrowartcons && SCIPgetDepth(scip) < 1 && !SCIPinProbing(scip) && !SCIPinRepropagation(scip);
5823 /* we are not allowed to add artificial constraints during propagation; if nothing changed on this constraint since
5824 * the last rangedrowpropagation, we can stop; otherwise, we mark this constraint to be rangedrowpropagated without
5842 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5871 * coefficient so that all variables in this group will have a gcd greater than 1, this group will be implicitly
5874 * the second group will contain all left unfixed variables and will be saved as infcheckvars with corresponding
5875 * coefficients as infcheckvals, the order of these variables should be the same as in the consdata object
5878 /* find first integral variables with integral coefficient greater than 1, thereby collecting all other unfixed
5888 /* partition the variables, do not change the order of collection, because it might be used later on */
5892 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5920 while( v < consdata->nvars && SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) );
5934 assert(!SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])));
5935 assert(SCIPisIntegral(scip, consdata->vals[v]) && SCIPvarGetType(consdata->vars[v]) != SCIP_VARTYPE_CONTINUOUS && REALABS(consdata->vals[v]) > 1.5);
5942 /* go on to partition the variables, do not change the order of collection, because it might be used later on;
5946 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5959 if( !SCIPisIntegral(scip, consdata->vals[v]) || SCIPvarGetType(consdata->vars[v]) == SCIP_VARTYPE_CONTINUOUS ||
5998 /* it should not happen that all variables are of integral type and have a gcd >= 2, this should be done by
6057 SCIPdebugMsg(scip, "minactinfvarsinvalid = %u, minactinfvars = %g, maxactinfvarsinvalid = %u, maxactinfvars = %g, gcd = %lld, ninfcheckvars = %d, ncontvars = %d\n",
6058 minactinfvarsinvalid, minactinfvars, maxactinfvarsinvalid, maxactinfvars, gcd, ninfcheckvars, ncontvars);
6060 /* @todo maybe we took the wrong variables as infcheckvars we could try to exchange integer variables */
6061 /* @todo if minactinfvarsinvalid or maxactinfvarsinvalid are true, try to exchange both partitions to maybe get valid
6063 /* @todo calculate minactivity and maxactivity for all non-intcheckvars, and use this for better bounding,
6065 * that therefore the conflict variables in addConflictFixedVars() need to be extended by all variables which
6069 /* check if between left hand side and right hand side exist a feasible point, if not the constraint leads to
6074 SCIPdebugMsg(scip, "no feasible value exist, constraint <%s> lead to infeasibility", SCIPconsGetName(cons));
6079 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6096 gcdinfvars = SCIPcalcGreComDiv(gcdinfvars, (SCIP_Longint)(REALABS(infcheckvals[v]) + feastol));
6104 /* compute solutions for this ranged row, if all variables are of integral type with integral coefficients */
6173 SCIPdebugMsg(scip, "here nsols %s %d, minsolvalue = %g, maxsolvalue = %g, ninfcheckvars = %d, nunfixedvars = %d\n",
6181 SCIPdebugMsg(scip, "no solution found; constraint <%s> lead to infeasibility\n", SCIPconsGetName(cons));
6186 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6214 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6235 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6247 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6329 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6336 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6341 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals,
6393 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6414 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6436 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6448 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6555 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newlb) );
6576 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newub) );
6584 /* at least two solutions and more than one variable, so we add a new constraint which bounds the feasible
6587 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6609 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons1_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6614 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6623 /* @todo maybe add constraint for all variables which are not infcheckvars, lhs should be minvalue, rhs
6644 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6694 if( v == consdata->nvars && !SCIPisHugeValue(scip, -minact) && !SCIPisHugeValue(scip, maxact) )
6709 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons2_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6714 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6740 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
6783 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
6804 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6815 (!SCIPisUbBetter(scip, newub, lb, ub) && (!SCIPisFeasLT(scip, newub, ub) || !SCIPvarIsIntegral(var))
6822 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
6823 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6839 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6856 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6871 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6872 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6888 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6906 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6917 || (!SCIPisLbBetter(scip, newlb, lb, ub) && (!SCIPisFeasGT(scip, newlb, lb) || !SCIPvarIsIntegral(var))
6924 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6925 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6941 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6957 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6972 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g], newub=%.15g\n",
6973 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6989 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
7009 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7098 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &ismintight, &ismaxtight,
7103 slack = (SCIPisInfinity(scip, consdata->rhs) || isminsettoinfinity) ? SCIPinfinity(scip) : (consdata->rhs - minactivity);
7104 surplus = (SCIPisInfinity(scip, -consdata->lhs) || ismaxsettoinfinity) ? SCIPinfinity(scip) : (maxactivity - consdata->lhs);
7114 /* as long as the bounds might be tightened again, try to tighten them; abort after a maximal number of rounds */
7122 for( nrounds = 0; (force || consdata->boundstightened < tightenmode) && nrounds < MAXTIGHTENROUNDS; ++nrounds ) /*lint !e574*/
7126 * note: it might happen that integer variables become binary during bound tightening at the root node
7137 /* try to tighten the bounds of each variable in the constraint. During solving process, the binary variable
7161 && !SCIPisFeasEQ(scip, SCIPvarGetUbLocal(consdata->vars[v]), SCIPvarGetLbLocal(consdata->vars[v])) )
7168 SCIPdebugMessage("linear constraint <%s> found %d bound changes in round %d\n", SCIPconsGetName(cons),
7176 assert(*cutoff || SCIPisFeasEQ(scip, SCIPvarGetLbLocal(consdata->vars[0]), SCIPvarGetUbLocal(consdata->vars[0])));
7188 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
7189 SCIP_Bool checkrelmaxabs, /**< Should the violation for a constraint with side 0.0 be checked relative
7225 SCIPdebugMsg(scip, " consdata activity=%.15g (lhs=%.15g, rhs=%.15g, row=%p, checklprows=%u, rowinlp=%u, sol=%p, hascurrentnodelp=%u)\n",
7247 /* the activity of pseudo solutions may be invalid if it comprises positive and negative infinity contributions; we
7263 else if( !consdata->checkabsolute && (SCIPisFeasLT(scip, activity, consdata->lhs) || SCIPisFeasGT(scip, activity, consdata->rhs)) )
7276 /* the (much) more complicated check: we try to disregard random noise and violations of a 0.0 side which are
7325 SCIPdebugMsg(scip, " lhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7379 SCIPdebugMsg(scip, " rhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7415 ((!SCIPisInfinity(scip, -consdata->lhs) && SCIPisGT(scip, consdata->lhs-activity, SCIPfeastol(scip))) ||
7416 (!SCIPisInfinity(scip, consdata->rhs) && SCIPisGT(scip, activity-consdata->rhs, SCIPfeastol(scip)))) )
7458 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, cons, SCIPconsGetName(cons), consdata->lhs, consdata->rhs,
7461 SCIP_CALL( SCIPaddVarsToRow(scip, consdata->row, consdata->nvars, consdata->vars, consdata->vals) );
7486 /* replace all fixed variables by active counterparts, as we have no chance to do this anymore after the row has been added to the LP
7540 /* skip deactivated, redundant, or local linear constraints (the NLP does not allow for local rows at the moment) */
7552 0.0, consdata->nvars, consdata->vars, consdata->vals, NULL, consdata->lhs, consdata->rhs, SCIP_EXPRCURV_LINEAR) );
7565/** separates linear constraint: adds linear constraint as cut, if violated by given solution */
7573 SCIP_Bool separateall, /**< should all constraints be subject to cardinality cut generation instead of only
7595 SCIP_CALL( checkCons(scip, cons, sol, (sol != NULL), conshdlrdata->checkrelmaxabs, &violated) );
7608 /* we only want to call the knapsack cardinality cut separator for rows that have a non-zero dual solution */
7662 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7707 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7746 SCIPdebug( SCIPdebugMsg(scip, "linear constraint <%s> found %d bound changes and %d fixings\n", SCIPconsGetName(cons), *nchgbds - oldnchgbds, nfixedvars); )
7756 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
7761 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (rhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7772 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (lhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7781 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
7783 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7786 /* remove the constraint locally unless it has become empty, in which case it is removed globally */
7844 SCIPdebugMsg(scip, "converting variable <%s> with fixed bounds [%.15g,%.15g] into fixed variable fixed at %.15g\n",
7881 * a) if the constraint has a finite right hand side and the negative infinity counters for the minactivity are zero
7882 * then add the variables as a clique for which all successive pairs of coefficients fullfill the following
7887 * and also add the binary to binary implication also for non-successive variables for which the same argument
7892 * e.g. 5.3 x1 + 3.6 x2 + 3.3 x3 + 2.1 x4 <= 5.5 (all x are binary) would lead to the clique (x1, x2, x3) and the
7895 * b) if the constraint has a finite left hand side and the positive infinity counters for the maxactivity are zero
7896 * then add the variables as a clique for which all successive pairs of coefficients fullfill the follwoing
7901 * and also add the binary to binary implication also for non-successive variables for which the same argument
7908 * c) the constraint has a finite right hand side and a finite minactivity then add the variables as a negated
7909 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7914 * and also add the binary to binary implication also for non-successive variables for which the
7919 * e.g. -4 x1 -3 x2 - 2 x3 + 2 x4 <= -4 would lead to the (negated) clique (~x1, ~x2) and the binary to binary
7922 * d) the constraint has a finite left hand side and a finite maxactivity then add the variables as a negated
7923 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7928 * and also add the binary to binary implication also for non-successive variables for which the same argument
7935 * 2. if the linear constraint represents a set-packing or set-partitioning constraint, the whole constraint is added
7943 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7987 * for now we only add binary to non-binary implications, and this is only done for the binary variable with the
7988 * maximal absolute contribution and also only if this variable would force all other variables to their bound
7996 /* @todo we might extract implications/cliques if SCIPvarIsBinary() variables exist and we have integer variables
8000 * "seem to", because there are rare situations in which variables may actually not be sorted by type, even though consdataSort has been called
8001 * this situation can occur if, e.g., the type of consdata->vars[1] has been changed to binary, but the corresponding variable event has
8002 * not been executed yet, because it is the eventExecLinear() which marks the variables array as unsorted (set consdata->indexsorted to FALSE),
8004 * we assume that in this situation the below code may be executed in a future presolve round, after the variable events have been executed
8020 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8022 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8023 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8027 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8090 /* if the right hand side and the minimal activity are finite and changing the variable with the biggest
8091 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8094 if( finiterhs && finiteminact && SCIPisEQ(scip, QUAD_TO_DBL(consdata->glbminactivity), consdata->rhs - maxabscontrib) )
8106 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8113 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8125 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8131 /* if the left hand side and the maximal activity are finite and changing the variable with the biggest
8132 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8135 if( finitelhs && finitemaxact && SCIPisEQ(scip, QUAD_TO_DBL(consdata->glbmaxactivity), consdata->lhs - maxabscontrib) )
8147 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8154 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8166 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8175 SCIPdebugMsg(scip, "extracted %d implications from constraint %s which led to %d bound changes, %scutoff detetcted\n", nimpls, SCIPconsGetName(cons), *nchgbds - oldnchgbds, *cutoff ? "" : "no ");
8180 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8229 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8231 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8232 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8236 /* 1. we wheck whether some variables do not fit together into this constraint and add the corresponding clique
8239 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8276 /* setppc constraints will be handled later; we need at least two binary variables with same sign to extract
8311#ifdef SCIP_DISABLED_CODE /* assertion should only hold when constraints were fully propagated and boundstightened */
8312 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8350 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8387 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8460#if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8461 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8501 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8512 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), NULL, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8540 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8620#if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8639 SCIP_CALL( SCIPaddClique(scip, &(binvars[j+1]), values, i - j, FALSE, &infeasible, &nbdchgs) );
8661 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8672 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), values, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8702 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8779#if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8818 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8864 /* check if all variables are binary, if the coefficients are +1 or -1, and if the right hand side is equal
8865 * to 1 - number of negative coefficients, or if the left hand side is equal to number of positive coefficients - 1
8896 SCIP_CALL( SCIPaddClique(scip, vars, values, nvars, SCIPisEQ(scip, consdata->lhs, consdata->rhs), &infeasible, &nbdchgs) );
8964 SCIPdebugMsg(scip, "rounding sides=[%.15g,%.15g] of linear constraint <%s> with integral coefficients and variables only "
8998/** tightens coefficients of binary, integer, and implicit integer variables due to activity bounds in presolving:
9005 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9014 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9022 * A deviation of only one from their bound makes the lhs/rhs feasible (i.e., redundant), even if all other
9023 * variables are set to their "worst" bound. If all variables which are not relevant cannot make the lhs/rhs
9024 * redundant, even if they are set to their "best" bound, they can be removed from the constraint. E.g., for binary
9025 * variables and an inequality x_1 +x_2 +10y_1 +10y_2 >= 5, setting either of the y_i to one suffices to fulfill the
9028 * @todo use also some tightening procedures for (knapsack) constraints with non-integer coefficients, see
9042 SCIP_Real minactivity; /* minimal value w.r.t. the variable's local bounds for the constraint's
9044 SCIP_Real maxactivity; /* maximal value w.r.t. the variable's local bounds for the constraint's
9046 SCIP_Bool isminacttight; /* are all contributions to the minactivity non-huge or non-contradicting? */
9047 SCIP_Bool ismaxacttight; /* are all contributions to the maxactivity non-huge or non-contradicting? */
9085 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
9111 && SCIPisGE(scip, minactivity + val, consdata->lhs) && SCIPisLE(scip, maxactivity - val, consdata->rhs);
9133 lval -= otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9139 rval += otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9154 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9176 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons),
9186 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons),
9222 && SCIPisGE(scip, minactivity - val, consdata->lhs) && SCIPisLE(scip, maxactivity + val, consdata->rhs);
9244 lval += otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9250 rval -= otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9265 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9287 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons),
9297 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons),
9342 /* if the lhs is finite, we will check in the following whether the not relevant variables can make lhs feasible;
9343 * this is not valid, if the minactivity is -\infty (aggrlhs would be minus infinity in the following computation)
9344 * or if huge values contributed to the minactivity, because the minactivity is then just a relaxation
9348 if( !SCIPisInfinity(scip, -consdata->lhs) && (SCIPisInfinity(scip, -minactivity) || !isminacttight) )
9351 /* if the rhs is finite, we will check in the following whether the not relevant variables can make rhs feasible;
9352 * this is not valid, if the maxactivity is \infty (aggrrhs would be infinity in the following computation)
9353 * or if huge values contributed to the maxactivity, because the maxactivity is then just a relaxation
9357 if( !SCIPisInfinity(scip, consdata->rhs) && (SCIPisInfinity(scip, maxactivity) || !ismaxacttight) )
9361 * relevant variables are all those where a deviation from the bound makes the lhs/rhs redundant
9366 /* check if the constraint contains variables whose coefficient can be removed. The reasoning is the following:
9367 * Each relevant variable can make the lhs/rhs feasible with a deviation of only one in the bound. If _all_ not
9368 * relevant variables together cannot make lhs/rhs redundant, they can be removed from the constraint. aggrrhs may
9394 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> from constraint since it is redundant\n",
9420 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons),
9430 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons),
9450/** processes equality with only one variable by fixing the variable and deleting the constraint */
9506/** processes equality with exactly two variables by aggregating one of the variables and deleting the constraint */
9537 SCIP_CALL( SCIPaggregateVars(scip, consdata->vars[0], consdata->vars[1], consdata->vals[0], consdata->vals[1],
9564/** calculates the new lhs and rhs of the constraint after the given variable is aggregated out */
9612/** processes equality with more than two variables by multi-aggregating one of the variables and converting the equality
9613 * into an inequality; if multi-aggregation is not possible, tries to identify one continuous or integer variable that
9616 * @todo Check whether a more clever way of avoiding aggregation of variables containing implicitly integer variables
9673 SCIPdebugMsg(scip, "linear constraint <%s>: try to multi-aggregate equality\n", SCIPconsGetName(cons));
9677 * maxnlocksstay: maximal sum of lock numbers if the constraint does not become redundant after the aggregation
9678 * maxnlocksremove: maximal sum of lock numbers if the constraint can be deleted after the aggregation
9685 /* If the constraint becomes redundant, 3 non-zeros are removed, and we get 1 additional non-zero for each
9686 * constraint the variable appears in. Thus, the variable must appear in at most 3 other constraints.
9692 /* If the constraint becomes redundant, 4 non-zeros are removed, and we get 2 additional non-zeros for each
9693 * constraint the variable appears in. Thus, the variable must appear in at most 2 other constraints.
9699 /* If the constraint is redundant but has more than 4 variables, we can only accept one other constraint. */
9750 assert(!SCIPconsIsChecked(cons) || SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) >= 1); /* because variable is locked in this equality */
9796 /* check, if variable is used in too many other constraints, even if this constraint could be deleted */
9797 nlocks = SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL);
9845 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
9848 /* do not perform the multi-aggregation due to numerics, if we have huge contributions in the residual
9855 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9860 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
9863 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity)
9867 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9878 /* if the constraint does not become redundant, only accept the variable if it does not appear in
9897 /* if all coefficients and variables are integral, the right hand side must also be integral */
9910 /* check whether the the infimum and the supremum of the multi-aggregation can be get infinite */
9948 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
9949 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
9952 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
9956 /* if the slack variable is of integer type, and the constraint itself may take fractional values,
10000 SCIPdebugMsg(scip, "linear constraint <%s>: multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(slackvar));
10006 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g], nlocks=%d, maxnlocks=%d, removescons=%u\n",
10007 aggrconst, SCIPvarGetName(slackvar), SCIPvarGetLbGlobal(slackvar), SCIPvarGetUbGlobal(slackvar),
10021 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
10031 SCIPdebugMsg(scip, "linear constraint <%s>: redundant after multi-aggregation\n", SCIPconsGetName(cons));
10048 /* upgrade continuous variable to an implicit one, if the absolute value of the coefficient is one */
10052 SCIPdebugMsg(scip, "linear constraint <%s>: converting continuous variable <%s> to implicit integer variable\n",
10058 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10064 /* aggregate continuous variable to an implicit one, if the absolute value of the coefficient is unequal to one */
10065 /* @todo check if the aggregation coefficient should be in some range(, which is not too big) */
10079 SCIP_CALL( SCIPcreateVar(scip, &newvar, newvarname, -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
10080 SCIP_VARTYPE_IMPLINT, SCIPvarIsInitial(var), SCIPvarIsRemovable(var), NULL, NULL, NULL, NULL, NULL) );
10095 SCIPdebugMsg(scip, "linear constraint <%s>: aggregating continuous variable <%s> to newly created implicit integer variable <%s>, aggregation factor = %g\n",
10099 SCIP_CALL( SCIPaggregateVars(scip, var, newvar, absval, -1.0, 0.0, &infeasible, &redundant, &aggregated) );
10103 SCIPdebugMsg(scip, "infeasible aggregation of variable <%s> to implicit variable <%s>, domain is empty\n",
10122 /* we do not have any event on vartype changes, so we need to manually force this constraint to be presolved
10134 /* this seems to help for rococo instances, but does not for rout (where all coefficients are +/- 1.0)
10147 SCIPdebugMsg(scip, "linear constraint <%s>: converting integer variable <%s> to implicit integer variable\n",
10153 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10164/** checks if the given variables and their coefficient are equal (w.r.t. scaling factor) to the objective function */
10202 /* if a variable has a zero objective coefficient the linear constraint is not a subset of the objective
10240/** check if the linear equality constraint is equal to a subset of the objective function; if so we can remove the
10269 /* check if the linear equality constraints does not have more variables than the objective function */
10275 (nvars == nobjvars && (!conshdlrdata->detectcutoffbound || !conshdlrdata->detectlowerbound)) )
10281 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10293 SCIPdebugMsg(scip, "linear equality constraint <%s> == %g (offset %g) is a subset of the objective function\n",
10313/** updates the cutoff if the given primal bound (which is implied by the given constraint) is better */
10323 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are still
10341 /* we cannot disable the enforcement and propagation on ranged rows, because the cutoffbound could only have
10346 /* in case the cutoff bound is worse then the currently known one, we additionally avoid enforcement and
10357/** check if the linear constraint is parallel to objective function; if so update the cutoff bound and avoid that the
10388 /* check if the linear inequality constraints has the same number of variables as the objective function and if the
10397 /* There are no variables in the objective function and in the constraint. Thus, the constraint is redundant or proves
10398 * infeasibility. Since we have a pure feasibility problem, we do not want to set a cutoff or lower bound.
10403 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10421 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10433 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10442 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10455 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10467 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10476 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10534 SCIP_CALL( convertLongEquality(scip, conshdlrdata, cons, cutoff, naggrvars, ndelconss, nchgvartypes) );
10540/** returns whether the linear sum of all variables/coefficients except the given one divided by the given value is always
10559 if( v != pos && (!SCIPvarIsIntegral(consdata->vars[v]) || !SCIPisIntegral(scip, consdata->vals[v]/val)) )
10566/** check if \f$lhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$,
10567 * check if \f$rhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$
10611/** applies dual presolving for variables that are locked only once in a direction, and this locking is due to a
10645 * otherwise we would have to check for variables with nlocks == 0, and these are already processed by the
10657 /* search for a single-locked variable which can be multi-aggregated; if a valid continuous variable was found, we
10664 /* We only want to multi-aggregate variables, if they appear in maximal one additional constraint,
10666 * - If there are only two variables in the constraint from which the multi-aggregation arises, no fill-in will be
10668 * - If there are three variables in the constraint, multi-aggregation in three additional constraints will remove
10669 * six nonzeros (three from the constraint and the three entries of the multi-aggregated variable) and add
10671 * - If there at most four variables in the constraint, multi-aggregation in two additional constraints will remove
10672 * six nonzeros (four from the constraint and the two entries of the multi-aggregated variable) and add
10684 /* if this constraint has both sides, it also provides a lock for the other side and thus we can allow one more lock */
10716 isint = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
10722 /* better do not multi-aggregate binary variables, since most plugins rely on their binary variables to be either
10740 * - fix x_i to the smallest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10744 * - fix x_i to the largest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10748 * - fix x_i to the largest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10752 * - fix x_i to the smallest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10754 * but: all this is only applicable, if the aggregated value is inside x_i's bounds for all possible values
10759 && ((val > 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10761 || (val < 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10764 && ((val > 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10766 || (val < 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10780 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
10793 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10808 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10816 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10828 /* check again if lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10829 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10836 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10839 if( !isint || (SCIPisIntegral(scip, consdata->lhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10853 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10868 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10875 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10884 /* check again if rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10885 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10891 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10894 if( !isint || (SCIPisIntegral(scip, consdata->rhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10932 (SCIPvarGetType(bestvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(bestvar) == SCIP_VARTYPE_INTEGER));
10940 SCIPdebugMsg(scip, "linear constraint <%s> (dual): multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(bestvar));
11013 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g]\n", aggrconst, SCIPvarGetName(bestvar),
11030 /* @todo if multi-aggregate makes them numerical trouble, avoid them if the coefficients differ to much, see
11033 SCIP_CALL( SCIPmultiaggregateVar(scip, bestvar, naggrs, aggrvars, aggrcoefs, aggrconst, &infeasible, &aggregated) );
11035 /* if the multi-aggregate bestvar is integer, we need to convert implicit integers to integers because
11044 /* If the multi-aggregation was not infeasible, then setting implicit integers to integers should not
11058 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
11059 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
11060 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
11069 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
11297/** sorting method for constraint data, compares two variables on given indices, continuous variables will be sorted to
11298 * the end and for all other variables the sortation will be in non-increasing order of their absolute value of the
11331 /* for all non-continuous variables, the variables are sorted after decreasing absolute coefficients */
11337 * 1. lhs <= a^Tx <= rhs, x binary, lhs > 0, forall a_i >= lhs, a_i <= rhs, and forall pairs a_i + a_j > rhs,
11433/** tries to simplify coefficients and delete variables in constraints of the form lhs <= a^Tx <= rhs
11437 * for one-sided constraints there are several different coefficient reduction steps which will be applied
11439 * 1. We try to determine parts of the constraint which will not change anything on (in-)feasibility of the constraint
11445 * e.g. 5.2x1 + 5.1x2 + 3x3 <= 8.3 => will be changed to 5x1 + 5x2 + 3x3 <= 8 if all x are binary
11449 * e.g. 10x1 + 5y2 + 5x3 + 3x4 <= 15 => will be changed to 2x1 + y2 + x3 + x4 <= 3 if all xi are binary and y2 is
11531 /* @todo the following might be too hard, check which steps can be applied and what code must be corrected
11538 /* @todo: change the following: due to vartype changes, the status of the normalization can be wrong, need an event
11579 /* if we have a normalized inequality (not ranged) the one side should be positive, @see normalizeCons() */
11586 /* call sorting method, order continuous variables to the end and all other variables after non-increasing absolute
11600 assert(consdata->validmaxabsval ? (SCIPisFeasEQ(scip, consdata->maxabsval, REALABS(vals[0])) || SCIPvarGetType(vars[nvars - 1]) == SCIP_VARTYPE_CONTINUOUS) : TRUE);
11610 if( SCIPisEQ(scip, REALABS(vals[0]), 1.0) && ((hasrhs && SCIPisIntegral(scip, rhs)) || (haslhs && SCIPisIntegral(scip, lhs))) )
11638 /* we now determine coefficients as large as the side of the constraint to retrieve a better reduction where we
11642 * c1: +5x1 + 5x2 + 3x3 + 3x4 + x5 >= 5 (x5 is redundant and does not change (in-)feasibility of this constraint)
11643 * c2: +4x1 + 4x2 + 3x3 + 3x4 + x5 >= 4 (gcd (without the coefficient of x5) after the large coefficients is 3
11644 * c3: +30x1 + 29x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 30 (gcd (without the coefficient of x2) after the large coefficients is 7
11649 * c2: +6x1 + 6x2 + 3x3 + 3x4 + 3x5 >= 6 (will be changed to c2: +2x1 + 2x2 + x3 + x4 + x5 >= 2)
11650 * c3: +28x1 + 28x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 28 (will be changed to c3: +4x1 + 4x2 + 2x3 + 2z1 + x5 + x6 <= 4)
11653 /* if the minimal activity is negative and we found more than one variable with a coefficient bigger than the left
11656 * e.g. 7x1 + 7x2 - 4x3 - 4x4 >= 7 => xi = 1 for all i is not a solution, but if we would do a change on the
11657 * coefficients due to the gcd on the "small" coefficients we would get 8x1 + 8x2 - 4x3 - 4x4 >= 8 were xi = 1
11668 /* if we have integer variable with "side"-coefficients but also with a lower bound greater than 0 we stop this
11680 /* easy and quick fix: if all coefficients were equal to the side, we cannot apply further simplifications */
11681 /* todo find numerically stable normalization conditions to scale this cons to have coefficients almost equal to 1 */
11693 /* all but one variable are processed or the next variable is continuous we cannot perform the extra coefficient
11720 /* find and remove redundant variables which do not interact with the (in-)feasibility of this constraint
11811 rredundant = hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd);
11812 lredundant = haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd;
11841 SCIPdebugMsg(scip, "stopped at pos %d (of %d), subactivities [%g, %g], redundant = %u, hasrhs = %u, siderest = %g, gcd = %" SCIP_LONGINT_FORMAT ", offset position for 'side' coefficients = %d\n",
11846 numericsok = REALABS(maxact) < MAXACTVAL && REALABS(maxactsub) < MAXACTVAL && REALABS(minact) < MAXACTVAL &&
11849 rredundant = hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd);
11850 lredundant = haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd;
11901 assert((hasrhs && SCIPisFeasLE(scip, tmpmaxactsub, siderest) && tmpminactsub > siderest - gcd) ||
11905 SCIPdebugMsg(scip, "removing %d last variables from constraint <%s>, because they never change anything on the feasibility of this constraint\n",
12005 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12092 /* new coeffcient must not be zero if we would loose the implication that a variable needs to be 0 if
12118 if( (!notchangable && hasrhs && ((!SCIPisFeasIntegral(scip, rhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(rhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd))) ||
12119 ( haslhs && (!SCIPisFeasIntegral(scip, lhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(lhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd)) )
12171 /* @todo we still can remove continuous variables if they are redundant due to the non-integrality argument */
12187 /* check if the non-integrality part of all integral variables is smaller than the non-inegrality part of the right
12188 * hand side or bigger than the left hand side respectively, so we can make all of them integral
12192 if( (hasrhs && !SCIPisFeasIntegral(scip, rhs)) || (haslhs && !SCIPisFeasIntegral(scip, lhs)) )
12237 /* if we exceed the fractional part of the right hand side, we cannot tighten the coefficients
12330 /* the fractional part on each variable need to exceed the fractional part on the left hand side */
12430 /* maximal absolute value of coefficients in constraint is one, so we cannot tighten it further */
12447 if( SCIPisEQ(scip, REALABS(vals[nvars - 1]), 1.0) && SCIPisEQ(scip, REALABS(vals[nvars - 2]), 1.0) )
12452 /* calculate greatest common divisor over all integer variables; note that the onlybin flag needs to be recomputed
12474 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12475 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12496 /* we need at least one binary variable and a gcd greater than 1 to try to perform further coefficient changes */
12505 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
12513 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12514 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12531 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12542 /* if we have only binary variables and both first coefficients have a gcd of 1, both are candidates for
12576 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
12584 /* check again, if we have a normalized inequality (not ranged) the one side should be positive,
12640 assert(SCIPisZero(scip, newcoef) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(newcoef) + feastol)) == gcd);
12642 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restcoef = %" SCIP_LONGINT_FORMAT "; changing coef of variable <%s> to %g and %s by %" SCIP_LONGINT_FORMAT "\n", gcd, rest, restcoef, SCIPvarGetName(vars[candpos]), newcoef, hasrhs ? "reduced rhs" : "increased lhs", hasrhs ? rest : (rest > 0 ? gcd - rest : 0));
12673 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
12681/** tries to aggregate an (in)equality and an equality in order to decrease the number of variables in the (in)equality:
12683 * where a = val1[v] and b = -val0[v] for common variable v which removes most variable weight;
12685 * the variable weight is a weighted sum over all included variables, where each binary variable weighs BINWEIGHT,
12686 * each integer or implicit integer variable weighs INTWEIGHT and each continuous variable weighs CONTWEIGHT
12695 int* diffidx0minus1, /**< array with indices of variables in cons0, that don't appear in cons1 */
12696 int* diffidx1minus0, /**< array with indices of variables in cons1, that don't appear in cons0 */
12699 int diffidx0minus1weight, /**< variable weight sum of variables in cons0, that don't appear in cons1 */
12700 int diffidx1minus0weight, /**< variable weight sum of variables in cons1, that don't appear in cons0 */
12701 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
12715 SCIP_Bool commonvarlindependent; /* indicates whether coefficient vector of common variables in linearly dependent */
12741 SCIPdebugMsg(scip, "try aggregation of <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
12777 /* count the number of variables in the potential new constraint a * consdata0 + b * consdata1 */
12802 * v's common coefficient in cons1 / v's common coefficient in cons0 should be constant, i.e., equal 0's common coefficient in cons1 / 0's common coefficient in cons0
12870 /* setup best* variables that were not setup above because we are in the commonvarlindependent case */
12875 SCIPdebugMsg(scip, "aggregate linear constraints <%s> := %.15g*<%s> + %.15g*<%s> -> nvars: %d -> %d, weight: %d -> %d\n",
12906 /* if we recognized linear dependency of the common coefficients, then the aggregation coefficient should be 0.0 for every common variable */
12959 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, SCIPconsGetName(cons0), newnvars, newvars, newvals, newlhs, newrhs,
12979 if( consdataGetMaxAbsval(SCIPconsGetData(newcons)) <= maxaggrnormscale * consdataGetMaxAbsval(consdata0) )
13014/** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
13120/** returns the key for deciding which of two parallel constraints should be kept (smaller key should be kept);
13121 * prefers non-upgraded constraints and as second criterion the constraint with the smallest position
13135 return (((unsigned int)consdata->upgraded)<<31) + (unsigned int)SCIPconsGetPos(cons); /*lint !e571*/
13145 SCIP_CONS** querycons, /**< pointer to linear constraint used to look for duplicates in the hash table;
13158 while( (parallelcons = (SCIP_CONS*)SCIPhashtableRetrieve(hashtable, (void*)(*querycons))) != NULL )
13200/** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
13261 /* get constraints from current hash table with same variables as cons0 and with coefficients equal
13262 * to the ones of cons0 when both are scaled such that maxabsval is 1.0 and the coefficient of the
13297 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
13330 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with equal coefficients into single ranged row\n",
13344 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with negated coefficients into single ranged row\n",
13356 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13368 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13373 /* ensure that lhs <= rhs holds without tolerances as we only allow such rows to enter the LP */
13413 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
13477 for( c = (cons0changed ? 0 : firstchange); c < chkind && !(*cutoff) && conss[chkind] != NULL; ++c )
13516 /* SCIPdebugMsg(scip, "preprocess linear constraint pair <%s>[chgd:%d, upgd:%d] and <%s>[chgd:%d, upgd:%d]\n",
13543 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13544 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13546 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13547 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13549 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13550 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13552 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13553 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13568 * - if lhs0 >= lhs1 and for each variable v and each solution value x_v val0[v]*x_v <= val1[v]*x_v,
13570 * - if rhs0 <= rhs1 and for each variable v and each solution value x_v val0[v]*x_v >= val1[v]*x_v,
13572 * - if val0[v] == -val1[v] for all variables v, the two inequalities can be replaced by a single
13574 * - if at least one constraint is an equality, count the weighted number of common variables W_c
13575 * and the weighted number of variable in the difference sets W_0 = w(V_0 \ V_1), W_1 = w(V_1 \ V_0),
13576 * where the weight of each variable depends on its type, such that aggregations in order to remove the
13578 * - if W_c > W_1, try to aggregate consdata0 := a * consdata0 + b * consdata1 in order to decrease the
13579 * variable weight in consdata0, where a = +/- val1[v] and b = -/+ val0[v] for common v which leads to
13580 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13582 * - if W_c > W_0, try to aggregate consdata1 := a * consdata1 + b * consdata0 in order to decrease the
13583 * variable weight in consdata1, where a = +/- val0[v] and b = -/+ val1[v] for common v which leads to
13584 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13718 /* the coefficients in both rows are either equal or negated: create a new constraint with same coefficients and
13721 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with %s coefficients into single ranged row\n",
13740 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13781 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13793 /* check for domination: remove dominated sides, but don't touch equalities as long as they are not totally
13796 if( cons1dominateslhs && (!cons0isequality || cons1dominatesrhs || SCIPisInfinity(scip, consdata0->rhs) ) )
13807 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13820 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13827 else if( cons0dominateslhs && (!cons1isequality || cons0dominatesrhs || SCIPisInfinity(scip, consdata1->rhs)) )
13838 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13850 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13857 if( cons1dominatesrhs && (!cons0isequality || cons1dominateslhs || SCIPisInfinity(scip, -consdata0->lhs)) )
13868 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13881 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13888 else if( cons0dominatesrhs && (!cons1isequality || cons0dominateslhs || SCIPisInfinity(scip, -consdata1->lhs)) )
13899 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13911 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13928 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13943 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13965 SCIP_CALL( aggregateConstraints(scip, cons0, cons1, commonidx0, commonidx1, diffidx0minus1, diffidx1minus0,
13980 if( !aggregated && cons0isequality && !consdata1->upgraded && commonidxweight > diffidx0minus1weight )
13983 SCIP_CALL( aggregateConstraints(scip, cons1, cons0, commonidx1, commonidx0, diffidx1minus0, diffidx0minus1,
14015 SCIP_Bool singletonstuffing, /**< should stuffing of singleton continuous variables be performed? */
14016 SCIP_Bool singlevarstuffing, /**< should single variable stuffing be performed, which tries to fulfill
14062 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
14073 /* we want to have a <= constraint, if the rhs is infinite, we implicitly multiply the constraint by -1,
14101 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14135 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14232 if( tryfixing && nsingletons > 0 && (SCIPisGT(scip, rhs, maxcondactivity) || SCIPisLE(scip, rhs, mincondactivity)) )
14294 /* @note: we could in theory tighten the bound of the first singleton variable which does not fall into the above case,
14295 * since it cannot be fully fixed. However, this is not needed and should be done by activity-based bound tightening
14296 * anyway after all other continuous singleton columns were fixed; doing it here may introduce numerical
14327 SCIPdebugMsg(scip, "### stuffing fixed %d variables and changed %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds);
14341 * setting all variables to their upper bound (giving us the maximal activity of the constraint) is worst w.r.t.
14342 * feasibility of the constraint. On the other hand, this gives the best objective function contribution of the
14343 * variables contained in the constraint. The maximal activity should be larger than the rhs, otherwise the constraint
14345 * Now we are searching for a variable x_k with maximal ratio c_k / a_k (note that all these ratios are negative), so
14346 * that by reducing the value of this variable we reduce the activity of the constraint while having the smallest
14347 * objective deterioration per activity unit. If x_k has no downlocks, is continuous, and can be reduced enough to
14348 * render the constraint feasible, and ALL other variables have only the one uplock installed by the current constraint,
14349 * we can reduce the upper bound of x_k such that the maxactivity equals the rhs and fix all other variables to their
14351 * Note that the others variables may have downlocks from other constraints, which we do not need to care
14352 * about since we are setting them to the highest possible value. Also, they may be integer or binary, because the
14353 * computed ratio is still a lower bound on the change in the objective caused by reducing those variable to reach
14354 * constraint feasibility. On the other hand, uplocks on x_k from other constraint do no interfer with the method.
14355 * With a slight adjustment, the procedure even works for integral x_k. If (maxactivity - rhs)/val is integral,
14356 * the variable gets an integral value in order to fulfill the constraint tightly, and we can just apply the procedure.
14357 * If (maxactivity - rhs)/val is fractional, we need to check, if overfulfilling the constraint by setting x_k to
14358 * ceil((maxactivity - rhs)/val) is still better than setting x_k to ceil((maxactivity - rhs)/val) - 1 and
14359 * filling the remaining gap in the constraint with the next-best variable. For this, we check that
14361 * c_k * floor((maxactivity - rhs)/val) + c_j * ((maxactivity - rhs) - (floor((maxactivity - rhs)/val) * val))/a_j.
14363 * If there are variables with a_i < 0 and c_i > 0, they are negated to obtain the above form, variables with same
14390 /* if both objective and constraint push the variable to the same direction, we can do nothing here */
14412 if( ratio > bestratio || ((ratio == bestratio) && downlocks == 0 && (bestdownlocks > 0 /*lint !e777*/
14477 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14478 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/-val) )
14505 SCIPdebugMsg(scip, "tighten the lower bound of <%s> from %g to %g (ub=%g)\n", SCIPvarGetName(var), lb, lb + bounddelta, ub);
14514 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14515 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/val))
14542 SCIPdebugMsg(scip, "tighten the upper bound of <%s> from %g to %g (lb=%g)\n", SCIPvarGetName(var), ub, ub - bounddelta, lb);
14557 SCIPdebugMsg(scip, "cons <%s>: %g <=\n", SCIPconsGetName(cons), factor > 0 ? consdata->lhs : -consdata->rhs);
14560 SCIPdebugMsg(scip, "%+g <%s>([%g,%g],%g,[%d,%d],%s)\n", factor * vals[v], SCIPvarGetName(vars[v]),
14593 SCIPdebug( SCIPdebugMsg(scip, "### new stuffing fixed %d vars, tightened %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds); )
14628 * redlb[v] == k : if x_v >= k, we can always round x_v down to x_v == k without violating any constraint
14629 * redub[v] == k : if x_v <= k, we can always round x_v up to x_v == k without violating any constraint
14642 * This is because then, the value of the variable is either determined by one of its bounds or
14664 /* copy the variable array since this array might change during the curse of this algorithm */
14686 /* Initialize isimplint array: variable may be implicit integer if rounded to their best bound they are integral.
14702 isimplint[v] = (SCIPisInfinity(scip, -lb) || SCIPisIntegral(scip, lb)) && (SCIPisInfinity(scip, ub) || SCIPisIntegral(scip, ub));
14718 /* we only need to consider constraints that have been locked (i.e., checked constraints or constraints that are
14752 assert(0 <= contv && contv < ncontvars); /* variable should be active due to applyFixings() */
14806 consdataGetGlbActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
14816 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastglbminactivity) )
14820 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastglbmaxactivity) )
14826 assert(0 <= arrayindex && arrayindex < nvars); /* variable should be active due to applyFixings() */
14895 /* there is more than one continuous variable or the integer variables have fractional coefficients:
14913 /* there is exactly one continuous variable and the integer variables have integral coefficients:
14914 * this is the interesting case, and we have to check whether the coefficient is +/-1 and the corresponding
14967 * if variable is cost neutral and only upper bounded non-positively or negative largest bound to make
14970 if( ( SCIPisPositive(scip, obj) || SCIPisPositive(scip, SCIPvarGetUbGlobal(var)) || !SCIPisInfinity(scip, -SCIPvarGetLbGlobal(var)) )
14977 /* if x_v >= redlb[v], we can always round x_v down to x_v == redlb[v] without violating any constraint
14980 SCIPdebugMsg(scip, "variable <%s> only locked down in linear constraints: dual presolve <%s>[%.15g,%.15g] <= %.15g\n",
14996 * if variable is cost neutral and only lower bounded non-negatively or positive smallest bound to make
14999 if( ( SCIPisPositive(scip, -obj) || SCIPisPositive(scip, -SCIPvarGetLbGlobal(var)) || !SCIPisInfinity(scip, SCIPvarGetUbGlobal(var)) )
15006 /* if x_v <= redub[v], we can always round x_v up to x_v == redub[v] without violating any constraint
15009 SCIPdebugMsg(scip, "variable <%s> only locked up in linear constraints: dual presolve <%s>[%.15g,%.15g] >= %.15g\n",
15037 /* we can only conclude implicit integrality if the variable appears in no other constraint */
15047 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
15053 SCIPdebugMsg(scip, "dual presolve: converting continuous variable <%s>[%g,%g] to implicit integer\n",
15099 SCIPdebugMsg(scip, "Enforcement method of linear constraints for %s solution\n", sol == NULL ? "LP" : "relaxation");
15138 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
15184 SCIP_CALL( SCIPgetSymActiveVariables(scip, symtype, &vars, &vals, &nlocvars, &constant, SCIPisTransformed(scip)) );
15232/** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
15282/** deinitialization method of constraint handler (called before transformed problem is freed) */
15325 return !(SCIPisEQ(scip, lhs, rhs) || SCIPisInfinity(scip, -lhs) || SCIPisInfinity(scip, rhs) );
15342 * iterates through all linear constraints and stores relevant statistics in the linear constraint statistics \p linconsstats.
15344 * @note only constraints are iterated that belong to the linear constraint handler. If the problem has been presolved already,
15345 * constraints that were upgraded to more special types such as, e.g., varbound constraints, will not be shown correctly anymore.
15346 * Similarly, if specialized constraints were created through the API, these are currently not present.
15432 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_SINGLETON, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15452 /* precedence constraints have the same coefficient, but with opposite sign for the same variable type */
15471 /* is constraint of type SCIP_CONSTYPE_{SETPARTITION, SETPACKING, SETCOVERING, CARDINALITY, INVKNAPSACK}? */
15483 /* scan through variables and detect if all variables are binary and have a coefficient +/-1 */
15559 /* if both sides are infinite at this point, no further classification is necessary for this constraint */
15610 SCIPlinConsStatsIncTypeCount(linconsstats, matched ? SCIP_LINCONSTYPE_BINPACKING : SCIP_LINCONSTYPE_KNAPSACK, 1);
15613 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15645 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15670 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_MIXEDBINARY, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15679 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_GENERAL, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15686/** presolving deinitialization method of constraint handler (called after presolving has been finished) */
15732 SCIPstatisticMessage("below threshold: %d / %d ratio= %g\n", ngoodconss, nallconss, (100.0 * ngoodconss / nallconss));
15748 /* this is no problem reduction, because the upgraded constraint was added to the problem before, and the
15749 * (redundant) linear constraint was only kept in order to support presolving the the linear constraint handler
15755 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
15780/** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
15820 "(restart) converted %d cuts from the global cut pool into linear constraints\n", ncutsadded);
15821 /* an extra blank line should be printed separately since the buffer message handler only handles up to one
15939 SCIP_CALL( consdataCreate(scip, &targetdata, sourcedata->nvars, sourcedata->vars, sourcedata->vals, sourcedata->lhs, sourcedata->rhs) );
15942 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
15952 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
15953 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
15956 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
15962/** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
16015 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
16038 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, NULL, separatecards, conshdlrdata->separateall, &ncuts, &cutoff) );
16081 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
16096 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, sol, TRUE, conshdlrdata->separateall, &ncuts, &cutoff) );
16172 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
16224 SCIPinfoMessage(scip, NULL, "activity invalid due to positive and negative infinity contributions\n");
16226 SCIPinfoMessage(scip, NULL, "violation: left hand side is violated by %.15g\n", consdata->lhs - activity);
16228 SCIPinfoMessage(scip, NULL, "violation: right hand side is violated by %.15g\n", activity - consdata->rhs);
16259 /* check, if we want to tighten variable's bounds (in probing, we always want to tighten the bounds) */
16273 && ((tightenboundsfreq == 0 && depth == 0) || (tightenboundsfreq >= 1 && (depth % tightenboundsfreq == 0)));
16281 && ((rangedrowfreq == 0 && depth == 0) || (rangedrowfreq >= 1 && (depth % rangedrowfreq == 0)));
16409 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16422 /* apply presolving as long as possible on the single constraint (however, abort after a certain number of rounds
16464 SCIP_CALL( tightenBounds(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars, &cutoff, nchgbds) );
16474 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &isminacttight, &ismaxacttight,
16476 if( SCIPisFeasGT(scip, minactivity, consdata->rhs) || SCIPisFeasLT(scip, maxactivity, consdata->lhs) )
16478 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16483 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
16485 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16494 else if( !SCIPisInfinity(scip, -consdata->lhs) && SCIPisGE(scip, minactivity, consdata->lhs) )
16496 SCIPdebugMsg(scip, "linear constraint <%s> left hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16504 SCIPdebugMsg(scip, "linear constraint <%s> right hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16533 /* reduce big-M coefficients, that make the constraint redundant if the variable is on a bound */
16576 SCIP_CALL( extractCliques(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars,
16604 SCIP_CALL( convertEquality(scip, cons, conshdlrdata, &cutoff, nfixedvars, naggrvars, ndelconss, nchgvartypes) );
16608 if( !cutoff && SCIPconsIsActive(cons) && conshdlrdata->dualpresolving && SCIPallowStrongDualReds(scip) )
16610 SCIP_CALL( dualPresolve(scip, conshdlrdata, cons, &cutoff, nfixedvars, naggrvars, ndelconss, nchgvartypes) );
16623 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16630 (conshdlrdata->singletonstuffing || conshdlrdata->singlevarstuffing) && SCIPallowStrongDualReds(scip) )
16662 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && (conshdlrdata->presolusehashing || conshdlrdata->presolpairwise) && !SCIPisStopped(scip) )
16668 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
16669 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &firstchange, &cutoff,
16712 npaircomparisons += (SCIPconsGetData(conss[c])->changed) ? c : (c - firstchange); /*lint !e776*/
16715 SCIP_CALL( preprocessConstraintPairs(scip, usefulconss, firstchange, c, conshdlrdata->maxaggrnormscale,
16721 if( ((*ndelconss - oldndelconss) + (*nchgsides - oldnchgsides)/2.0 + (*nchgcoefs - oldnchgcoefs)/10.0) / ((SCIP_Real) npaircomparisons) < conshdlrdata->mingainpernmincomp )
16734 /* before upgrading, check whether we can apply some additional dual presolving, because a variable only appears
16738 && *nfixedvars == oldnfixedvars && *naggrvars == oldnaggrvars && *nchgbds == oldnchgbds && *ndelconss == oldndelconss
16749 * only upgrade constraints, if no reductions were found in this round (otherwise, the linear constraint handler
16750 * may find additional reductions before giving control away to other (less intelligent?) constraint handlers)
16752 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) )
16765 /* only upgrade completely presolved constraints, that changed since the last upgrading call */
16792 * delete upgraded equalities, if we don't need it anymore for aggregation and redundancy checking
16808 else if( *nfixedvars > oldnfixedvars || *naggrvars > oldnaggrvars || *nchgbds > oldnchgbds || *ndelconss > oldndelconss
16826 SCIP_CALL( resolvePropagation(scip, cons, infervar, intToInferInfo(inferinfo), boundtype, bdchgidx, result) );
16932 SCIP_CALL( SCIPcopyConsLinear(scip, cons, sourcescip, consname, nvars, sourcevars, sourcecoefs,
16933 SCIPgetLhsLinear(sourcescip, sourcecons), SCIPgetRhsLinear(sourcescip, sourcecons), varmap, consmap,
16934 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
16944 * There should only be one operator, except for ranged rows for which exactly two operators '<=' must be present.
17001 /* assign the found operator to the first or second pointer and check for violations of the linear constraint grammar */
17082 /* find operators in the line first, all other remaining parsing depends on occurence of the operators '<=', '>=', '==',
17095 /* assign the strings for parsing the left hand side, right hand side, and the linear variable sum */
17136 SCIPerrorMessage("Parsing has wrong operator character '%c', should be one of <=>[", *firstop);
17172 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17181 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17182 assert(!*success || requsize <= coefssize); /* if successful, then should have had enough space now */
17192 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17225/** constraint method of constraint handler which returns the number of variables (if possible) */
17241/** constraint handler method which returns the permutation symmetry detection graph of a constraint */
17250/** constraint handler method which returns the signed permutation symmetry detection graph of a constraint */
17325 /* bound change can turn the constraint infeasible or redundant only if it was a tightening */
17330 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17343 if( (val > 0.0 ? !SCIPisInfinity(scip, consdata->rhs) : !SCIPisInfinity(scip, -consdata->lhs)) )
17347 if( (val > 0.0 ? !SCIPisInfinity(scip, -consdata->lhs) : !SCIPisInfinity(scip, consdata->rhs)) )
17386 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17395 /* there is only one lock left: we may multi-aggregate the variable as slack of an equation */
17426 /* if the variable is binary but not fixed it had to become binary due to this global change */
17427 if( SCIPvarIsBinary(var) && SCIPisGT(scip, SCIPvarGetUbGlobal(var), SCIPvarGetLbGlobal(var)) )
17439 /* for presolving it only matters if a variable type changed from continuous to some kind of integer */
17440 consdata->presolved = (consdata->presolved && SCIPeventGetOldtype(event) < SCIP_VARTYPE_CONTINUOUS);
17442 /* the ordering is preserved if the type changes from something different to binary to binary but SCIPvarIsBinary() is true */
17443 consdata->indexsorted = (consdata->indexsorted && SCIPeventGetNewtype(event) == SCIP_VARTYPE_BINARY && SCIPvarIsBinary(var));
17483 /* create array of variables and coefficients: sum_{i \in P} x_i - sum_{i \in N} x_i >= 1 - |N| */
17515 (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "cf%" SCIP_LONGINT_FORMAT, SCIPgetNConflictConssApplied(scip));
17516 SCIP_CALL( SCIPcreateConsLinear(scip, &cons, consname, nbdchginfos, vars, vals, lhs, SCIPinfinity(scip),
17519 /* try to automatically convert a linear constraint into a more specific and more specialized constraint */
17563 * (unless the expression is a variable or a constant or a constant*variable, but these are simplified away in cons_nonlinear)
17574 lhs = SCIPisInfinity(scip, -SCIPgetLhsNonlinear(cons)) ? -SCIPinfinity(scip) : (SCIPgetLhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17575 rhs = SCIPisInfinity(scip, SCIPgetRhsNonlinear(cons)) ? SCIPinfinity(scip) : (SCIPgetRhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17591 SCIP_CALL( SCIPaddCoefLinear(scip, upgdconss[0], SCIPgetVarExprVar(SCIPexprGetChildren(expr)[i]), SCIPgetCoefsExprSum(expr)[i]) );
17594 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original nonlinear constraint */
17626 SCIP_CALL( SCIPincludeConflicthdlrBasic(scip, &conflicthdlr, CONFLICTHDLR_NAME, CONFLICTHDLR_DESC, CONFLICTHDLR_PRIORITY,
17656 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolLinear, CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
17658 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropLinear, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
17661 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpLinear, consSepasolLinear, CONSHDLR_SEPAFREQ,
17666 SCIP_CALL( SCIPsetConshdlrGetSignedPermsymGraph(scip, conshdlr, consGetSignedPermsymGraphLinear) );
17671 SCIP_CALL( SCIPincludeConsUpgradeNonlinear(scip, upgradeConsNonlinear, NONLINCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17677 "multiplier on propagation frequency, how often the bounds are tightened (-1: never, 0: only at root)",
17678 &conshdlrdata->tightenboundsfreq, TRUE, DEFAULT_TIGHTENBOUNDSFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17713 "maximal allowed relative gain in maximum norm for constraint aggregation (0.0: disable constraint aggregation)",
17714 &conshdlrdata->maxaggrnormscale, TRUE, DEFAULT_MAXAGGRNORMSCALE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17717 "maximum activity delta to run easy propagation on linear constraint (faster, but numerically less stable)",
17718 &conshdlrdata->maxeasyactivitydelta, TRUE, DEFAULT_MAXEASYACTIVITYDELTA, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17721 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cardinality cuts",
17725 "should all constraints be subject to cardinality cut generation instead of only the ones with non-zero dual value?",
17745 "should single variable stuffing be performed, which tries to fulfill constraints using the cheapest variable?",
17748 "constraints/" CONSHDLR_NAME "/sortvars", "apply binaries sorting in decr. order of coeff abs value?",
17752 "should the violation for a constraint with side 0.0 be checked relative to 1.0 (FALSE) or to the maximum absolute value in the activity (TRUE)?",
17756 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
17760 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
17768 "should presolving and propagation try to improve bounds, detect infeasibility, and extract sub-constraints from ranged rows and equations?",
17781 &conshdlrdata->rangedrowfreq, TRUE, DEFAULT_RANGEDROWFREQ, 1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17789 &conshdlrdata->maxmultaggrquot, TRUE, DEFAULT_MAXMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17793 &conshdlrdata->maxdualmultaggrquot, TRUE, DEFAULT_MAXDUALMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17841 (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "constraints/linear/upgrade/%s", conshdlrname);
17842 (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "enable linear upgrading for constraint handler <%s>", conshdlrname);
17853 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17882 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
17884 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
17914 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
17930 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
17938 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
17952 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17962 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17978 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17988 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
18031 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18041 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
18048 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
18049 * method SCIPcreateConsLinear(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
18053 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
18082 SCIP_Real* sourcecoefs, /**< coefficient array of the linear constraint, or NULL if all coefficients are one */
18085 SCIP_HASHMAP* varmap, /**< a SCIP_HASHMAP mapping variables of the source SCIP to corresponding
18087 SCIP_HASHMAP* consmap, /**< a hashmap to store the mapping of source constraints to the corresponding
18097 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup? */
18098 SCIP_Bool stickingatnode, /**< should the constraint always be kept at the node where it was added, even
18123 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18144 /* transform source variable to active variables of the source SCIP since only these can be mapped to variables of
18149 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, nvars, &constant, &requiredsize, TRUE) );
18156 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, requiredsize, &constant, &requiredsize, TRUE) );
18177 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18180 SCIP_CALL( SCIPgetVarCopy(sourcescip, scip, var, &vars[v], varmap, consmap, global, &success) );
18194 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18224 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
18246 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
18254 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
18275 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18285 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18301 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18311 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18364/** changes coefficient of variable in linear constraint; deletes the variable if coefficient is zero; adds variable if
18367 * @note This method may only be called during problem creation stage for an original constraint and variable.
18369 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18393 if( SCIPgetStage(scip) > SCIP_STAGE_PROBLEM || !SCIPconsIsOriginal(cons) || !SCIPvarIsOriginal(var) )
18395 SCIPerrorMessage("method may only be called during problem creation stage for original constraints and variables\n");
18413 /* decrease i by one since otherwise we would skip the coefficient which has been switched to position i */
18435 * @note This method may only be called during problem creation stage for an original constraint and variable.
18437 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18565/** gets the array of variables in the linear constraint; the user must not modify this array! */
18589/** gets the array of coefficient values in the linear constraint; the user must not modify this array! */
18615 * @note if the solution contains values at infinity, this method will return SCIP_INVALID in case the activity
18729/** returns the linear relaxation of the given linear constraint; may return NULL if no LP row was yet created;
18755/** tries to automatically convert a linear constraint into a more specific and more specialized constraint */
18798 /* we cannot upgrade a modifiable linear constraint, since we don't know what additional coefficients to expect */
18820 /* check, if the constraint was already upgraded and will be deleted anyway after preprocessing */
18829 SCIPerrorMessage("cannot upgrade linear constraint that is already stored as row in the LP\n");
18840 /* normalizeCons() can only detect infeasibility when scaling with the gcd. in that case, the scaling was
18845 * TODO: this needs to be fixed on master by changing the API and passing a pointer to whether the constraint is
18963 SCIPdebugMsg(scip, " +bin=%d -bin=%d +int=%d -int=%d +impl=%d -impl=%d +cont=%d -cont=%d +1=%d -1=%d +I=%d -I=%d +F=%d -F=%d possum=%.15g negsum=%.15g integral=%u\n",
18975 nposbin, nnegbin, nposint, nnegint, nposimpl, nnegimpl, nposimplbin, nnegimplbin, nposcont, nnegcont,
18986 SCIPdebugMsg(scip, " -> upgraded to constraint type <%s>\n", SCIPconshdlrGetName(SCIPconsGetHdlr(*upgdcons)));
18998 SCIP_Bool* infeasible /**< pointer to return whether the problem was detected to be infeasible */
19013 nconss = onlychecked ? SCIPconshdlrGetNCheckConss(conshdlr) : SCIPconshdlrGetNActiveConss(conshdlr);
Constraint handler for knapsack constraints of the form , x binary and .
static SCIP_DECL_CONSENFORELAX(consEnforelaxLinear)
Definition: cons_linear.c:16123
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:3670
static SCIP_RETCODE consdataPrint(SCIP *scip, SCIP_CONSDATA *consdata, FILE *file)
Definition: cons_linear.c:1101
static void permSortConsdata(SCIP_CONSDATA *consdata, int *perm, int nvars)
Definition: cons_linear.c:3269
static void consdataRecomputeMaxActivityDelta(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1548
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool checkrelmaxabs, SCIP_Bool *violated)
Definition: cons_linear.c:7184
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_linear.c:7468
static void consdataGetReliableResidualActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *cancelvar, SCIP_Real *resactivity, SCIP_Bool isminresact, SCIP_Bool useglobalbounds)
Definition: cons_linear.c:2586
static SCIP_RETCODE convertEquality(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss, int *nchgvartypes)
Definition: cons_linear.c:10488
static SCIP_Bool checkEqualObjective(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real *scale, SCIP_Real *offset)
Definition: cons_linear.c:10166
static SCIP_RETCODE conshdlrdataIncludeUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_LINCONSUPGRADE *linconsupgrade)
Definition: cons_linear.c:619
static SCIP_RETCODE extractCliques(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, int *nfixedvars, int *nchgbds, SCIP_Bool *cutoff)
Definition: cons_linear.c:7940
static SCIP_DECL_HASHKEYVAL(hashKeyValLinearcons)
Definition: cons_linear.c:13092
static SCIP_DECL_NONLINCONSUPGD(upgradeConsNonlinear)
Definition: cons_linear.c:17547
static SCIP_RETCODE convertBinaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9508
static void consdataRecomputeMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1311
static SCIP_DECL_HASHGETKEY(hashGetKeyLinearcons)
Definition: cons_linear.c:13008
static SCIP_RETCODE addConflictFixedVars(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos)
Definition: cons_linear.c:5013
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyLinear)
Definition: cons_linear.c:15218
static SCIP_RETCODE tightenVarLb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5344
static SCIP_RETCODE fullDualPresolve(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *nchgbds, int *nchgvartypes)
Definition: cons_linear.c:14603
static SCIP_RETCODE convertLongEquality(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss, int *nchgvartypes)
Definition: cons_linear.c:9620
static SCIP_Real consdataComputePseudoActivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1258
static SCIP_RETCODE conshdlrdataEnsureLinconsupgradesSize(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, int num)
Definition: cons_linear.c:448
static SCIP_RETCODE retrieveParallelConstraints(SCIP_HASHTABLE *hashtable, SCIP_CONS **querycons, SCIP_CONS **parallelconss, int *nparallelconss)
Definition: cons_linear.c:13143
static void conshdlrdataFree(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata)
Definition: cons_linear.c:567
static void calculateMinvalAndMaxval(SCIP *scip, SCIP_Real side, SCIP_Real val, SCIP_Real minresactivity, SCIP_Real maxresactivity, SCIP_Real *minval, SCIP_Real *maxval)
Definition: cons_linear.c:10570
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:651
static void consdataRecomputeGlbMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1365
static void consdataUpdateActivitiesUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2027
static SCIP_RETCODE tightenSides(SCIP *scip, SCIP_CONS *cons, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:8910
static void consdataUpdateActivitiesGlbLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2052
static void consdataUpdateActivitiesLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2002
static SCIP_Bool conshdlrdataHasUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_DECL_LINCONSUPGD((*linconsupgd)), const char *conshdlrname)
Definition: cons_linear.c:589
static SCIP_RETCODE chgCoefPos(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Real newval)
Definition: cons_linear.c:3918
static void consdataRecomputeMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1338
static SCIP_RETCODE linconsupgradeCreate(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority)
Definition: cons_linear.c:508
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_linear.c:4101
static SCIP_Bool isFiniteNonnegativeIntegral(SCIP *scip, SCIP_Real x)
Definition: cons_linear.c:15330
static void consdataUpdateSignatures(SCIP_CONSDATA *consdata, int pos)
Definition: cons_linear.c:3115
static SCIP_RETCODE scaleCons(SCIP *scip, SCIP_CONS *cons, SCIP_Real scalar)
Definition: cons_linear.c:4008
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, int *firstchange, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides)
Definition: cons_linear.c:13204
static void linconsupgradeFree(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade)
Definition: cons_linear.c:529
static SCIP_RETCODE aggregateConstraints(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1, int *commonidx0, int *commonidx1, int *diffidx0minus1, int *diffidx1minus0, int nvarscommon, int commonidxweight, int diffidx0minus1weight, int diffidx1minus0weight, SCIP_Real maxaggrnormscale, int *nchgcoefs, SCIP_Bool *aggregated, SCIP_Bool *infeasible)
Definition: cons_linear.c:12689
static SCIP_RETCODE analyzeConflict(SCIP *scip, SCIP_CONS *cons, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:5222
static SCIP_RETCODE rangedRowPropagation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds, int *naddconss)
Definition: cons_linear.c:5749
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:4480
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_SOL *sol, SCIP_Bool separatecards, SCIP_Bool separateall, int *ncuts, SCIP_Bool *cutoff)
Definition: cons_linear.c:7567
static SCIP_RETCODE addSymmetryInformation(SCIP *scip, SYM_SYMTYPE symtype, SCIP_CONS *cons, SYM_GRAPH *graph, SCIP_Bool *success)
Definition: cons_linear.c:15145
static void consdataGetActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Real *maxactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2539
static void consdataCheckNonbinvar(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1472
static SCIP_RETCODE chgLhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:3412
static void consdataUpdateActivitiesGlbUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2075
static SCIP_RETCODE consCatchEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:718
static void consdataCalcMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1443
static SCIP_RETCODE addConflictBounds(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:4831
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num)
Definition: cons_linear.c:473
static SCIP_RETCODE tightenBounds(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7006
static void consdataCalcMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1419
static SCIP_DECL_CONSGETPERMSYMGRAPH(consGetPermsymGraphLinear)
Definition: cons_linear.c:17243
static SCIP_RETCODE consDropAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:823
static SCIP_DECL_CONSDEACTIVE(consDeactiveLinear)
Definition: cons_linear.c:15848
static SCIP_Real consdataGetActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3026
static SCIP_RETCODE consdataTightenCoefs(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:9032
static SCIP_RETCODE normalizeCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4160
static SCIP_DECL_CONSGETSIGNEDPERMSYMGRAPH(consGetSignedPermsymGraphLinear)
Definition: cons_linear.c:17252
static SCIP_RETCODE presolStuffing(SCIP *scip, SCIP_CONS *cons, SCIP_Bool singletonstuffing, SCIP_Bool singlevarstuffing, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds)
Definition: cons_linear.c:14012
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:684
static void consdataCalcSignatures(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3140
static SCIP_RETCODE addConflictReasonVars(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5078
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool tightenbounds, SCIP_Bool rangedrowpropagation, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7657
static SCIP_RETCODE updateCutoffbound(SCIP *scip, SCIP_CONS *cons, SCIP_Real primalbound)
Definition: cons_linear.c:10315
static void consdataUpdateDelCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2174
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_linear.c:3805
static void consdataUpdateAddCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2098
static void getMinActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Bool *istight, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2351
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:854
static SCIP_RETCODE chgRhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:3540
static SCIP_RETCODE tightenVarBoundsEasy(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5414
static void consdataUpdateActivities(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_Real val, SCIP_BOUNDTYPE boundtype, SCIP_Bool global, SCIP_Bool checkreliability)
Definition: cons_linear.c:1610
static unsigned int getParallelConsKey(SCIP_CONS *cons)
Definition: cons_linear.c:13124
static SCIP_RETCODE fixVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars)
Definition: cons_linear.c:7805
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_linear.c:15073
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata)
Definition: cons_linear.c:1060
static SCIP_DECL_CONSGETNVARS(consGetNVarsLinear)
Definition: cons_linear.c:17227
static void consdataGetActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2667
static SCIP_Real consdataGetMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2255
static SCIP_RETCODE consPrintConsSol(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, FILE *file)
Definition: cons_linear.c:1140
static void getMaxActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *maxactivity, SCIP_Bool *istight, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2446
static void getNewSidesAfterAggregation(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *slackvar, SCIP_Real slackcoef, SCIP_Real *newlhs, SCIP_Real *newrhs)
Definition: cons_linear.c:9566
static SCIP_RETCODE convertUnaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *ndelconss)
Definition: cons_linear.c:9452
static void consdataUpdateChgCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldval, SCIP_Real newval, SCIP_Bool checkreliability)
Definition: cons_linear.c:2239
static SCIP_RETCODE conshdlrdataCreate(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:543
static void consdataRecomputeGlbMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1392
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4543
static void consdataCalcActivities(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2289
static void consdataGetGlbActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2876
static SCIP_RETCODE tightenVarUb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newub, SCIP_Real oldub, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5274
static int inferInfoGetProprule(INFERINFO inferinfo)
Definition: cons_linear.c:396
static SCIP_DECL_CONFLICTEXEC(conflictExecLinear)
Definition: cons_linear.c:17461
static SCIP_RETCODE dualPresolve(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss, int *nchgvartypes)
Definition: cons_linear.c:10615
static SCIP_Real consdataGetFeasibility(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3094
static SCIP_RETCODE rangedRowSimplify(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:11341
static SCIP_RETCODE aggregateVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars)
Definition: cons_linear.c:11131
static void consdataInvalidateActivities(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1212
static SCIP_RETCODE analyzeConflictRangedRow(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5691
static SCIP_RETCODE consDropEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:757
static SCIP_RETCODE tightenVarBounds(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:6734
static SCIP_Real consdataGetMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2271
static SCIP_Bool consdataIsResidualIntegral(SCIP *scip, SCIP_CONSDATA *consdata, int pos, SCIP_Real val)
Definition: cons_linear.c:10544
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, SCIP_Real maxaggrnormscale, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides, int *nchgcoefs)
Definition: cons_linear.c:13408
static SCIP_RETCODE consdataSort(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3345
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10361
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:11453
static SCIP_RETCODE consCatchAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:791
static SCIP_RETCODE resolvePropagation(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, INFERINFO inferinfo, SCIP_BOUNDTYPE boundtype, SCIP_BDCHGIDX *bdchgidx, SCIP_RESULT *result)
Definition: cons_linear.c:5129
static SCIP_Bool isRangedRow(SCIP *scip, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:15317
static SCIP_RETCODE checkPartialObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10244
static void consdataGetGlbActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *glbminactivity, SCIP_Real *glbmaxactivity, SCIP_Bool *ismintight, SCIP_Bool *ismaxtight, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2816
static void findOperators(const char *str, char **firstoperator, char **secondoperator, SCIP_Bool *success)
Definition: cons_linear.c:16947
Constraint handler for linear constraints in their most general form, .
constraint handler for nonlinear constraints specified by algebraic expressions
defines macros for basic operations in double-double arithmetic giving roughly twice the precision of...
methods for debugging
SCIP_Real SCIPgetDualsolLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18674
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17803
SCIP_Real SCIPgetRhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18479
SCIP_RETCODE SCIPupgradeConsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_CONS **upgdcons)
Definition: cons_linear.c:18756
SCIP_VAR ** SCIPgetVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18566
SCIP_RETCODE SCIPchgRhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:18524
SCIP_RETCODE SCIPincludeConsUpgradeNonlinear(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nlconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_nonlinear.c:12592
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18207
SCIP_Real SCIPgetLhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18455
int SCIPgetNVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18542
SCIP_Real * SCIPgetValsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18590
SCIP_ROW * SCIPgetRowLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18732
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:18055
SCIP_EXPR * SCIPgetExprNonlinear(SCIP_CONS *cons)
Definition: cons_nonlinear.c:13781
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5777
SCIP_Real SCIPgetDualfarkasLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18702
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:18075
SCIP_RETCODE SCIPcleanupConssLinear(SCIP *scip, SCIP_Bool onlychecked, SCIP_Bool *infeasible)
Definition: cons_linear.c:18995
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_linear.c:17855
SCIP_Real SCIPgetActivityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18618
SCIP_Real SCIPgetFeasibilityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18646
SCIP_RETCODE SCIPclassifyConstraintTypesLinear(SCIP *scip, SCIP_LINCONSSTATS *linconsstats)
Definition: cons_linear.c:15348
SCIP_RETCODE SCIPchgLhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:18503
SCIP_RETCODE SCIPchgCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18371
SCIP_RETCODE SCIPdelCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_linear.c:18439
SCIP_RETCODE SCIPincludeConshdlrLinear(SCIP *scip)
Definition: cons_linear.c:17610
SCIP_RETCODE SCIPconvertCutsToConss(SCIP *scip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, int *ncutsadded)
Definition: scip_copy.c:2068
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:660
SCIP_RETCODE SCIPgetVarCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR *sourcevar, SCIP_VAR **targetvar, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *success)
Definition: scip_copy.c:711
SCIP_RETCODE SCIPaddObjoffset(SCIP *scip, SCIP_Real addval)
Definition: scip_prob.c:1268
SCIP_RETCODE SCIPhashtableSafeInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2579
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2296
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2608
void SCIPhashtablePrintStatistics(SCIP_HASHTABLE *hashtable, SCIP_MESSAGEHDLR *messagehdlr)
Definition: misc.c:2804
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2677
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2547
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3696
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3474
SCIP_RETCODE SCIPaddConflict(SCIP *scip, SCIP_NODE *node, SCIP_CONS *cons, SCIP_NODE *validnode, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_prob.c:3228
SCIP_RETCODE SCIPaddConsLocal(SCIP *scip, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition: scip_prob.c:3393
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:208
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:225
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:120
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9121
SCIP_Longint SCIPcalcSmaComMul(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9373
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:9394
SCIP_Real SCIPselectSimpleValue(SCIP_Real lb, SCIP_Real ub, SCIP_Longint maxdnom)
Definition: misc.c:9824
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:83
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
SCIP_RETCODE SCIPgetIntParam(SCIP *scip, const char *name, int *value)
Definition: scip_param.c:269
SCIP_RETCODE SCIPaddConflictLb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:352
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:323
SCIP_RETCODE SCIPaddConflictUb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:419
const char * SCIPconflicthdlrGetName(SCIP_CONFLICTHDLR *conflicthdlr)
Definition: conflict_graphanalysis.c:1493
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:301
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:703
SCIP_RETCODE SCIPincludeConflicthdlrBasic(SCIP *scip, SCIP_CONFLICTHDLR **conflicthdlrptr, const char *name, const char *desc, int priority, SCIP_DECL_CONFLICTEXEC((*conflictexec)), SCIP_CONFLICTHDLRDATA *conflicthdlrdata)
Definition: scip_conflict.c:108
int SCIPconshdlrGetNCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4656
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:808
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4227
SCIP_CONS ** SCIPconshdlrGetCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4613
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:540
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:396
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:831
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:235
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:281
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:181
SCIP_RETCODE SCIPsetConshdlrDeactive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDEACTIVE((*consdeactive)))
Definition: scip_cons.c:693
SCIP_RETCODE SCIPsetConshdlrGetPermsymGraph(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETPERMSYMGRAPH((*consgetpermsymgraph)))
Definition: scip_cons.c:900
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:578
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:372
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:323
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:420
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:516
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:347
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:941
SCIP_RETCODE SCIPsetConshdlrGetSignedPermsymGraph(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETSIGNEDPERMSYMGRAPH((*consgetsignedpermsymgraph)))
Definition: scip_cons.c:924
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:468
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:762
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:624
SCIP_RETCODE SCIPsetConshdlrInitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITSOL((*consinitsol)))
Definition: scip_cons.c:444
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4217
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:601
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:647
int SCIPconshdlrGetNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4670
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:854
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4593
SCIP_RETCODE SCIPsetConshdlrActive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSACTIVE((*consactive)))
Definition: scip_cons.c:670
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:785
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2537
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1297
SCIP_Bool SCIPconsIsMarkedPropagate(SCIP_CONS *cons)
Definition: cons.c:8423
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1272
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1322
SCIP_Bool SCIPconsIsLockedType(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8607
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2043
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:998
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1813
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2015
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1525
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1174
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1372
SCIP_RETCODE SCIPsetConsChecked(SCIP *scip, SCIP_CONS *cons, SCIP_Bool check)
Definition: scip_cons.c:1347
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:250
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:104
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:324
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:354
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:400
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:132
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:99
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:111
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:105
SCIP_RETCODE SCIPreleaseNlRow(SCIP *scip, SCIP_NLROW **nlrow)
Definition: scip_nlp.c:1058
SCIP_RETCODE SCIPcreateNlRow(SCIP *scip, SCIP_NLROW **nlrow, const char *name, SCIP_Real constant, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:954
void SCIPlinConsStatsIncTypeCount(SCIP_LINCONSSTATS *linconsstats, SCIP_LINCONSTYPE linconstype, int increment)
Definition: cons.c:8108
void SCIPlinConsStatsReset(SCIP_LINCONSSTATS *linconsstats)
Definition: cons.c:8076
SCIP_RETCODE SCIPchgRowLhs(SCIP *scip, SCIP_ROW *row, SCIP_Real lhs)
Definition: scip_lp.c:1583
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONS *cons, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1422
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1701
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2212
SCIP_Real SCIPgetRowSolFeasibility(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2167
SCIP_RETCODE SCIPchgRowRhs(SCIP *scip, SCIP_ROW *row, SCIP_Real rhs)
Definition: scip_lp.c:1607
SCIP_RETCODE SCIPaddVarsToRow(SCIP *scip, SCIP_ROW *row, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_lp.c:1727
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2144
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1217
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:141
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1612
SCIP_Longint SCIPgetNConflictConssApplied(SCIP *scip)
Definition: scip_solvingstats.c:1152
SCIP_RETCODE SCIPgetSymActiveVariables(SCIP *scip, SYM_SYMTYPE symtype, SCIP_VAR ***vars, SCIP_Real **scalars, int *nvars, SCIP_Real *constant, SCIP_Bool transformed)
Definition: symmetry_graph.c:1686
SCIP_RETCODE SCIPextendPermsymDetectionGraphLinear(SCIP *scip, SYM_GRAPH *graph, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_CONS *cons, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool *success)
Definition: symmetry_graph.c:226
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1143
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:832
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:497
SCIP_Bool SCIPisSumRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1247
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1221
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:780
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1128
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:471
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:793
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:869
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:806
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:881
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:484
SCIP_Bool SCIPisSumRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1273
SCIP_Bool SCIPisScalingIntegral(SCIP *scip, SCIP_Real val, SCIP_Real scalar)
Definition: scip_numerics.c:606
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:819
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:445
SCIP_Bool SCIPisUpdateUnreliable(SCIP *scip, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: scip_numerics.c:1328
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:458
SCIP_Bool SCIPisSumGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:718
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:857
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:404
SCIP_RETCODE SCIPgetProbvarLinearSum(SCIP *scip, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize, SCIP_Bool mergemultiples)
Definition: scip_var.c:1738
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5203
SCIP_RETCODE SCIPvarGetOrigvarSum(SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:12774
SCIP_Real SCIPvarGetNegationConstant(SCIP_VAR *var)
Definition: var.c:17915
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4351
SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:17882
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6921
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1480
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3353
SCIP_Bool SCIPdoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8598
SCIP_RETCODE SCIPaggregateVars(SCIP *scip, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *redundant, SCIP_Bool *aggregated)
Definition: scip_var.c:8401
SCIP_RETCODE SCIPinferVarUbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5615
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5320
SCIP_RETCODE SCIPgetProbvarSum(SCIP *scip, SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: scip_var.c:1794
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4259
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4437
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2128
SCIP_RETCODE SCIPmultiaggregateVar(SCIP *scip, SCIP_VAR *var, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: scip_var.c:8535
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:4645
SCIP_RETCODE SCIPparseVarsLinearsum(SCIP *scip, const char *str, SCIP_VAR **vars, SCIP_Real *vals, int *nvars, int varssize, int *requiredsize, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:704
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:4613
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8176
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1693
SCIP_RETCODE SCIPaddVarImplication(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6780
SCIP_RETCODE SCIPcreateVar(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:114
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8276
SCIP_RETCODE SCIPinferVarLbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5501
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1992
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:230
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:4513
SCIP_RETCODE SCIPwriteVarsLinearsum(SCIP *scip, FILE *file, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Bool type)
Definition: scip_var.c:343
SCIP_Real SCIPbdchginfoGetNewbound(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:18670
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3295
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1439
SCIP_RETCODE SCIPinferVarFixCons(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5432
SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:17870
void SCIPsortDownRealPtr(SCIP_Real *realarray, void **ptrarray, int len)
void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
void SCIPsort(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:5538
memory allocation routines
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:618
Definition: objbenders.h:44
public methods for conflict analysis handlers
public methods for managing constraints
public methods for managing events
public functions to work with algebraic expressions
public methods for LP management
public methods for message output
public data structures and miscellaneous methods
methods for sorting joint arrays of various types
public methods for problem variables
public methods for branching rule plugins and branching
public methods for conflict handler plugins and conflict analysis
public methods for constraint handler plugins and constraints
public methods for problem copies
public methods for cuts and aggregation rows
public methods for event handler plugins and event handlers
general public methods
public methods for the LP relaxation, rows and columns
public methods for memory management
public methods for message handling
public methods for numerical tolerances
public methods for SCIP parameter handling
public methods for global and local (sub)problems
public methods for the probing mode
public methods for solutions
public methods for querying solving statistics
public methods for the branch-and-bound tree
public methods for SCIP variables
Definition: struct_var.h:109
Definition: struct_conflict.h:50
Definition: struct_cons.h:47
Definition: struct_cons.h:127
Definition: struct_event.h:205
Definition: struct_expr.h:106
Definition: struct_misc.h:138
Definition: struct_misc.h:90
Definition: struct_cons.h:292
Definition: cons_linear.c:334
SCIP_DECL_LINCONSUPGD((*linconsupgd))
Definition: struct_nlp.h:65
Definition: struct_lp.h:202
Definition: struct_sol.h:74
Definition: struct_var.h:208
Definition: struct_symmetry.h:46
Definition: struct_scip.h:70
structs for symmetry computations
methods for dealing with symmetry detection graphs