Scippy

SCIP

Solving Constraint Integer Programs

nlhdlr_soc.c
Go to the documentation of this file.
1 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2 /* */
3 /* This file is part of the program and library */
4 /* SCIP --- Solving Constraint Integer Programs */
5 /* */
6 /* Copyright (c) 2002-2023 Zuse Institute Berlin (ZIB) */
7 /* */
8 /* Licensed under the Apache License, Version 2.0 (the "License"); */
9 /* you may not use this file except in compliance with the License. */
10 /* You may obtain a copy of the License at */
11 /* */
12 /* http://www.apache.org/licenses/LICENSE-2.0 */
13 /* */
14 /* Unless required by applicable law or agreed to in writing, software */
15 /* distributed under the License is distributed on an "AS IS" BASIS, */
16 /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */
17 /* See the License for the specific language governing permissions and */
18 /* limitations under the License. */
19 /* */
20 /* You should have received a copy of the Apache-2.0 license */
21 /* along with SCIP; see the file LICENSE. If not visit scipopt.org. */
22 /* */
23 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
24 
25 /**@file nlhdlr_soc.c
26  * @ingroup DEFPLUGINS_NLHDLR
27  * @brief nonlinear handler for second order cone constraints
28 
29  * @author Benjamin Mueller
30  * @author Felipe Serrano
31  * @author Fabian Wegscheider
32  *
33  * This is a nonlinear handler for second order cone constraints of the form
34  *
35  * \f[\sqrt{\sum_{i=1}^{n} (v_i^T x + \beta_i)^2} \leq v_{n+1}^T x + \beta_{n+1}.\f]
36  *
37  * Note that \f$v_i\f$, for \f$i \leq n\f$, could be 0, thus allowing a positive constant term inside the root.
38  *
39  * @todo test if it makes sense to only disaggregate when nterms > some parameter
40  *
41  */
42 
43 #include <string.h>
44 
45 #include "scip/nlhdlr_soc.h"
46 #include "scip/cons_nonlinear.h"
47 #include "scip/expr_pow.h"
48 #include "scip/expr_sum.h"
49 #include "scip/expr_var.h"
50 #include "scip/debug.h"
51 #include "scip/pub_nlhdlr.h"
52 #include "scip/nlpi_ipopt.h"
53 
54 
55 /* fundamental nonlinear handler properties */
56 #define NLHDLR_NAME "soc"
57 #define NLHDLR_DESC "nonlinear handler for second-order cone structures"
58 #define NLHDLR_DETECTPRIORITY 100 /**< priority of the nonlinear handler for detection */
59 #define NLHDLR_ENFOPRIORITY 100 /**< priority of the nonlinear handler for enforcement */
60 #define DEFAULT_MINCUTEFFICACY 1e-5 /**< default value for parameter mincutefficacy */
61 #define DEFAULT_COMPEIGENVALUES TRUE /**< default value for parameter compeigenvalues */
62 
63 /*
64  * Data structures
65  */
66 
67 /** nonlinear handler expression data. The data is structured in the following way:
68  *
69  * A 'term' is one of the arguments of the quadratic terms, i.e. \f$v_i^T x + beta_i\f$.
70  * The last term is always the one on the right-hand side. This means that nterms is
71  * equal to n+1 in the above description.
72  *
73  * - vars contains a list of all expressions which are treated as variables (no duplicates)
74  * - offsets contains the constants beta_i of each term
75  * - transcoefs contains the non-zero values of the transformation vectors v_i of each term
76  * - transcoefsidx contains for each entry of transcoefs the position of the respective variable in vars
77  * - termbegins contains the index at which the transcoefs of each term start, with a sentinel value
78  * - nterms is the total number of terms appearing on both sides
79  * - nvars is the total number of unique variables appearing (length of vars)
80  *
81  * Note that the numbers of nonzeroes in v_i is termbegins[i+1] - termbegins[i] and that
82  * the total number of entries in transcoefs and transcoefsidx is termbegins[nterms]
83  *
84  * The disaggregation is implicitly stored in the variables disvars and disrow. An SOC as
85  * described above is replaced by n smaller SOCs
86  *
87  * (v_i^T x + beta_i)^2 <= disvar_i * (v_{n+1}^T x + beta_{n+1})
88  *
89  * and the row sum_i disvar_i <= v_{n+1}^T x + beta_{n+1}.
90  *
91  * The disaggregation only happens if we have more than 3 terms.
92  *
93  * Example: The constraint SQRT(5 + (3x - 4y + 2)^2 + y^2 + 7z^2) <= 5x - y - 1
94  * results in the following nlhdlrexprdata:
95  *
96  * vars = {x, y, z}
97  * offsets = {2, 0, 0, SQRT(5), -1}
98  * transcoefs = {3, -4, 1, SQRT(7), 5, -1}
99  * transcoefsidx = {0, 1, 1, 2, 0, 1}
100  * termbegins = {0, 2, 3, 4, 4, 6}
101  * nvars = 3
102  * nterms = 5
103  *
104  * @note: due to the current implementation, the constant term is the second to last term, except when the SOC was a rotated
105  * SOC, e.g., 1 + x^2 - y*z, i.e., when detected by detectSocQuadraticSimple. In that case, the constant is third to
106  * last term.
107  */
108 struct SCIP_NlhdlrExprData
109 {
110  SCIP_EXPR** vars; /**< expressions which (aux)variables appear on both sides (x) */
111  SCIP_Real* offsets; /**< offsets of both sides (beta_i) */
112  SCIP_Real* transcoefs; /**< non-zeros of linear transformation vectors (v_i) */
113  int* transcoefsidx; /**< mapping of transformation coefficients to variable indices in vars */
114  int* termbegins; /**< starting indices of transcoefs for each term */
115  int nvars; /**< total number of variables appearing */
116  int nterms; /**< number of summands in the SQRT +1 for RHS (n+1) */
117 
118  /* variables for cone disaggregation */
119  SCIP_VAR** disvars; /**< disaggregation variables for each term in lhs */
120  SCIP_ROW* disrow; /**< disaggregation row */
121 };
122 
123 struct SCIP_NlhdlrData
124 {
125  SCIP_Real mincutefficacy; /**< minimum efficacy a cut need to be added */
126  SCIP_Bool compeigenvalues; /**< whether Eigenvalue computations should be done to detect complex cases */
127 };
128 
129 /*
130  * Local methods
131  */
132 
133 #ifdef SCIP_DEBUG
134 /** prints the nlhdlr expression data */
135 static
136 void printNlhdlrExprData(
137  SCIP* scip, /**< SCIP data structure */
138  SCIP_NLHDLREXPRDATA* nlhdlrexprdata /**< pointer to store nonlinear handler expression data */
139  )
140 {
141  int nterms;
142  int i;
143  int j;
144 
145  nterms = nlhdlrexprdata->nterms;
146 
147  SCIPinfoMessage(scip, NULL, "SQRT( ");
148 
149  for( i = 0; i < nterms - 1; ++i )
150  {
151  int startidx;
152 
153  startidx = nlhdlrexprdata->termbegins[i];
154 
155  /* v_i is 0 */
156  if( startidx == nlhdlrexprdata->termbegins[i + 1] )
157  {
158  assert(nlhdlrexprdata->offsets[i] != 0.0);
159 
160  SCIPinfoMessage(scip, NULL, "%f", SQR(nlhdlrexprdata->offsets[i]));
161  continue;
162  }
163 
164  /* v_i is not 0 */
165  SCIPinfoMessage(scip, NULL, "(");
166 
167  for( j = startidx; j < nlhdlrexprdata->termbegins[i + 1]; ++j )
168  {
169  if( nlhdlrexprdata->transcoefs[j] != 1.0 )
170  SCIPinfoMessage(scip, NULL, "%f*", nlhdlrexprdata->transcoefs[j]);
171  if( SCIPgetExprAuxVarNonlinear(nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[j]]) != NULL )
172  {
173  SCIPinfoMessage(scip, NULL, "%s", SCIPvarGetName(SCIPgetExprAuxVarNonlinear(nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[j]])));
174  SCIPinfoMessage(scip, NULL, "(%p)", (void*)nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[j]]);
175  }
176  else
177  SCIPinfoMessage(scip, NULL, "%p", (void*)nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[j]]);
178 
179  if( j < nlhdlrexprdata->termbegins[i + 1] - 1 )
180  SCIPinfoMessage(scip, NULL, " + ");
181  else if( nlhdlrexprdata->offsets[i] != 0.0 )
182  SCIPinfoMessage(scip, NULL, " + %f", nlhdlrexprdata->offsets[i]);
183  }
184 
185  SCIPinfoMessage(scip, NULL, ")^2");
186 
187  if( i < nterms - 2 )
188  SCIPinfoMessage(scip, NULL, " + ");
189  }
190 
191  SCIPinfoMessage(scip, NULL, " ) <= ");
192 
193  for( j = nlhdlrexprdata->termbegins[nterms-1]; j < nlhdlrexprdata->termbegins[nterms]; ++j )
194  {
195  if( nlhdlrexprdata->transcoefs[j] != 1.0 )
196  SCIPinfoMessage(scip, NULL, "%f*", nlhdlrexprdata->transcoefs[j]);
197  if( SCIPgetExprAuxVarNonlinear(nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[j]]) != NULL )
198  SCIPinfoMessage(scip, NULL, "%s", SCIPvarGetName(SCIPgetExprAuxVarNonlinear(nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[j]])));
199  else
200  SCIPinfoMessage(scip, NULL, "%p", (void*)nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[j]]);
201 
202  if( j < nlhdlrexprdata->termbegins[nterms] - 1 )
203  SCIPinfoMessage(scip, NULL, " + ");
204  else if( nlhdlrexprdata->offsets[nterms-1] != 0.0 )
205  SCIPinfoMessage(scip, NULL, " + %f", nlhdlrexprdata->offsets[nterms-1]);
206  }
207 
208  SCIPinfoMessage(scip, NULL, "\n");
209 }
210 #endif
211 
212 /** helper method to create variables for the cone disaggregation */
213 static
215  SCIP* scip, /**< SCIP data structure */
216  SCIP_EXPR* expr, /**< expression */
217  SCIP_NLHDLREXPRDATA* nlhdlrexprdata /**< nonlinear handler expression data */
218  )
219 {
220  char name[SCIP_MAXSTRLEN];
221  int ndisvars;
222  int i;
223 
224  assert(nlhdlrexprdata != NULL);
225 
226  ndisvars = nlhdlrexprdata->nterms - 1;
227 
228  /* allocate memory */
229  SCIP_CALL( SCIPallocBlockMemoryArray(scip, &nlhdlrexprdata->disvars, ndisvars) );
230 
231  /* create disaggregation variables representing the epigraph of (v_i^T x + beta_i)^2 / (v_{n+1}^T x + beta_{n+1}) */
232  for( i = 0; i < ndisvars; ++i )
233  {
234  (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "conedis_%p_%d", (void*) expr, i);
235  SCIP_CALL( SCIPcreateVarBasic(scip, &nlhdlrexprdata->disvars[i], name, 0.0, SCIPinfinity(scip), 0.0,
237  SCIPvarMarkRelaxationOnly(nlhdlrexprdata->disvars[i]);
238 
239  SCIP_CALL( SCIPaddVar(scip, nlhdlrexprdata->disvars[i]) );
240  SCIP_CALL( SCIPaddVarLocksType(scip, nlhdlrexprdata->disvars[i], SCIP_LOCKTYPE_MODEL, 1, 1) );
241  }
242 
243  return SCIP_OKAY;
244 }
245 
246 /** helper method to free variables for the cone disaggregation */
247 static
249  SCIP* scip, /**< SCIP data structure */
250  SCIP_NLHDLREXPRDATA* nlhdlrexprdata /**< nonlinear handler expression data */
251  )
252 {
253  int ndisvars;
254  int i;
255 
256  assert(nlhdlrexprdata != NULL);
257 
258  if( nlhdlrexprdata->disvars == NULL )
259  return SCIP_OKAY;
260 
261  ndisvars = nlhdlrexprdata->nterms - 1;
262 
263  /* release variables */
264  for( i = 0; i < ndisvars; ++i )
265  {
266  SCIP_CALL( SCIPaddVarLocksType(scip, nlhdlrexprdata->disvars[i], SCIP_LOCKTYPE_MODEL, -1, -1) );
267  SCIP_CALL( SCIPreleaseVar(scip, &nlhdlrexprdata->disvars[i]) );
268  }
269 
270  /* free memory */
271  SCIPfreeBlockMemoryArrayNull(scip, &nlhdlrexprdata->disvars, ndisvars);
272 
273  return SCIP_OKAY;
274 }
275 
276 /** helper method to create the disaggregation row \f$\text{disvars}_i \leq v_{n+1}^T x + \beta_{n+1}\f$ */
277 static
279  SCIP* scip, /**< SCIP data structure */
280  SCIP_CONSHDLR* conshdlr, /**< nonlinear constraint handler */
281  SCIP_EXPR* expr, /**< expression */
282  SCIP_NLHDLREXPRDATA* nlhdlrexprdata /**< nonlinear handler expression data */
283  )
284 {
285  SCIP_Real beta;
286  char name[SCIP_MAXSTRLEN];
287  int ndisvars;
288  int nterms;
289  int i;
290 
291  assert(scip != NULL);
292  assert(expr != NULL);
293  assert(nlhdlrexprdata != NULL);
294  assert(nlhdlrexprdata->disrow == NULL);
295 
296  nterms = nlhdlrexprdata->nterms;
297  beta = nlhdlrexprdata->offsets[nterms - 1];
298 
299  ndisvars = nterms - 1;
300 
301  /* create row 0 <= beta_{n+1} */
302  (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "conedis_%p_row", (void*) expr);
303  SCIP_CALL( SCIPcreateEmptyRowConshdlr(scip, &nlhdlrexprdata->disrow, conshdlr, name,
304  -SCIPinfinity(scip), beta, FALSE, FALSE, TRUE) );
305 
306  /* add disvars to row */
307  for( i = 0; i < ndisvars; ++i )
308  {
309  SCIP_CALL( SCIPaddVarToRow(scip, nlhdlrexprdata->disrow, nlhdlrexprdata->disvars[i], 1.0) );
310  }
311 
312  /* add rhs vars to row */
313  for( i = nlhdlrexprdata->termbegins[nterms - 1]; i < nlhdlrexprdata->termbegins[nterms]; ++i )
314  {
315  SCIP_VAR* var;
316  SCIP_Real coef;
317 
318  var = SCIPgetExprAuxVarNonlinear(nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[i]]);
319  assert(var != NULL);
320 
321  coef = -nlhdlrexprdata->transcoefs[i];
322 
323  SCIP_CALL( SCIPaddVarToRow(scip, nlhdlrexprdata->disrow, var, coef) );
324  }
325 
326  return SCIP_OKAY;
327 }
328 
329 /** helper method to create nonlinear handler expression data */
330 static
332  SCIP* scip, /**< SCIP data structure */
333  SCIP_EXPR** vars, /**< expressions which variables appear on both sides (\f$x\f$) */
334  SCIP_Real* offsets, /**< offsets of bot sides (\f$beta_i\f$) */
335  SCIP_Real* transcoefs, /**< non-zeroes of linear transformation vectors (\f$v_i\f$) */
336  int* transcoefsidx, /**< mapping of transformation coefficients to variable indices in vars */
337  int* termbegins, /**< starting indices of transcoefs for each term */
338  int nvars, /**< total number of variables appearing */
339  int nterms, /**< number of summands in the SQRT, +1 for RHS */
340  SCIP_NLHDLREXPRDATA** nlhdlrexprdata /**< pointer to store nonlinear handler expression data */
341  )
342 {
343  int ntranscoefs;
344 
345  assert(vars != NULL);
346  assert(offsets != NULL);
347  assert(transcoefs != NULL);
348  assert(transcoefsidx != NULL);
349  assert(termbegins != NULL);
350  assert(nlhdlrexprdata != NULL);
351 
352  ntranscoefs = termbegins[nterms];
353 
354  SCIP_CALL( SCIPallocBlockMemory(scip, nlhdlrexprdata) );
355  SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(*nlhdlrexprdata)->vars, vars, nvars) );
356  SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(*nlhdlrexprdata)->offsets, offsets, nterms) );
357  SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(*nlhdlrexprdata)->transcoefs, transcoefs, ntranscoefs) );
358  SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(*nlhdlrexprdata)->transcoefsidx, transcoefsidx, ntranscoefs) );
359  SCIP_CALL( SCIPduplicateBlockMemoryArray(scip, &(*nlhdlrexprdata)->termbegins, termbegins, nterms + 1) );
360  (*nlhdlrexprdata)->nvars = nvars;
361  (*nlhdlrexprdata)->nterms = nterms;
362 
363  (*nlhdlrexprdata)->disrow = NULL;
364  (*nlhdlrexprdata)->disvars = NULL;
365 
366 #ifdef SCIP_DEBUG
367  SCIPdebugMsg(scip, "created nlhdlr data for the following soc expression:\n");
368  printNlhdlrExprData(scip, *nlhdlrexprdata);
369  printf("x is %p\n", (void *)vars[0]);
370 #endif
371 
372  return SCIP_OKAY;
373 }
374 
375 /** helper method to free nonlinear handler expression data */
376 static
378  SCIP* scip, /**< SCIP data structure */
379  SCIP_NLHDLREXPRDATA** nlhdlrexprdata /**< pointer to free nonlinear handler expression data */
380  )
381 {
382  int ntranscoefs;
383 
384  assert(nlhdlrexprdata != NULL);
385  assert(*nlhdlrexprdata != NULL);
386 
387  /* free variables and row for cone disaggregation */
388  SCIP_CALL( freeDisaggrVars(scip, *nlhdlrexprdata) );
389 
390  ntranscoefs = (*nlhdlrexprdata)->termbegins[(*nlhdlrexprdata)->nterms];
391 
392  SCIPfreeBlockMemoryArray(scip, &(*nlhdlrexprdata)->termbegins, (*nlhdlrexprdata)->nterms + 1);
393  SCIPfreeBlockMemoryArray(scip, &(*nlhdlrexprdata)->transcoefsidx, ntranscoefs);
394  SCIPfreeBlockMemoryArray(scip, &(*nlhdlrexprdata)->transcoefs, ntranscoefs);
395  SCIPfreeBlockMemoryArray(scip, &(*nlhdlrexprdata)->offsets, (*nlhdlrexprdata)->nterms);
396  SCIPfreeBlockMemoryArray(scip, &(*nlhdlrexprdata)->vars, (*nlhdlrexprdata)->nvars);
397  SCIPfreeBlockMemory(scip, nlhdlrexprdata);
398 
399  return SCIP_OKAY;
400 }
401 
402 /** evaluate a single term of the form \f$v_i^T x + \beta_i\f$ */
403 static
405  SCIP* scip, /**< SCIP data structure */
406  SCIP_NLHDLREXPRDATA* nlhdlrexprdata, /**< nonlinear handler expression data */
407  SCIP_SOL* sol, /**< solution */
408  int k /**< term to be evaluated */
409  )
410 {
411  SCIP_Real result;
412  int i;
413 
414  assert(scip != NULL);
415  assert(nlhdlrexprdata != NULL);
416  assert(0 <= k && k < nlhdlrexprdata->nterms);
417 
418  result = nlhdlrexprdata->offsets[k];
419 
420  for( i = nlhdlrexprdata->termbegins[k]; i < nlhdlrexprdata->termbegins[k + 1]; ++i )
421  {
422  SCIP_Real varval = SCIPgetSolVal(scip, sol, SCIPgetExprAuxVarNonlinear(nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[i]]));
423  result += nlhdlrexprdata->transcoefs[i] * varval;
424  }
425 
426  return result;
427 }
428 
429 /** computes gradient cut for a 2D or 3D SOC
430  *
431  * A 3D SOC looks like
432  * \f[
433  * \sqrt{ (v_1^T x + \beta_1)^2 + (v_2^T x + \beta_2)^2 } \leq v_3^T x + \beta_3
434  * \f]
435  *
436  * Let \f$f(x)\f$ be the left-hand-side. The partial derivatives of \f$f\f$ are given by
437  * \f[
438  * \frac{\delta f}{\delta x_j} = \frac{(v_1)_j(v_1^T x + \beta_1) + (v_2)_j (v_2^T x + \beta_2)}{f(x)}
439  * \f]
440  *
441  * and the gradient cut is then \f$f(x^*) + \nabla f(x^*)(x - x^*) \leq v_3^T x + \beta_3\f$.
442  *
443  * A 2D SOC is
444  * \f[
445  * |v_1^T x + \beta_1| \leq v_2^T x + \beta_2
446  * \f]
447  * but we build the cut using the same procedure as for 3D.
448  */
449 static
451  SCIP* scip, /**< SCIP data structure */
452  SCIP_EXPR* expr, /**< expression */
453  SCIP_CONS* cons, /**< the constraint that expr is part of */
454  SCIP_SOL* sol, /**< solution to separate or NULL for the LP solution */
455  SCIP_NLHDLREXPRDATA* nlhdlrexprdata, /**< nonlinear handler expression data */
456  SCIP_Real mincutviolation, /**< minimal required cut violation */
457  SCIP_Real rhsval, /**< value of last term at sol */
458  SCIP_ROW** cut /**< pointer to store a cut */
459  )
460 {
461  SCIP_ROWPREP* rowprep;
462  SCIP_Real* transcoefs;
463  SCIP_Real cutcoef;
464  SCIP_Real fvalue;
465  SCIP_Real valterms[2] = {0.0, 0.0}; /* for lint */
466  SCIP_Real cutrhs;
467  SCIP_EXPR** vars;
468  SCIP_VAR* cutvar;
469  int* transcoefsidx;
470  int* termbegins;
471  int nterms;
472  int i;
473  int j;
474 
475  assert(expr != NULL);
476  assert(cons != NULL);
477  assert(nlhdlrexprdata != NULL);
478  assert(mincutviolation >= 0.0);
479  assert(cut != NULL);
480 
481  vars = nlhdlrexprdata->vars;
482  transcoefs = nlhdlrexprdata->transcoefs;
483  transcoefsidx = nlhdlrexprdata->transcoefsidx;
484  termbegins = nlhdlrexprdata->termbegins;
485  nterms = nlhdlrexprdata->nterms;
486 
487  *cut = NULL;
488 
489  /* evaluate lhs terms and compute f(x*) */
490  fvalue = 0.0;
491  for( i = 0; i < nterms - 1; ++i )
492  {
493  valterms[i] = evalSingleTerm(scip, nlhdlrexprdata, sol, i);
494  fvalue += SQR( valterms[i] );
495  }
496  fvalue = SQRT( fvalue );
497 
498  /* don't generate cut if we are not violated @todo: remove this once core detects better when a nlhdlr's cons is
499  * violated
500  */
501  if( fvalue - rhsval <= mincutviolation )
502  {
503  SCIPdebugMsg(scip, "do not generate cut: rhsval %g, fvalue %g violation is %g\n", rhsval, fvalue, fvalue - rhsval);
504  return SCIP_OKAY;
505  }
506 
507  /* if f(x*) = 0 then SOC can't be violated and we shouldn't be here */
508  assert(fvalue > 0.0);
509 
510  /* create cut */
512  SCIP_CALL( SCIPensureRowprepSize(scip, rowprep, termbegins[nterms]) );
513 
514  /* cut is f(x*) + \nabla f(x*)^T (x - x*) \leq v_n^T x + \beta_n, i.e.,
515  * \nabla f(x*)^T x - v_n^T x \leq \beta_n + \nabla f(x*)^T x* - f(x*)
516  * thus cutrhs is \beta_n - f(x*) + \nabla f(x*)^T x*
517  */
518  cutrhs = nlhdlrexprdata->offsets[nterms - 1] - fvalue;
519 
520  /* add cut coefficients from lhs terms and compute cut's rhs */
521  for( j = 0; j < nterms - 1; ++j )
522  {
523  for( i = termbegins[j]; i < termbegins[j + 1]; ++i )
524  {
525  cutvar = SCIPgetExprAuxVarNonlinear(vars[transcoefsidx[i]]);
526 
527  /* cutcoef is (the first part of) the partial derivative w.r.t cutvar */
528  cutcoef = transcoefs[i] * valterms[j] / fvalue;
529 
530  SCIP_CALL( SCIPaddRowprepTerm(scip, rowprep, cutvar, cutcoef) );
531 
532  cutrhs += cutcoef * SCIPgetSolVal(scip, sol, cutvar);
533  }
534  }
535 
536  /* add terms for v_n */
537  for( i = termbegins[nterms - 1]; i < termbegins[nterms]; ++i )
538  {
539  cutvar = SCIPgetExprAuxVarNonlinear(vars[transcoefsidx[i]]);
540  SCIP_CALL( SCIPaddRowprepTerm(scip, rowprep, cutvar, -transcoefs[i]) );
541  }
542 
543  /* add side */
544  SCIProwprepAddSide(rowprep, cutrhs);
545 
546  SCIP_CALL( SCIPcleanupRowprep2(scip, rowprep, sol, SCIPinfinity(scip), NULL) );
547 
548  if( SCIPgetRowprepViolation(scip, rowprep, sol, NULL) >= mincutviolation )
549  {
550  (void) SCIPsnprintf(SCIProwprepGetName(rowprep), SCIP_MAXSTRLEN, "soc%d_%p_%" SCIP_LONGINT_FORMAT, nterms, (void*) expr, SCIPgetNLPs(scip));
551  SCIP_CALL( SCIPgetRowprepRowCons(scip, cut, rowprep, cons) );
552  }
553  else
554  {
555  SCIPdebugMsg(scip, "%d-SOC rowprep violation %g below mincutviolation %g\n", nterms, SCIPgetRowprepViolation(scip,
556  rowprep, sol, NULL), mincutviolation);
557  /* SCIPprintRowprep(scip, rowprep, NULL); */
558  }
559 
560  /* free memory */
561  SCIPfreeRowprep(scip, &rowprep);
562 
563  return SCIP_OKAY;
564 }
565 
566 /** helper method to compute and add a gradient cut for the k-th cone disaggregation
567  *
568  * After the SOC constraint \f$\sqrt{\sum_{i = 0}^{n-1} (v_i^T x + \beta_i)^2} \leq v_n^T x + \beta_n\f$
569  * has been disaggregated into the row \f$\sum_{i = 0}^{n-1} y_i \leq v_n^T x + \beta_n\f$ and the smaller SOC constraints
570  * \f[
571  * (v_i^T x + \beta_i)^2 \leq (v_n^T x + \beta_n) y_i \text{ for } i \in \{0, \ldots, n -1\},
572  * \f]
573  * we want to separate one of the small rotated cones.
574  * We first transform it into standard form:
575  * \f[
576  * \sqrt{4(v_i^T x + \beta_i)^2 + (v_n^T x + \beta_n - y_i)^2} - v_n^T x - \beta_n - y_i \leq 0.
577  * \f]
578  * Let \f$f(x,y)\f$ be the left-hand-side. We now compute the gradient by
579  * \f{align*}{
580  * \frac{\delta f}{\delta x_j} &= \frac{(v_i)_j(4v_i^T x + 4\beta_i) + (v_n)_j(v_n^T x + \beta_n - y_i)}{\sqrt{4(v_i^T x + \beta_i)^2 + (v_n^T x + \beta_n - y_i)^2}} - (v_n)_j \\
581  * \frac{\delta f}{\delta y_i} &= \frac{y_i - v_n^T x -\beta_n}{\sqrt{4(v_i^T x + \beta_i)^2 + (v_n^T x + \beta_n - y_i)^2}} - 1
582  * \f}
583  * and the gradient cut is then \f$f(x^*, y^*) + \nabla f(x^*,y^*)((x,y) - (x^*, y^*)) \leq 0\f$.
584  */
585 static
587  SCIP* scip, /**< SCIP data structure */
588  SCIP_EXPR* expr, /**< expression */
589  SCIP_CONS* cons, /**< the constraint that expr is part of */
590  SCIP_SOL* sol, /**< solution to separate or NULL for the LP solution */
591  SCIP_NLHDLREXPRDATA* nlhdlrexprdata, /**< nonlinear handler expression data */
592  int disaggidx, /**< index of disaggregation to separate */
593  SCIP_Real mincutviolation, /**< minimal required cut violation */
594  SCIP_Real rhsval, /**< value of the rhs term */
595  SCIP_ROW** cut /**< pointer to store a cut */
596  )
597 {
598  SCIP_EXPR** vars;
599  SCIP_VAR** disvars;
600  SCIP_Real* transcoefs;
601  int* transcoefsidx;
602  int* termbegins;
603  SCIP_ROWPREP* rowprep;
604  SCIP_VAR* cutvar;
605  SCIP_Real cutcoef;
606  SCIP_Real fvalue;
607  SCIP_Real disvarval;
608  SCIP_Real lhsval;
609  SCIP_Real constant;
610  SCIP_Real denominator;
611  int ncutvars;
612  int nterms;
613  int i;
614 
615  assert(expr != NULL);
616  assert(cons != NULL);
617  assert(nlhdlrexprdata != NULL);
618  assert(disaggidx < nlhdlrexprdata->nterms);
619  assert(mincutviolation >= 0.0);
620  assert(cut != NULL);
621 
622  vars = nlhdlrexprdata->vars;
623  disvars = nlhdlrexprdata->disvars;
624  transcoefs = nlhdlrexprdata->transcoefs;
625  transcoefsidx = nlhdlrexprdata->transcoefsidx;
626  termbegins = nlhdlrexprdata->termbegins;
627  nterms = nlhdlrexprdata->nterms;
628 
629  /* nterms is equal to n in the description and disaggidx is in {0, ..., n - 1} */
630 
631  *cut = NULL;
632 
633  disvarval = SCIPgetSolVal(scip, sol, disvars[disaggidx]);
634 
635  lhsval = evalSingleTerm(scip, nlhdlrexprdata, sol, disaggidx);
636 
637  denominator = SQRT(4.0 * SQR(lhsval) + SQR(rhsval - disvarval));
638 
639  /* compute value of function to be separated (f(x*,y*)) */
640  fvalue = denominator - rhsval - disvarval;
641 
642  /* if the disagg soc is not violated don't compute cut */
643  if( fvalue <= mincutviolation )
644  {
645  SCIPdebugMsg(scip, "skip cut on disaggregation index %d as violation=%g below minviolation %g\n", disaggidx,
646  fvalue, mincutviolation);
647  return SCIP_OKAY;
648  }
649 
650  /* if the denominator is 0 -> the constraint can't be violated */
651  assert(!SCIPisZero(scip, denominator));
652  /* if v_disaggidx^T x + beta_disaggidx is 0 -> the constraint can't be violated */
653  assert(!SCIPisZero(scip, lhsval));
654 
655  /* compute upper bound on the number of variables in cut: vars in rhs + vars in term + disagg var */
656  ncutvars = (termbegins[nterms] - termbegins[nterms-1]) + (termbegins[disaggidx + 1] - termbegins[disaggidx]) + 1;
657 
658  /* create cut */
660  SCIP_CALL( SCIPensureRowprepSize(scip, rowprep, ncutvars) );
661 
662  /* constant will be grad_f(x*,y*)^T (x*, y*) */
663  constant = 0.0;
664 
665  /* a variable could appear on the lhs and rhs, but we add the coefficients separately */
666 
667  /* add terms for v_disaggidx */
668  for( i = termbegins[disaggidx]; i < termbegins[disaggidx + 1]; ++i )
669  {
670  cutvar = SCIPgetExprAuxVarNonlinear(vars[transcoefsidx[i]]);
671  assert(cutvar != NULL);
672 
673  /* cutcoef is (the first part of) the partial derivative w.r.t cutvar */
674  cutcoef = 4.0 * lhsval * transcoefs[i] / denominator;
675 
676  SCIP_CALL( SCIPaddRowprepTerm(scip, rowprep, cutvar, cutcoef) );
677 
678  constant += cutcoef * SCIPgetSolVal(scip, sol, cutvar);
679  }
680 
681  /* add terms for v_n */
682  for( i = termbegins[nterms - 1]; i < termbegins[nterms]; ++i )
683  {
684  cutvar = SCIPgetExprAuxVarNonlinear(vars[transcoefsidx[i]]);
685  assert(cutvar != NULL);
686 
687  /* cutcoef is the (second part of) the partial derivative w.r.t cutvar */
688  cutcoef = (rhsval - disvarval) * transcoefs[i] / denominator - transcoefs[i];
689 
690  SCIP_CALL( SCIPaddRowprepTerm(scip, rowprep, cutvar, cutcoef) );
691 
692  constant += cutcoef * SCIPgetSolVal(scip, sol, cutvar);
693  }
694 
695  /* add term for disvar: cutcoef is the the partial derivative w.r.t. the disaggregation variable */
696  cutcoef = (disvarval - rhsval) / denominator - 1.0;
697  cutvar = disvars[disaggidx];
698 
699  SCIP_CALL( SCIPaddRowprepTerm(scip, rowprep, cutvar, cutcoef) );
700 
701  constant += cutcoef * SCIPgetSolVal(scip, sol, cutvar);
702 
703  /* add side */
704  SCIProwprepAddSide(rowprep, constant - fvalue);
705 
706  SCIP_CALL( SCIPcleanupRowprep2(scip, rowprep, sol, SCIPinfinity(scip), NULL) );
707 
708  if( SCIPgetRowprepViolation(scip, rowprep, sol, NULL) >= mincutviolation )
709  {
710  (void) SCIPsnprintf(SCIProwprepGetName(rowprep), SCIP_MAXSTRLEN, "soc_%p_%d_%" SCIP_LONGINT_FORMAT, (void*) expr, disaggidx, SCIPgetNLPs(scip));
711  SCIP_CALL( SCIPgetRowprepRowCons(scip, cut, rowprep, cons) );
712  }
713  else
714  {
715  SCIPdebugMsg(scip, "rowprep violation %g below mincutviolation %g\n", SCIPgetRowprepViolation(scip, rowprep, sol,
716  NULL), mincutviolation);
717  /* SCIPprintRowprep(scip, rowprep, NULL); */
718  }
719 
720  /* free memory */
721  SCIPfreeRowprep(scip, &rowprep);
722 
723  return SCIP_OKAY;
724 }
725 
726 /** checks if an expression is quadratic and collects all occurring expressions
727  *
728  * @pre `expr2idx` and `occurringexprs` need to be initialized with capacity 2 * nchildren
729  *
730  * @note We assume that a linear term always appears before its corresponding
731  * quadratic term in quadexpr; this should be ensured by canonicalize
732  */
733 static
735  SCIP* scip, /**< SCIP data structure */
736  SCIP_EXPR* quadexpr, /**< candidate for a quadratic expression */
737  SCIP_HASHMAP* expr2idx, /**< hashmap to store expressions */
738  SCIP_EXPR** occurringexprs, /**< array to store expressions */
739  int* nexprs, /**< buffer to store number of expressions */
740  SCIP_Bool* success /**< buffer to store whether the check was successful */
741  )
742 {
743  SCIP_EXPR** children;
744  int nchildren;
745  int i;
746 
747  assert(scip != NULL);
748  assert(quadexpr != NULL);
749  assert(expr2idx != NULL);
750  assert(occurringexprs != NULL);
751  assert(nexprs != NULL);
752  assert(success != NULL);
753 
754  *nexprs = 0;
755  *success = FALSE;
756  children = SCIPexprGetChildren(quadexpr);
757  nchildren = SCIPexprGetNChildren(quadexpr);
758 
759  /* iterate in reverse order to ensure that quadratic terms are found before linear terms */
760  for( i = nchildren - 1; i >= 0; --i )
761  {
762  SCIP_EXPR* child;
763 
764  child = children[i];
765  if( SCIPisExprPower(scip, child) )
766  {
767  SCIP_EXPR* childarg;
768 
769  if( SCIPgetExponentExprPow(child) != 2.0 )
770  return SCIP_OKAY;
771 
772  childarg = SCIPexprGetChildren(child)[0];
773 
774  if( !SCIPhashmapExists(expr2idx, (void*) childarg) )
775  {
776  SCIP_CALL( SCIPhashmapInsertInt(expr2idx, (void*) childarg, *nexprs) );
777 
778  /* store the expression so we know it later */
779  assert(*nexprs < 2 * nchildren);
780  occurringexprs[*nexprs] = childarg;
781 
782  ++(*nexprs);
783  }
784  }
785  else if( SCIPisExprVar(scip, child) && SCIPvarIsBinary(SCIPgetVarExprVar(child)) )
786  {
787  if( !SCIPhashmapExists(expr2idx, (void*) child) )
788  {
789  SCIP_CALL( SCIPhashmapInsertInt(expr2idx, (void*) child, *nexprs) );
790 
791  /* store the expression so we know it later */
792  assert(*nexprs < 2 * nchildren);
793  occurringexprs[*nexprs] = child;
794 
795  ++(*nexprs);
796  }
797  }
798  else if( SCIPisExprProduct(scip, child) )
799  {
800  SCIP_EXPR* childarg1;
801  SCIP_EXPR* childarg2;
802 
803  if( SCIPexprGetNChildren(child) != 2 )
804  return SCIP_OKAY;
805 
806  childarg1 = SCIPexprGetChildren(child)[0];
807  childarg2 = SCIPexprGetChildren(child)[1];
808 
809  if( !SCIPhashmapExists(expr2idx, (void*) childarg1) )
810  {
811  SCIP_CALL( SCIPhashmapInsertInt(expr2idx, (void*) childarg1, *nexprs) );
812 
813  /* store the expression so we know it later */
814  assert(*nexprs < 2 * nchildren);
815  occurringexprs[*nexprs] = childarg1;
816 
817  ++(*nexprs);
818  }
819 
820  if( !SCIPhashmapExists(expr2idx, (void*) childarg2) )
821  {
822  SCIP_CALL( SCIPhashmapInsertInt(expr2idx, (void*) childarg2, *nexprs) );
823 
824  /* store the expression so we know it later */
825  assert(*nexprs < 2 * nchildren);
826  occurringexprs[*nexprs] = childarg2;
827 
828  ++(*nexprs);
829  }
830  }
831  else
832  {
833  /* if there is a linear term without corresponding quadratic term, it is not a SOC */
834  if( !SCIPhashmapExists(expr2idx, (void*) child) )
835  return SCIP_OKAY;
836  }
837  }
838 
839  *success = TRUE;
840 
841  return SCIP_OKAY;
842 }
843 
844 /* builds the constraint defining matrix and vector of a quadratic expression
845  *
846  * @pre `quadmatrix` and `linvector` need to be initialized with size `nexprs`^2 and `nexprs`, resp.
847  */
848 static
850  SCIP* scip, /**< SCIP data structure */
851  SCIP_EXPR* quadexpr, /**< the quadratic expression */
852  SCIP_HASHMAP* expr2idx, /**< hashmap mapping the occurring expressions to their index */
853  int nexprs, /**< number of occurring expressions */
854  SCIP_Real* quadmatrix, /**< pointer to store (the lower-left triangle of) the quadratic matrix */
855  SCIP_Real* linvector /**< pointer to store the linear vector */
856  )
857 {
858  SCIP_EXPR** children;
859  SCIP_Real* childcoefs;
860  int nchildren;
861  int i;
862 
863  assert(scip != NULL);
864  assert(quadexpr != NULL);
865  assert(expr2idx != NULL);
866  assert(quadmatrix != NULL);
867  assert(linvector != NULL);
868 
869  children = SCIPexprGetChildren(quadexpr);
870  nchildren = SCIPexprGetNChildren(quadexpr);
871  childcoefs = SCIPgetCoefsExprSum(quadexpr);
872 
873  /* iterate over children to build the constraint defining matrix and vector */
874  for( i = 0; i < nchildren; ++i )
875  {
876  int varpos;
877 
878  if( SCIPisExprPower(scip, children[i]) )
879  {
880  assert(SCIPgetExponentExprPow(children[i]) == 2.0);
881  assert(SCIPhashmapExists(expr2idx, (void*) SCIPexprGetChildren(children[i])[0]));
882 
883  varpos = SCIPhashmapGetImageInt(expr2idx, (void*) SCIPexprGetChildren(children[i])[0]);
884  assert(0 <= varpos && varpos < nexprs);
885 
886  quadmatrix[varpos * nexprs + varpos] = childcoefs[i];
887  }
888  else if( SCIPisExprVar(scip, children[i]) && SCIPvarIsBinary(SCIPgetVarExprVar(children[i])) )
889  {
890  assert(SCIPhashmapExists(expr2idx, (void*) children[i]));
891 
892  varpos = SCIPhashmapGetImageInt(expr2idx, (void*) children[i]);
893  assert(0 <= varpos && varpos < nexprs);
894 
895  quadmatrix[varpos * nexprs + varpos] = childcoefs[i];
896  }
897  else if( SCIPisExprProduct(scip, children[i]) )
898  {
899  int varpos2;
900 
901  assert(SCIPexprGetNChildren(children[i]) == 2);
902  assert(SCIPhashmapExists(expr2idx, (void*) SCIPexprGetChildren(children[i])[0]));
903  assert(SCIPhashmapExists(expr2idx, (void*) SCIPexprGetChildren(children[i])[1]));
904 
905  varpos = SCIPhashmapGetImageInt(expr2idx, (void*) SCIPexprGetChildren(children[i])[0]);
906  assert(0 <= varpos && varpos < nexprs);
907 
908  varpos2 = SCIPhashmapGetImageInt(expr2idx, (void*) SCIPexprGetChildren(children[i])[1]);
909  assert(0 <= varpos2 && varpos2 < nexprs);
910  assert(varpos != varpos2);
911 
912  /* Lapack uses only the lower left triangle of the symmetric matrix */
913  quadmatrix[MIN(varpos, varpos2) * nexprs + MAX(varpos, varpos2)] = childcoefs[i] / 2.0;
914  }
915  else
916  {
917  varpos = SCIPhashmapGetImageInt(expr2idx, (void*) children[i]);
918  assert(0 <= varpos && varpos < nexprs);
919 
920  linvector[varpos] = childcoefs[i];
921  }
922  }
923 }
924 
925 /** tries to fill the nlhdlrexprdata for a potential quadratic SOC expression
926  *
927  * We say "try" because the expression might still turn out not to be a SOC at this point.
928  */
929 static
931  SCIP* scip, /**< SCIP data structure */
932  SCIP_EXPR** occurringexprs, /**< array of all occurring expressions (nvars many) */
933  SCIP_Real* eigvecmatrix, /**< array containing the Eigenvectors */
934  SCIP_Real* eigvals, /**< array containing the Eigenvalues */
935  SCIP_Real* bp, /**< product of linear vector b * P (eigvecmatrix^t) */
936  int nvars, /**< number of variables */
937  int* termbegins, /**< pointer to store the termbegins */
938  SCIP_Real* transcoefs, /**< pointer to store the transcoefs */
939  int* transcoefsidx, /**< pointer to store the transcoefsidx */
940  SCIP_Real* offsets, /**< pointer to store the offsets */
941  SCIP_Real* lhsconstant, /**< pointer to store the lhsconstant */
942  int* nterms, /**< pointer to store the total number of terms */
943  SCIP_Bool* success /**< whether the expression is indeed a SOC */
944  )
945 {
946  SCIP_Real sqrteigval;
947  int nextterm = 0;
948  int nexttranscoef = 0;
949  int specialtermidx;
950  int i;
951  int j;
952 
953  assert(scip != NULL);
954  assert(occurringexprs != NULL);
955  assert(eigvecmatrix != NULL);
956  assert(eigvals != NULL);
957  assert(bp != NULL);
958  assert(termbegins != NULL);
959  assert(transcoefs != NULL);
960  assert(transcoefsidx != NULL);
961  assert(offsets != NULL);
962  assert(lhsconstant != NULL);
963  assert(success != NULL);
964 
965  *success = FALSE;
966  *nterms = 0;
967 
968  /* we have lhsconstant + x^t A x + b x <= 0 and A has a single negative eigenvalue; try to build soc;
969  * we now store all the v_i^T x + beta_i on the lhs, and compute the constant
970  */
971  specialtermidx = -1;
972  for( i = 0; i < nvars; ++i )
973  {
974  if( SCIPisZero(scip, eigvals[i]) )
975  continue;
976 
977  if( eigvals[i] < 0.0 )
978  {
979  assert(specialtermidx == -1); /* there should only be one negative eigenvalue */
980 
981  specialtermidx = i;
982 
983  *lhsconstant -= bp[i] * bp[i] / (4.0 * eigvals[i]);
984 
985  continue;
986  }
987 
988  assert(eigvals[i] > 0.0);
989  sqrteigval = SQRT(eigvals[i]);
990 
991  termbegins[nextterm] = nexttranscoef;
992  offsets[nextterm] = bp[i] / (2.0 * sqrteigval);
993  *lhsconstant -= bp[i] * bp[i] / (4.0 * eigvals[i]);
994 
995  /* set transcoefs */
996  for( j = 0; j < nvars; ++j )
997  {
998  if( !SCIPisZero(scip, eigvecmatrix[i * nvars + j]) )
999  {
1000  transcoefs[nexttranscoef] = sqrteigval * eigvecmatrix[i * nvars + j];
1001  transcoefsidx[nexttranscoef] = j;
1002 
1003  ++nexttranscoef;
1004  }
1005  }
1006  ++nextterm;
1007  }
1008  assert(specialtermidx > -1);
1009 
1010  /* process constant; if constant is negative -> no soc */
1011  if( SCIPisNegative(scip, *lhsconstant) )
1012  return SCIP_OKAY;
1013 
1014  /* we need lhsconstant to be >= 0 */
1015  if( *lhsconstant < 0.0 )
1016  *lhsconstant = 0.0;
1017 
1018  /* store constant term */
1019  if( *lhsconstant > 0.0 )
1020  {
1021  termbegins[nextterm] = nexttranscoef;
1022  offsets[nextterm] = SQRT( *lhsconstant );
1023  ++nextterm;
1024  }
1025 
1026  /* now process rhs */
1027  {
1028  SCIP_Real rhstermlb;
1029  SCIP_Real rhstermub;
1030  SCIP_Real signfactor;
1031 
1032  assert(-eigvals[specialtermidx] > 0.0);
1033  sqrteigval = SQRT(-eigvals[specialtermidx]);
1034 
1035  termbegins[nextterm] = nexttranscoef;
1036  offsets[nextterm] = -bp[specialtermidx] / (2.0 * sqrteigval);
1037 
1038  /* the expression can only be an soc if the resulting rhs term does not change sign;
1039  * the rhs term is a linear combination of variables, so estimate its bounds
1040  */
1041  rhstermlb = offsets[nextterm];
1042  for( j = 0; j < nvars; ++j )
1043  {
1044  SCIP_INTERVAL activity;
1045  SCIP_Real aux;
1046 
1047  if( SCIPisZero(scip, eigvecmatrix[specialtermidx * nvars + j]) )
1048  continue;
1049 
1050  SCIP_CALL( SCIPevalExprActivity(scip, occurringexprs[j]) );
1051  activity = SCIPexprGetActivity(occurringexprs[j]);
1052 
1053  if( eigvecmatrix[specialtermidx * nvars + j] > 0.0 )
1054  {
1055  aux = activity.inf;
1056  assert(!SCIPisInfinity(scip, aux));
1057  }
1058  else
1059  {
1060  aux = activity.sup;
1061  assert(!SCIPisInfinity(scip, -aux));
1062  }
1063 
1064  if( SCIPisInfinity(scip, aux) || SCIPisInfinity(scip, -aux) )
1065  {
1066  rhstermlb = -SCIPinfinity(scip);
1067  break;
1068  }
1069  else
1070  rhstermlb += sqrteigval * eigvecmatrix[specialtermidx * nvars + j] * aux;
1071  }
1072 
1073  rhstermub = offsets[nextterm];
1074  for( j = 0; j < nvars; ++j )
1075  {
1076  SCIP_INTERVAL activity;
1077  SCIP_Real aux;
1078 
1079  if( SCIPisZero(scip, eigvecmatrix[specialtermidx * nvars + j]) )
1080  continue;
1081 
1082  SCIP_CALL( SCIPevalExprActivity(scip, occurringexprs[j]) );
1083  activity = SCIPexprGetActivity(occurringexprs[j]);
1084 
1085  if( eigvecmatrix[specialtermidx * nvars + j] > 0.0 )
1086  {
1087  aux = activity.sup;
1088  assert(!SCIPisInfinity(scip, -aux));
1089  }
1090  else
1091  {
1092  aux = activity.inf;
1093  assert(!SCIPisInfinity(scip, aux));
1094  }
1095 
1096  if( SCIPisInfinity(scip, aux) || SCIPisInfinity(scip, -aux) )
1097  {
1098  rhstermub = SCIPinfinity(scip);
1099  break;
1100  }
1101  else
1102  rhstermub += sqrteigval * eigvecmatrix[specialtermidx * nvars + j] * aux;
1103  }
1104 
1105  /* since we are just interested in obtaining an interval that contains the real bounds
1106  * and is tight enough so that we can identify that the rhsvar does not change sign,
1107  * we swap the bounds in case of numerical troubles
1108  */
1109  if( rhstermub < rhstermlb )
1110  {
1111  assert(SCIPisEQ(scip, rhstermub, rhstermlb));
1112  SCIPswapReals(&rhstermub, &rhstermlb);
1113  }
1114 
1115  /* if rhs changes sign -> not a SOC */
1116  if( SCIPisLT(scip, rhstermlb, 0.0) && SCIPisGT(scip, rhstermub, 0.0) )
1117  return SCIP_OKAY;
1118 
1119  signfactor = SCIPisLE(scip, rhstermub, 0.0) ? -1.0 : 1.0;
1120 
1121  offsets[nextterm] *= signfactor;
1122 
1123  /* set transcoefs for rhs term */
1124  for( j = 0; j < nvars; ++j )
1125  {
1126  if( SCIPisZero(scip, eigvecmatrix[specialtermidx * nvars + j]) )
1127  continue;
1128 
1129  transcoefs[nexttranscoef] = signfactor * sqrteigval * eigvecmatrix[specialtermidx * nvars + j];
1130  transcoefsidx[nexttranscoef] = j;
1131 
1132  ++nexttranscoef;
1133  }
1134 
1135  /* if rhs is a constant this method shouldn't have been called */
1136  assert(nexttranscoef > termbegins[nextterm]);
1137 
1138  /* finish processing term */
1139  ++nextterm;
1140  }
1141 
1142  *nterms = nextterm;
1143 
1144  /* sentinel value */
1145  termbegins[nextterm] = nexttranscoef;
1146 
1147  *success = TRUE;
1148 
1149  return SCIP_OKAY;
1150 }
1151 
1152 /** detects if expr &le; auxvar is of the form SQRT(sum_i coef_i (expr_i + shift_i)^2 + const) &le; auxvar
1153  *
1154  * @note if a user inputs the above expression with `const` = -epsilon, then `const` is going to be set to 0.
1155  */
1156 static
1158  SCIP* scip, /**< SCIP data structure */
1159  SCIP_EXPR* expr, /**< expression */
1160  SCIP_NLHDLREXPRDATA** nlhdlrexprdata, /**< pointer to store nonlinear handler expression data */
1161  SCIP_Bool* success /**< pointer to store whether SOC structure has been detected */
1162  )
1163 {
1164  SCIP_EXPR** children;
1165  SCIP_EXPR* child;
1166  SCIP_EXPR** vars;
1167  SCIP_HASHMAP* expr2idx;
1168  SCIP_HASHSET* linexprs;
1169  SCIP_Real* childcoefs;
1170  SCIP_Real* offsets;
1171  SCIP_Real* transcoefs;
1172  SCIP_Real constant;
1173  SCIP_Bool issoc;
1174  int* transcoefsidx;
1175  int* termbegins;
1176  int nchildren;
1177  int nterms;
1178  int nvars;
1179  int nextentry;
1180  int i;
1181 
1182  assert(expr != NULL);
1183  assert(success != NULL);
1184 
1185  *success = FALSE;
1186  issoc = TRUE;
1187 
1188  /* relation is not "<=" -> skip */
1189  if( SCIPgetExprNLocksPosNonlinear(expr) == 0 )
1190  return SCIP_OKAY;
1191 
1192  assert(SCIPexprGetNChildren(expr) > 0);
1193 
1194  child = SCIPexprGetChildren(expr)[0];
1195  assert(child != NULL);
1196 
1197  /* check whether expression is a SQRT and has a sum as child with at least 2 children and a non-negative constant */
1198  if( ! SCIPisExprPower(scip, expr)
1199  || SCIPgetExponentExprPow(expr) != 0.5
1200  || !SCIPisExprSum(scip, child)
1201  || SCIPexprGetNChildren(child) < 2
1202  || SCIPgetConstantExprSum(child) < 0.0)
1203  {
1204  return SCIP_OKAY;
1205  }
1206 
1207  /* assert(SCIPvarGetLbLocal(auxvar) >= 0.0); */
1208 
1209  /* get children of the sum */
1210  children = SCIPexprGetChildren(child);
1211  nchildren = SCIPexprGetNChildren(child);
1212  childcoefs = SCIPgetCoefsExprSum(child);
1213 
1214  /* TODO: should we initialize the hashmap with size SCIPgetNVars() so that it never has to be resized? */
1215  SCIP_CALL( SCIPhashmapCreate(&expr2idx, SCIPblkmem(scip), nchildren) );
1216  SCIP_CALL( SCIPhashsetCreate(&linexprs, SCIPblkmem(scip), nchildren) );
1217 
1218  /* we create coefs array here already, since we have to fill it in first loop in case of success
1219  * +1 for auxvar
1220  */
1221  SCIP_CALL( SCIPallocBufferArray(scip, &transcoefs, nchildren+1) );
1222 
1223  nterms = 0;
1224 
1225  /* check if all children are squares or linear terms with matching square term:
1226  * if the i-th child is (pow, expr, 2) we store the association <|expr -> i|> in expr2idx and if expr was in
1227  * linexprs, we remove it from there.
1228  * if the i-th child is expr' (different from (pow, expr, 2)) and expr' is not a key of expr2idx, we add it
1229  * to linexprs.
1230  * if at the end there is any expr in linexpr -> we do not have a separable quadratic function.
1231  */
1232  for( i = 0; i < nchildren; ++i )
1233  {
1234  /* handle quadratic expressions children */
1235  if( SCIPisExprPower(scip, children[i]) && SCIPgetExponentExprPow(children[i]) == 2.0 )
1236  {
1237  SCIP_EXPR* squarearg = SCIPexprGetChildren(children[i])[0];
1238 
1239  if( !SCIPhashmapExists(expr2idx, (void*) squarearg) )
1240  {
1241  SCIP_CALL( SCIPhashmapInsertInt(expr2idx, (void *) squarearg, nterms) );
1242  }
1243 
1244  if( childcoefs[i] < 0.0 )
1245  {
1246  issoc = FALSE;
1247  break;
1248  }
1249  transcoefs[nterms] = SQRT(childcoefs[i]);
1250 
1251  SCIP_CALL( SCIPhashsetRemove(linexprs, (void*) squarearg) );
1252  ++nterms;
1253  }
1254  /* handle binary variable children */
1255  else if( SCIPisExprVar(scip, children[i]) && SCIPvarIsBinary(SCIPgetVarExprVar(children[i])) )
1256  {
1257  assert(!SCIPhashmapExists(expr2idx, (void*) children[i]));
1258  assert(!SCIPhashsetExists(linexprs, (void*) children[i]));
1259 
1260  SCIP_CALL( SCIPhashmapInsertInt(expr2idx, (void *) children[i], nterms) );
1261 
1262  if( childcoefs[i] < 0.0 )
1263  {
1264  issoc = FALSE;
1265  break;
1266  }
1267  transcoefs[nterms] = SQRT(childcoefs[i]);
1268 
1269  ++nterms;
1270  }
1271  else
1272  {
1273  if( !SCIPhashmapExists(expr2idx, (void*) children[i]) )
1274  {
1275  SCIP_CALL( SCIPhashsetInsert(linexprs, SCIPblkmem(scip), (void*) children[i]) );
1276  }
1277  }
1278  }
1279 
1280  /* there are linear terms without corresponding quadratic terms or it was detected not to be soc */
1281  if( SCIPhashsetGetNElements(linexprs) > 0 || ! issoc )
1282  {
1283  SCIPfreeBufferArray(scip, &transcoefs);
1284  SCIPhashsetFree(&linexprs, SCIPblkmem(scip) );
1285  SCIPhashmapFree(&expr2idx);
1286  return SCIP_OKAY;
1287  }
1288 
1289  /* add one to terms counter for auxvar */
1290  ++nterms;
1291 
1292  constant = SCIPgetConstantExprSum(child);
1293 
1294  /* compute constant of possible soc expression to check its sign */
1295  for( i = 0; i < nchildren; ++i )
1296  {
1297  if( ! SCIPisExprPower(scip, children[i]) || SCIPgetExponentExprPow(children[i]) != 2.0 )
1298  {
1299  int auxvarpos;
1300 
1301  assert(SCIPhashmapExists(expr2idx, (void*) children[i]) );
1302  auxvarpos = SCIPhashmapGetImageInt(expr2idx, (void*) children[i]);
1303 
1304  constant -= SQR(0.5 * childcoefs[i] / transcoefs[auxvarpos]);
1305  }
1306  }
1307 
1308  /* if the constant is negative -> no SOC */
1309  if( SCIPisNegative(scip, constant) )
1310  {
1311  SCIPfreeBufferArray(scip, &transcoefs);
1312  SCIPhashsetFree(&linexprs, SCIPblkmem(scip) );
1313  SCIPhashmapFree(&expr2idx);
1314  return SCIP_OKAY;
1315  }
1316  else if( SCIPisZero(scip, constant) )
1317  constant = 0.0;
1318  assert(constant >= 0.0);
1319 
1320  /* at this point, we have found an SOC structure */
1321  *success = TRUE;
1322 
1323  nvars = nterms;
1324 
1325  /* add one to terms counter for constant term */
1326  if( constant > 0.0 )
1327  ++nterms;
1328 
1329  /* allocate temporary memory to collect data */
1330  SCIP_CALL( SCIPallocBufferArray(scip, &vars, nvars) );
1331  SCIP_CALL( SCIPallocBufferArray(scip, &offsets, nterms) );
1332  SCIP_CALL( SCIPallocBufferArray(scip, &transcoefsidx, nvars) );
1333  SCIP_CALL( SCIPallocBufferArray(scip, &termbegins, nterms + 1) );
1334 
1335  /* fill in data for non constant terms of lhs; initialize their offsets */
1336  for( i = 0; i < nvars - 1; ++i )
1337  {
1338  transcoefsidx[i] = i;
1339  termbegins[i] = i;
1340  offsets[i] = 0.0;
1341  }
1342 
1343  /* add constant term and rhs */
1344  vars[nvars - 1] = expr;
1345  if( constant > 0.0 )
1346  {
1347  /* constant term */
1348  termbegins[nterms - 2] = nterms - 2;
1349  offsets[nterms - 2] = SQRT(constant);
1350 
1351  /* rhs */
1352  termbegins[nterms - 1] = nterms - 2;
1353  offsets[nterms - 1] = 0.0;
1354  transcoefsidx[nterms - 2] = nvars - 1;
1355  transcoefs[nterms - 2] = 1.0;
1356 
1357  /* sentinel value */
1358  termbegins[nterms] = nterms - 1;
1359  }
1360  else
1361  {
1362  /* rhs */
1363  termbegins[nterms - 1] = nterms - 1;
1364  offsets[nterms - 1] = 0.0;
1365  transcoefsidx[nterms - 1] = nvars - 1;
1366  transcoefs[nterms - 1] = 1.0;
1367 
1368  /* sentinel value */
1369  termbegins[nterms] = nterms;
1370  }
1371 
1372  /* request required auxiliary variables and fill vars and offsets array */
1373  nextentry = 0;
1374  for( i = 0; i < nchildren; ++i )
1375  {
1376  if( SCIPisExprPower(scip, children[i]) && SCIPgetExponentExprPow(children[i]) == 2.0 )
1377  {
1378  SCIP_EXPR* squarearg;
1379 
1380  squarearg = SCIPexprGetChildren(children[i])[0];
1381  assert(SCIPhashmapGetImageInt(expr2idx, (void*) squarearg) == nextentry);
1382 
1384 
1385  vars[nextentry] = squarearg;
1386  ++nextentry;
1387  }
1388  else if( SCIPisExprVar(scip, children[i]) && SCIPvarIsBinary(SCIPgetVarExprVar(children[i])) )
1389  {
1390  /* handle binary variable children: no need to request auxvar */
1391  assert(SCIPhashmapGetImageInt(expr2idx, (void*) children[i]) == nextentry);
1392  vars[nextentry] = children[i];
1393  ++nextentry;
1394  }
1395  else
1396  {
1397  int auxvarpos;
1398 
1399  assert(SCIPhashmapExists(expr2idx, (void*) children[i]));
1400  auxvarpos = SCIPhashmapGetImageInt(expr2idx, (void*) children[i]);
1401 
1402  SCIP_CALL( SCIPregisterExprUsageNonlinear(scip, children[i], TRUE, FALSE, FALSE, FALSE) );
1403 
1404  offsets[auxvarpos] = 0.5 * childcoefs[i] / transcoefs[auxvarpos];
1405  }
1406  }
1407  assert(nextentry == nvars - 1);
1408 
1409 #ifdef SCIP_DEBUG
1410  SCIPdebugMsg(scip, "found SOC structure for expression %p\n", (void*)expr);
1411  SCIPprintExpr(scip, expr, NULL);
1412  SCIPinfoMessage(scip, NULL, " <= auxvar\n");
1413 #endif
1414 
1415  /* create and store nonlinear handler expression data */
1416  SCIP_CALL( createNlhdlrExprData(scip, vars, offsets, transcoefs, transcoefsidx, termbegins,
1417  nvars, nterms, nlhdlrexprdata) );
1418  assert(*nlhdlrexprdata != NULL);
1419 
1420  /* free memory */
1421  SCIPhashsetFree(&linexprs, SCIPblkmem(scip) );
1422  SCIPhashmapFree(&expr2idx);
1423  SCIPfreeBufferArray(scip, &termbegins);
1424  SCIPfreeBufferArray(scip, &transcoefsidx);
1425  SCIPfreeBufferArray(scip, &offsets);
1426  SCIPfreeBufferArray(scip, &vars);
1427  SCIPfreeBufferArray(scip, &transcoefs);
1428 
1429  return SCIP_OKAY;
1430 }
1431 
1432 /** helper method to detect c + sum_i coef_i expr_i^2 - coef_k expr_k^2 &le; 0
1433  * and c + sum_i coef_i expr_i^2 - coef_k expr_k expr_l &le; 0
1434  *
1435  * binary linear variables are interpreted as quadratic terms
1436  *
1437  * @todo: extend this function to detect c + sum_i coef_i (expr_i + const_i)^2 - ...
1438  * this would probably share a lot of code with detectSocNorm
1439  */
1440 static
1442  SCIP* scip, /**< SCIP data structure */
1443  SCIP_EXPR* expr, /**< expression */
1444  SCIP_Real conslhs, /**< lhs of the constraint that the expression defines (or SCIP_INVALID) */
1445  SCIP_Real consrhs, /**< rhs of the constraint that the expression defines (or SCIP_INVALID) */
1446  SCIP_NLHDLREXPRDATA** nlhdlrexprdata, /**< pointer to store nonlinear handler expression data */
1447  SCIP_Bool* enforcebelow, /**< pointer to store whether we enforce <= (TRUE) or >= (FALSE); only valid when success is TRUE */
1448  SCIP_Bool* success /**< pointer to store whether SOC structure has been detected */
1449  )
1450 {
1451  SCIP_EXPR** children;
1452  SCIP_EXPR** vars = NULL;
1453  SCIP_Real* childcoefs;
1454  SCIP_Real* offsets = NULL;
1455  SCIP_Real* transcoefs = NULL;
1456  int* transcoefsidx = NULL;
1457  int* termbegins = NULL;
1458  SCIP_Real constant;
1459  SCIP_Real lhsconstant;
1460  SCIP_Real lhs;
1461  SCIP_Real rhs;
1462  SCIP_Real rhssign;
1463  SCIP_INTERVAL expractivity;
1464  int ntranscoefs;
1465  int nposquadterms;
1466  int nnegquadterms;
1467  int nposbilinterms;
1468  int nnegbilinterms;
1469  int rhsidx;
1470  int lhsidx;
1471  int specialtermidx;
1472  int nchildren;
1473  int nnzinterms;
1474  int nterms;
1475  int nvars;
1476  int nextentry;
1477  int i;
1478  SCIP_Bool ishyperbolic;
1479 
1480  assert(expr != NULL);
1481  assert(success != NULL);
1482 
1483  *success = FALSE;
1484 
1485  /* check whether expression is a sum with at least 2 children */
1486  if( ! SCIPisExprSum(scip, expr) || SCIPexprGetNChildren(expr) < 2 )
1487  return SCIP_OKAY;
1488 
1489  /* get children of the sum */
1490  children = SCIPexprGetChildren(expr);
1491  nchildren = SCIPexprGetNChildren(expr);
1492  constant = SCIPgetConstantExprSum(expr);
1493 
1494  /* we duplicate the child coefficients since we have to manipulate them */
1495  SCIP_CALL( SCIPduplicateBufferArray(scip, &childcoefs, SCIPgetCoefsExprSum(expr), nchildren) ); /*lint !e666*/
1496 
1497  /* initialize data */
1498  lhsidx = -1;
1499  rhsidx = -1;
1500  nposquadterms = 0;
1501  nnegquadterms = 0;
1502  nposbilinterms = 0;
1503  nnegbilinterms = 0;
1504 
1505  /* check if all children are quadratic or binary linear and count number of positive and negative terms */
1506  for( i = 0; i < nchildren; ++i )
1507  {
1508  if( SCIPisExprPower(scip, children[i]) && SCIPgetExponentExprPow(children[i]) == 2.0 )
1509  {
1510  if( childcoefs[i] > 0.0 )
1511  {
1512  ++nposquadterms;
1513  lhsidx = i;
1514  }
1515  else
1516  {
1517  ++nnegquadterms;
1518  rhsidx = i;
1519  }
1520  }
1521  else if( SCIPisExprVar(scip, children[i]) && SCIPvarIsBinary(SCIPgetVarExprVar(children[i])) )
1522  {
1523  if( childcoefs[i] > 0.0 )
1524  {
1525  ++nposquadterms;
1526  lhsidx = i;
1527  }
1528  else
1529  {
1530  ++nnegquadterms;
1531  rhsidx = i;
1532  }
1533  }
1534  else if( SCIPisExprProduct(scip, children[i]) && SCIPexprGetNChildren(children[i]) == 2 )
1535  {
1536  if( childcoefs[i] > 0.0 )
1537  {
1538  ++nposbilinterms;
1539  lhsidx = i;
1540  }
1541  else
1542  {
1543  ++nnegbilinterms;
1544  rhsidx = i;
1545  }
1546  }
1547  else
1548  {
1549  goto CLEANUP;
1550  }
1551 
1552  /* more than one positive eigenvalue and more than one negative eigenvalue -> can't be convex */
1553  if( nposquadterms > 1 && nnegquadterms > 1 )
1554  goto CLEANUP;
1555 
1556  /* more than one bilinear term -> can't be handled by this method */
1557  if( nposbilinterms + nnegbilinterms > 1 )
1558  goto CLEANUP;
1559 
1560  /* one positive bilinear term and also at least one positive quadratic term -> not a simple SOC */
1561  if( nposbilinterms > 0 && nposquadterms > 0 )
1562  goto CLEANUP;
1563 
1564  /* one negative bilinear term and also at least one negative quadratic term -> not a simple SOC */
1565  if( nnegbilinterms > 0 && nnegquadterms > 0 )
1566  goto CLEANUP;
1567  }
1568 
1569  if( nposquadterms == nchildren || nnegquadterms == nchildren )
1570  goto CLEANUP;
1571 
1572  assert(nposquadterms <= 1 || nnegquadterms <= 1);
1573  assert(nposbilinterms + nnegbilinterms <= 1);
1574  assert(nposbilinterms == 0 || nposquadterms == 0);
1575  assert(nnegbilinterms == 0 || nnegquadterms == 0);
1576 
1577  /* if a bilinear term is involved, it is a hyperbolic expression */
1578  ishyperbolic = (nposbilinterms + nnegbilinterms > 0);
1579 
1580  if( conslhs == SCIP_INVALID || consrhs == SCIP_INVALID ) /*lint !e777*/
1581  {
1582  SCIP_CALL( SCIPevalExprActivity(scip, expr) );
1583  expractivity = SCIPexprGetActivity(expr);
1584 
1585  lhs = (conslhs == SCIP_INVALID ? expractivity.inf : conslhs); /*lint !e777*/
1586  rhs = (consrhs == SCIP_INVALID ? expractivity.sup : consrhs); /*lint !e777*/
1587  }
1588  else
1589  {
1590  lhs = conslhs;
1591  rhs = consrhs;
1592  }
1593 
1594  /* detect case and store lhs/rhs information */
1595  if( (ishyperbolic && nnegbilinterms > 0) || (!ishyperbolic && nnegquadterms < 2) )
1596  {
1597  /* we have -x*y + z^2 ... -> we want to write z^2 ... <= x*y;
1598  * or we have -x^2 + y^2 ... -> we want to write y^2 ... <= x^2;
1599  * in any case, we need a finite rhs
1600  */
1601  assert(nnegbilinterms == 1 || nnegquadterms == 1);
1602  assert(rhsidx != -1);
1603 
1604  /* if rhs is infinity, it can't be soc
1605  * TODO: if it can't be soc, then we should enforce the caller so that we do not try the more complex quadratic
1606  * method
1607  */
1608  if( SCIPisInfinity(scip, rhs) )
1609  goto CLEANUP;
1610 
1611  specialtermidx = rhsidx;
1612  lhsconstant = constant - rhs;
1613  *enforcebelow = TRUE; /* enforce expr <= rhs */
1614  }
1615  else
1616  {
1617  assert(lhsidx != -1);
1618 
1619  /* if lhs is infinity, it can't be soc */
1620  if( SCIPisInfinity(scip, -lhs) )
1621  goto CLEANUP;
1622 
1623  specialtermidx = lhsidx;
1624  lhsconstant = lhs - constant;
1625 
1626  /* negate all coefficients */
1627  for( i = 0; i < nchildren; ++i )
1628  childcoefs[i] = -childcoefs[i];
1629  *enforcebelow = FALSE; /* enforce lhs <= expr */
1630  }
1631  assert(childcoefs[specialtermidx] != 0.0);
1632 
1633  if( ishyperbolic )
1634  {
1635  SCIP_INTERVAL yactivity;
1636  SCIP_INTERVAL zactivity;
1637 
1638  assert(SCIPexprGetNChildren(children[specialtermidx]) == 2);
1639 
1640  SCIP_CALL( SCIPevalExprActivity(scip, SCIPexprGetChildren(children[specialtermidx])[0]) );
1641  yactivity = SCIPexprGetActivity(SCIPexprGetChildren(children[specialtermidx])[0]);
1642 
1643  SCIP_CALL( SCIPevalExprActivity(scip, SCIPexprGetChildren(children[specialtermidx])[1]) );
1644  zactivity = SCIPexprGetActivity(SCIPexprGetChildren(children[specialtermidx])[1]);
1645 
1646  if( SCIPisNegative(scip, yactivity.inf + zactivity.inf) )
1647  {
1648  /* the sum of the expressions in the bilinear term changes sign -> no SOC */
1649  if( SCIPisPositive(scip, yactivity.sup + zactivity.sup) )
1650  goto CLEANUP;
1651 
1652  rhssign = -1.0;
1653  }
1654  else
1655  rhssign = 1.0;
1656 
1657  lhsconstant *= 4.0 / -childcoefs[specialtermidx];
1658  }
1659  else if( SCIPisExprVar(scip, children[specialtermidx]) )
1660  {
1661  /* children[specialtermidx] can be a variable, in which case we treat it as if it is squared */
1662  rhssign = 1.0;
1663  }
1664  else
1665  {
1666  SCIP_INTERVAL rhsactivity;
1667 
1668  assert(SCIPexprGetNChildren(children[specialtermidx]) == 1);
1669  SCIP_CALL( SCIPevalExprActivity(scip, SCIPexprGetChildren(children[specialtermidx])[0]) );
1670  rhsactivity = SCIPexprGetActivity(SCIPexprGetChildren(children[specialtermidx])[0]);
1671 
1672  if( rhsactivity.inf < 0.0 )
1673  {
1674  /* rhs variable changes sign -> no SOC */
1675  if( rhsactivity.sup > 0.0 )
1676  goto CLEANUP;
1677 
1678  rhssign = -1.0;
1679  }
1680  else
1681  rhssign = 1.0;
1682  }
1683 
1684  if( SCIPisNegative(scip, lhsconstant) )
1685  goto CLEANUP;
1686 
1687  if( SCIPisZero(scip, lhsconstant) )
1688  lhsconstant = 0.0;
1689 
1690  /*
1691  * we have found an SOC-representable expression. Now build the nlhdlrexprdata
1692  *
1693  * in the non-hyperbolic case, c + sum_i coef_i expr_i^2 - coef_k expr_k^2 <= 0 is transformed to
1694  * SQRT( c + sum_i coef_i expr_i^2 ) <= coef_k expr_k
1695  * so there are nchildren many vars, nchildren (+ 1 if c != 0) many terms, nchildren many coefficients in the vs
1696  * in SOC representation
1697  *
1698  * in the hyperbolic case, c + sum_i coef_i expr_i^2 - coef_k expr_k expr_l <= 0 is transformed to
1699  * SQRT( 4(c + sum_i coef_i expr_i^2) + (expr_k - expr_l)^2 ) <= expr_k + expr_l
1700  * so there are nchildren + 1many vars, nchildren + 1(+ 1 if c != 0) many terms, nchildren + 3 many coefficients in
1701  * the vs in SOC representation
1702  */
1703 
1704  ntranscoefs = ishyperbolic ? nchildren + 3 : nchildren;
1705  nvars = ishyperbolic ? nchildren + 1 : nchildren;
1706  nterms = nvars;
1707 
1708  /* constant term */
1709  if( lhsconstant > 0.0 )
1710  nterms++;
1711 
1712  /* SOC was detected, allocate temporary memory for data to collect */
1713  SCIP_CALL( SCIPallocBufferArray(scip, &vars, nvars) );
1714  SCIP_CALL( SCIPallocBufferArray(scip, &offsets, nterms) );
1715  SCIP_CALL( SCIPallocBufferArray(scip, &transcoefs, ntranscoefs) );
1716  SCIP_CALL( SCIPallocBufferArray(scip, &transcoefsidx, ntranscoefs) );
1717  SCIP_CALL( SCIPallocBufferArray(scip, &termbegins, nterms + 1) );
1718 
1719  *success = TRUE;
1720  nextentry = 0;
1721 
1722  /* collect all the v_i and beta_i */
1723  nnzinterms = 0;
1724  for( i = 0; i < nchildren; ++i )
1725  {
1726  /* variable and coef for rhs have to be set to the last entry */
1727  if( i == specialtermidx )
1728  continue;
1729 
1730  /* extract (unique) variable appearing in term */
1731  if( SCIPisExprVar(scip, children[i]) )
1732  {
1733  vars[nextentry] = children[i];
1734 
1735  assert(SCIPvarIsBinary(SCIPgetVarExprVar(vars[nextentry])));
1736  }
1737  else
1738  {
1739  assert(SCIPisExprPower(scip, children[i]));
1740 
1741  /* notify that we will require auxiliary variable */
1743  vars[nextentry] = SCIPexprGetChildren(children[i])[0];
1744  }
1745  assert(vars[nextentry] != NULL);
1746 
1747  /* store v_i and beta_i */
1748  termbegins[nextentry] = nnzinterms;
1749  offsets[nextentry] = 0.0;
1750 
1751  transcoefsidx[nnzinterms] = nextentry;
1752  if( ishyperbolic )
1753  {
1754  /* we eliminate the coefficient of the bilinear term to arrive at standard form */
1755  assert(4.0 * childcoefs[i] / -childcoefs[specialtermidx] > 0.0);
1756  transcoefs[nnzinterms] = SQRT(4.0 * childcoefs[i] / -childcoefs[specialtermidx]);
1757  }
1758  else
1759  {
1760  assert(childcoefs[i] > 0.0);
1761  transcoefs[nnzinterms] = SQRT(childcoefs[i]);
1762  }
1763 
1764  /* finish adding nonzeros */
1765  ++nnzinterms;
1766 
1767  /* finish processing term */
1768  ++nextentry;
1769  }
1770  assert(nextentry == nchildren - 1);
1771 
1772  /* store term for constant (v_i = 0) */
1773  if( lhsconstant > 0.0 )
1774  {
1775  termbegins[nextentry] = nnzinterms;
1776  offsets[nextentry] = SQRT(lhsconstant);
1777 
1778  /* finish processing term; this term has 0 nonzero thus we do not increase nnzinterms */
1779  ++nextentry;
1780  }
1781 
1782  if( !ishyperbolic )
1783  {
1784  /* store rhs term */
1785  if( SCIPisExprVar(scip, children[specialtermidx]) )
1786  {
1787  /* this should be the "children[specialtermidx] can be a variable, in which case we treat it as if it is squared" case */
1788  SCIP_CALL( SCIPregisterExprUsageNonlinear(scip, children[specialtermidx], TRUE, FALSE, FALSE, FALSE) );
1789  vars[nvars - 1] = children[specialtermidx];
1790  }
1791  else
1792  {
1793  assert(SCIPisExprPower(scip, children[specialtermidx]));
1794  assert(SCIPexprGetChildren(children[specialtermidx]) != NULL);
1795  SCIP_CALL( SCIPregisterExprUsageNonlinear(scip, SCIPexprGetChildren(children[specialtermidx])[0], TRUE, FALSE, FALSE, FALSE) );
1796  vars[nvars - 1] = SCIPexprGetChildren(children[specialtermidx])[0];
1797  }
1798 
1799  assert(childcoefs[specialtermidx] < 0.0);
1800 
1801  termbegins[nextentry] = nnzinterms;
1802  offsets[nextentry] = 0.0;
1803  transcoefs[nnzinterms] = rhssign * SQRT(-childcoefs[specialtermidx]);
1804  transcoefsidx[nnzinterms] = nvars - 1;
1805 
1806  /* finish adding nonzeros */
1807  ++nnzinterms;
1808 
1809  /* finish processing term */
1810  ++nextentry;
1811  }
1812  else
1813  {
1814  /* store last lhs term and rhs term coming from the bilinear term */
1815  SCIP_CALL( SCIPregisterExprUsageNonlinear(scip, SCIPexprGetChildren(children[specialtermidx])[0], TRUE, FALSE, FALSE, FALSE) );
1816  vars[nvars - 2] = SCIPexprGetChildren(children[specialtermidx])[0];
1817 
1818  SCIP_CALL( SCIPregisterExprUsageNonlinear(scip, SCIPexprGetChildren(children[specialtermidx])[1], TRUE, FALSE, FALSE, FALSE) );
1819  vars[nvars - 1] = SCIPexprGetChildren(children[specialtermidx])[1];
1820 
1821  /* at this point, vars[nvars - 2] = expr_k and vars[nvars - 1] = expr_l;
1822  * on the lhs we have the term (expr_k - expr_l)^2
1823  */
1824  termbegins[nextentry] = nnzinterms;
1825  offsets[nextentry] = 0.0;
1826 
1827  /* expr_k */
1828  transcoefsidx[nnzinterms] = nvars - 2;
1829  transcoefs[nnzinterms] = 1.0;
1830  ++nnzinterms;
1831 
1832  /* - expr_l */
1833  transcoefsidx[nnzinterms] = nvars - 1;
1834  transcoefs[nnzinterms] = -1.0;
1835  ++nnzinterms;
1836 
1837  /* finish processing term */
1838  ++nextentry;
1839 
1840  /* on rhs we have +/-(expr_k + expr_l) */
1841  termbegins[nextentry] = nnzinterms;
1842  offsets[nextentry] = 0.0;
1843 
1844  /* rhssing * expr_k */
1845  transcoefsidx[nnzinterms] = nvars - 2;
1846  transcoefs[nnzinterms] = rhssign;
1847  ++nnzinterms;
1848 
1849  /* rhssing * expr_l */
1850  transcoefsidx[nnzinterms] = nvars - 1;
1851  transcoefs[nnzinterms] = rhssign;
1852  ++nnzinterms;
1853 
1854  /* finish processing term */
1855  ++nextentry;
1856  }
1857  assert(nextentry == nterms);
1858  assert(nnzinterms == ntranscoefs);
1859 
1860  /* sentinel value */
1861  termbegins[nextentry] = nnzinterms;
1862 
1863 #ifdef SCIP_DEBUG
1864  SCIPdebugMsg(scip, "found SOC structure for expression %p\n%f <= ", (void*)expr, lhs);
1865  SCIPprintExpr(scip, expr, NULL);
1866  SCIPinfoMessage(scip, NULL, "<= %f\n", rhs);
1867 #endif
1868 
1869  /* create and store nonlinear handler expression data */
1870  SCIP_CALL( createNlhdlrExprData(scip, vars, offsets, transcoefs, transcoefsidx, termbegins, nvars, nterms,
1871  nlhdlrexprdata) );
1872  assert(*nlhdlrexprdata != NULL);
1873 
1874 CLEANUP:
1875  SCIPfreeBufferArrayNull(scip, &termbegins);
1876  SCIPfreeBufferArrayNull(scip, &transcoefsidx);
1877  SCIPfreeBufferArrayNull(scip, &transcoefs);
1878  SCIPfreeBufferArrayNull(scip, &offsets);
1879  SCIPfreeBufferArrayNull(scip, &vars);
1880  SCIPfreeBufferArrayNull(scip, &childcoefs);
1881 
1882  return SCIP_OKAY;
1883 }
1884 
1885 /** detects complex quadratic expressions that can be represented as SOC constraints
1886  *
1887  * These are quadratic expressions with either exactly one positive or exactly one negative eigenvalue,
1888  * in addition to some extra conditions. One needs to write the quadratic as
1889  * sum eigval_i (eigvec_i . x)^2 + c &le; -eigval_k (eigvec_k . x)^2, where eigval_k is the negative eigenvalue,
1890  * and c must be positive and (eigvec_k . x) must not change sign.
1891  * This is described in more details in
1892  * Mahajan, Ashutosh & Munson, Todd, Exploiting Second-Order Cone Structure for Global Optimization, 2010.
1893  *
1894  * The eigen-decomposition is computed using Lapack.
1895  * Binary linear variables are interpreted as quadratic terms.
1896  *
1897  * @todo: In the case -b <= a + x^2 - y^2 <= b, it is possible to represent both sides by SOC. Currently, the
1898  * datastructure can only handle one SOC. If this should appear more often, it could be worth to extend it,
1899  * such that both sides can be handled (see e.g. instance chp_partload).
1900  * FS: this shouldn't be possible. For a <= b + x^2 - y^2 <= c to be SOC representable on both sides, we would need
1901  * that a - b >= 0 and b -c >= 0, but this implies that a >= c and assuming the constraint is not trivially infeasible,
1902  * a <= b. Thus, a = b = c and the constraint is x^2 == y^2.
1903  *
1904  * @todo: Since cons_nonlinear multiplies as many terms out as possible during presolving, some SOC-representable
1905  * structures cannot be detected, (see e.g. instances bearing or wager). There is currently no obvious way
1906  * to handle this.
1907  */
1908 static
1910  SCIP* scip, /**< SCIP data structure */
1911  SCIP_EXPR* expr, /**< expression */
1912  SCIP_Real conslhs, /**< lhs of the constraint that the expression defines (or SCIP_INVALID) */
1913  SCIP_Real consrhs, /**< rhs of the constraint that the expression defines (or SCIP_INVALID) */
1914  SCIP_NLHDLREXPRDATA** nlhdlrexprdata, /**< pointer to store nonlinear handler expression data */
1915  SCIP_Bool* enforcebelow, /**< pointer to store whether we enforce <= (TRUE) or >= (FALSE); only
1916  * valid when success is TRUE */
1917  SCIP_Bool* success /**< pointer to store whether SOC structure has been detected */
1918  )
1919 {
1920  SCIP_EXPR** occurringexprs;
1921  SCIP_HASHMAP* expr2idx;
1922  SCIP_Real* offsets;
1923  SCIP_Real* transcoefs;
1924  SCIP_Real* eigvecmatrix;
1925  SCIP_Real* eigvals;
1926  SCIP_Real* lincoefs;
1927  SCIP_Real* bp;
1928  int* transcoefsidx;
1929  int* termbegins;
1930  SCIP_Real constant;
1931  SCIP_Real lhsconstant;
1932  SCIP_Real lhs;
1933  SCIP_Real rhs;
1934  SCIP_INTERVAL expractivity;
1935  int nvars;
1936  int nterms;
1937  int nchildren;
1938  int npos;
1939  int nneg;
1940  int ntranscoefs;
1941  int i;
1942  int j;
1943  SCIP_Bool rhsissoc;
1944  SCIP_Bool lhsissoc;
1945  SCIP_Bool isquadratic;
1946 
1947  assert(expr != NULL);
1948  assert(success != NULL);
1949 
1950  *success = FALSE;
1951 
1952  /* check whether expression is a sum with at least 2 children */
1953  if( ! SCIPisExprSum(scip, expr) || SCIPexprGetNChildren(expr) < 2 )
1954  {
1955  return SCIP_OKAY;
1956  }
1957 
1958  /* we need Lapack to compute eigenvalues/vectors below */
1959  if( !SCIPisIpoptAvailableIpopt() )
1960  return SCIP_OKAY;
1961 
1962  /* get children of the sum */
1963  nchildren = SCIPexprGetNChildren(expr);
1964  constant = SCIPgetConstantExprSum(expr);
1965 
1966  /* initialize data */
1967  offsets = NULL;
1968  transcoefs = NULL;
1969  transcoefsidx = NULL;
1970  termbegins = NULL;
1971  bp = NULL;
1972 
1973  SCIP_CALL( SCIPhashmapCreate(&expr2idx, SCIPblkmem(scip), 2 * nchildren) );
1974  SCIP_CALL( SCIPallocBufferArray(scip, &occurringexprs, 2 * nchildren) );
1975 
1976  /* check if the expression is quadratic and collect all occurring expressions */
1977  SCIP_CALL( checkAndCollectQuadratic(scip, expr, expr2idx, occurringexprs, &nvars, &isquadratic) );
1978 
1979  if( !isquadratic )
1980  {
1981  SCIPfreeBufferArray(scip, &occurringexprs);
1982  SCIPhashmapFree(&expr2idx);
1983  return SCIP_OKAY;
1984  }
1985 
1986  /* check that nvars*nvars doesn't get too large, see also SCIPcomputeExprQuadraticCurvature() */
1987  if( nvars > 7000 )
1988  {
1989  SCIPverbMessage(scip, SCIP_VERBLEVEL_FULL, NULL, "nlhdlr_soc - number of quadratic variables is too large (%d) to check the curvature\n", nvars);
1990  SCIPfreeBufferArray(scip, &occurringexprs);
1991  SCIPhashmapFree(&expr2idx);
1992  return SCIP_OKAY;
1993  }
1994 
1995  assert(SCIPhashmapGetNElements(expr2idx) == nvars);
1996 
1997  /* create datastructures for constaint defining matrix and vector */
1998  SCIP_CALL( SCIPallocClearBufferArray(scip, &eigvecmatrix, nvars * nvars) ); /*lint !e647*/
1999  SCIP_CALL( SCIPallocClearBufferArray(scip, &lincoefs, nvars) );
2000 
2001  /* build constraint defining matrix (stored in eigvecmatrix) and vector (stored in lincoefs) */
2002  buildQuadExprMatrix(scip, expr, expr2idx, nvars, eigvecmatrix, lincoefs);
2003 
2004  SCIP_CALL( SCIPallocBufferArray(scip, &eigvals, nvars) );
2005 
2006  /* compute eigenvalues and vectors, A = PDP^t
2007  * note: eigvecmatrix stores P^t, i.e., P^t_{i,j} = eigvecmatrix[i*nvars+j]
2008  */
2009  if( SCIPcallLapackDsyevIpopt(TRUE, nvars, eigvecmatrix, eigvals) != SCIP_OKAY )
2010  {
2011  SCIPdebugMsg(scip, "Failed to compute eigenvalues and eigenvectors for expression:\n");
2012 
2013 #ifdef SCIP_DEBUG
2014  SCIPdismantleExpr(scip, NULL, expr);
2015 #endif
2016 
2017  goto CLEANUP;
2018  }
2019 
2020  SCIP_CALL( SCIPallocClearBufferArray(scip, &bp, nvars) );
2021 
2022  nneg = 0;
2023  npos = 0;
2024  ntranscoefs = 0;
2025 
2026  /* set small eigenvalues to 0 and compute b*P */
2027  for( i = 0; i < nvars; ++i )
2028  {
2029  for( j = 0; j < nvars; ++j )
2030  {
2031  bp[i] += lincoefs[j] * eigvecmatrix[i * nvars + j];
2032 
2033  /* count the number of transcoefs to be used later */
2034  if( !SCIPisZero(scip, eigvals[i]) && !SCIPisZero(scip, eigvecmatrix[i * nvars + j]) )
2035  ++ntranscoefs;
2036  }
2037 
2038  if( SCIPisZero(scip, eigvals[i]) )
2039  {
2040  /* if there is a purely linear variable, the constraint can't be written as a SOC */
2041  if( !SCIPisZero(scip, bp[i]) )
2042  goto CLEANUP;
2043 
2044  bp[i] = 0.0;
2045  eigvals[i] = 0.0;
2046  }
2047  else if( eigvals[i] > 0.0 )
2048  npos++;
2049  else
2050  nneg++;
2051  }
2052 
2053  /* a proper SOC constraint needs at least 2 variables */
2054  if( npos + nneg < 2 )
2055  goto CLEANUP;
2056 
2057  /* determine whether rhs or lhs of cons is potentially SOC, if any */
2058  rhsissoc = (nneg == 1 && SCIPgetExprNLocksPosNonlinear(expr) > 0);
2059  lhsissoc = (npos == 1 && SCIPgetExprNLocksNegNonlinear(expr) > 0);
2060 
2061  if( rhsissoc || lhsissoc )
2062  {
2063  if( conslhs == SCIP_INVALID || consrhs == SCIP_INVALID ) /*lint !e777*/
2064  {
2065  SCIP_CALL( SCIPevalExprActivity(scip, expr) );
2066  expractivity = SCIPexprGetActivity(expr);
2067  lhs = (conslhs == SCIP_INVALID ? expractivity.inf : conslhs); /*lint !e777*/
2068  rhs = (consrhs == SCIP_INVALID ? expractivity.sup : consrhs); /*lint !e777*/
2069  }
2070  else
2071  {
2072  lhs = conslhs;
2073  rhs = consrhs;
2074  }
2075  }
2076  else
2077  {
2078  /* if none of the sides is potentially SOC, stop */
2079  goto CLEANUP;
2080  }
2081 
2082  /* @TODO: what do we do if both sides are possible? */
2083  if( !rhsissoc )
2084  {
2085  assert(lhsissoc);
2086 
2087  /* lhs is potentially SOC, change signs */
2088  lhsconstant = lhs - constant; /*lint !e644*/
2089 
2090  for( i = 0; i < nvars; ++i )
2091  {
2092  eigvals[i] = -eigvals[i];
2093  bp[i] = -bp[i];
2094  }
2095  *enforcebelow = FALSE; /* enforce lhs <= expr */
2096  }
2097  else
2098  {
2099  lhsconstant = constant - rhs; /*lint !e644*/
2100  *enforcebelow = TRUE; /* enforce expr <= rhs */
2101  }
2102 
2103  /* initialize remaining datastructures for nonlinear handler */
2104  SCIP_CALL( SCIPallocBufferArray(scip, &offsets, npos + nneg + 1) );
2105  SCIP_CALL( SCIPallocBufferArray(scip, &transcoefs, ntranscoefs) );
2106  SCIP_CALL( SCIPallocBufferArray(scip, &transcoefsidx, ntranscoefs) );
2107  SCIP_CALL( SCIPallocBufferArray(scip, &termbegins, npos + nneg + 2) );
2108 
2109  /* try to fill the nlhdlrexprdata (at this point, it can still fail) */
2110  SCIP_CALL( tryFillNlhdlrExprDataQuad(scip, occurringexprs, eigvecmatrix, eigvals, bp, nvars, termbegins, transcoefs,
2111  transcoefsidx, offsets, &lhsconstant, &nterms, success) );
2112 
2113  if( !(*success) )
2114  goto CLEANUP;
2115 
2116  assert(0 < nterms && nterms <= npos + nneg + 1);
2117  assert(ntranscoefs == termbegins[nterms]);
2118 
2119  /*
2120  * at this point, the expression passed all checks and is SOC-representable
2121  */
2122 
2123  /* register all requests for auxiliary variables */
2124  for( i = 0; i < nvars; ++i )
2125  {
2126  SCIP_CALL( SCIPregisterExprUsageNonlinear(scip, occurringexprs[i], TRUE, FALSE, FALSE, FALSE) );
2127  }
2128 
2129 #ifdef SCIP_DEBUG
2130  SCIPdebugMsg(scip, "found SOC structure for expression %p\n%f <= ", (void*)expr, lhs);
2131  SCIPprintExpr(scip, expr, NULL);
2132  SCIPinfoMessage(scip, NULL, "<= %f\n", rhs);
2133 #endif
2134 
2135  /* finally, create and store nonlinear handler expression data */
2136  SCIP_CALL( createNlhdlrExprData(scip, occurringexprs, offsets, transcoefs, transcoefsidx, termbegins, nvars, nterms,
2137  nlhdlrexprdata) );
2138  assert(*nlhdlrexprdata != NULL);
2139 
2140 CLEANUP:
2141  SCIPfreeBufferArrayNull(scip, &termbegins);
2142  SCIPfreeBufferArrayNull(scip, &transcoefsidx);
2143  SCIPfreeBufferArrayNull(scip, &transcoefs);
2144  SCIPfreeBufferArrayNull(scip, &offsets);
2145  SCIPfreeBufferArrayNull(scip, &bp);
2146  SCIPfreeBufferArray(scip, &eigvals);
2147  SCIPfreeBufferArray(scip, &lincoefs);
2148  SCIPfreeBufferArray(scip, &eigvecmatrix);
2149  SCIPfreeBufferArray(scip, &occurringexprs);
2150  SCIPhashmapFree(&expr2idx);
2151 
2152  return SCIP_OKAY;
2153 }
2154 
2155 /** helper method to detect SOC structures
2156  *
2157  * The detection runs in 3 steps:
2158  * 1. check if expression is a norm of the form \f$\sqrt{\sum_i (\text{sqrcoef}_i\, \text{expr}_i^2 + \text{lincoef}_i\, \text{expr}_i) + c}\f$
2159  * which can be transformed to the form \f$\sqrt{\sum_i (\text{coef}_i \text{expr}_i + \text{const}_i)^2 + c^*}\f$ with \f$c^* \geq 0\f$.\n
2160  * -> this results in the SOC expr &le; auxvar(expr)
2161  *
2162  * TODO we should generalize and check for sqrt(positive-semidefinite-quadratic)
2163  *
2164  * 2. check if expression represents a quadratic function of one of the following forms (all coefs > 0)
2165  * 1. \f$(\sum_i \text{coef}_i \text{expr}_i^2) - \text{coef}_k \text{expr}_k^2 \leq \text{RHS}\f$ or
2166  * 2. \f$(\sum_i - \text{coef}_i \text{expr}_i^2) + \text{coef}_k \text{expr}_k^2 \geq \text{LHS}\f$ or
2167  * 3. \f$(\sum_i \text{coef}_i \text{expr}_i^2) - \text{coef}_k \text{expr}_k \text{expr}_l \leq \text{RHS}\f$ or
2168  * 4. \f$(\sum_i - \text{coef}_i \text{expr}_i^2) + \text{coef}_k \text{expr}_k \text{expr}_l \geq \text{LHS}\f$,
2169  *
2170  * where RHS &ge; 0 or LHS &le; 0, respectively. For LHS and RHS we use the constraint sides if it is a root expr
2171  * and the bounds of the auxiliary variable otherwise.
2172  * The last two cases are called hyperbolic or rotated second order cone.\n
2173  * -> this results in the SOC \f$\sqrt{(\sum_i \text{coef}_i \text{expr}_i^2) - \text{RHS}} \leq \sqrt{\text{coef}_k} \text{expr}_k\f$
2174  * or \f$\sqrt{4(\sum_i \text{coef}_i \text{expr}_i^2) - 4\text{RHS} + (\text{expr}_k - \text{expr}_l)^2)} \leq \text{expr}_k + \text{expr}_l\f$.
2175  * (analogously for the LHS cases)
2176  *
2177  * 3. check if expression represents a quadratic inequality of the form \f$f(x) = x^TAx + b^Tx + c \leq 0\f$ such that \f$f(x)\f$
2178  * has exactly one negative eigenvalue plus some extra conditions, see detectSocQuadraticComplex().
2179  *
2180  * Note that step 3 is only performed if parameter `compeigenvalues` is set to TRUE.
2181  */
2182 static
2184  SCIP* scip, /**< SCIP data structure */
2185  SCIP_NLHDLRDATA* nlhdlrdata, /**< nonlinear handler data */
2186  SCIP_EXPR* expr, /**< expression */
2187  SCIP_Real conslhs, /**< lhs of the constraint that the expression defines (or SCIP_INVALID) */
2188  SCIP_Real consrhs, /**< rhs of the constraint that the expression defines (or SCIP_INVALID) */
2189  SCIP_NLHDLREXPRDATA** nlhdlrexprdata, /**< pointer to store nonlinear handler expression data */
2190  SCIP_Bool* enforcebelow, /**< pointer to store whether we enforce <= (TRUE) or >= (FALSE); only
2191  * valid when success is TRUE */
2192  SCIP_Bool* success /**< pointer to store whether SOC structure has been detected */
2193  )
2194 {
2195  assert(expr != NULL);
2196  assert(nlhdlrdata != NULL);
2197  assert(nlhdlrexprdata != NULL);
2198  assert(success != NULL);
2199 
2200  *success = FALSE;
2201 
2202  /* check whether expression is given as norm as described in case 1 above: if we have a constraint
2203  * sqrt(sum x_i^2) <= constant, then it might be better not to handle this here; thus, we only call detectSocNorm
2204  * when the expr is _not_ the root of a constraint
2205  */
2206  if( conslhs == SCIP_INVALID && consrhs == SCIP_INVALID ) /*lint !e777*/
2207  {
2208  SCIP_CALL( detectSocNorm(scip, expr, nlhdlrexprdata, success) );
2209  *enforcebelow = *success;
2210  }
2211 
2212  if( !(*success) )
2213  {
2214  /* check whether expression is a simple soc-respresentable quadratic expression as described in case 2 above */
2215  SCIP_CALL( detectSocQuadraticSimple(scip, expr, conslhs, consrhs, nlhdlrexprdata, enforcebelow, success) );
2216  }
2217 
2218  if( !(*success) && nlhdlrdata->compeigenvalues )
2219  {
2220  /* check whether expression is a more complex soc-respresentable quadratic expression as described in case 3 */
2221  SCIP_CALL( detectSocQuadraticComplex(scip, expr, conslhs, consrhs, nlhdlrexprdata, enforcebelow, success) );
2222  }
2223 
2224  return SCIP_OKAY;
2225 }
2226 
2227 /*
2228  * Callback methods of nonlinear handler
2229  */
2230 
2231 /** nonlinear handler copy callback */
2232 static
2233 SCIP_DECL_NLHDLRCOPYHDLR(nlhdlrCopyhdlrSoc)
2234 { /*lint --e{715}*/
2235  assert(targetscip != NULL);
2236  assert(sourcenlhdlr != NULL);
2237  assert(strcmp(SCIPnlhdlrGetName(sourcenlhdlr), NLHDLR_NAME) == 0);
2238 
2239  SCIP_CALL( SCIPincludeNlhdlrSoc(targetscip) );
2240 
2241  return SCIP_OKAY;
2242 }
2243 
2244 /** callback to free data of handler */
2245 static
2246 SCIP_DECL_NLHDLRFREEHDLRDATA(nlhdlrFreehdlrdataSoc)
2247 { /*lint --e{715}*/
2248  assert(nlhdlrdata != NULL);
2249 
2250  SCIPfreeBlockMemory(scip, nlhdlrdata);
2251 
2252  return SCIP_OKAY;
2253 }
2254 
2255 /** callback to free expression specific data */
2256 static
2257 SCIP_DECL_NLHDLRFREEEXPRDATA(nlhdlrFreeExprDataSoc)
2258 { /*lint --e{715}*/
2259  assert(*nlhdlrexprdata != NULL);
2260 
2261  SCIP_CALL( freeNlhdlrExprData(scip, nlhdlrexprdata) );
2262 
2263  return SCIP_OKAY;
2264 }
2265 
2266 
2267 /** callback to be called in initialization */
2268 #if 0
2269 static
2271 { /*lint --e{715}*/
2272  SCIPerrorMessage("method of soc nonlinear handler not implemented yet\n");
2273  SCIPABORT(); /*lint --e{527}*/
2274 
2275  return SCIP_OKAY;
2276 }
2277 #else
2278 #define nlhdlrInitSoc NULL
2279 #endif
2280 
2281 
2282 /** callback to be called in deinitialization */
2283 #if 0
2284 static
2286 { /*lint --e{715}*/
2287  SCIPerrorMessage("method of soc nonlinear handler not implemented yet\n");
2288  SCIPABORT(); /*lint --e{527}*/
2289 
2290  return SCIP_OKAY;
2291 }
2292 #else
2293 #define nlhdlrExitSoc NULL
2294 #endif
2295 
2296 
2297 /** callback to detect structure in expression tree */
2298 static
2299 SCIP_DECL_NLHDLRDETECT(nlhdlrDetectSoc)
2300 { /*lint --e{715}*/
2301  SCIP_Real conslhs;
2302  SCIP_Real consrhs;
2303  SCIP_Bool enforcebelow;
2304  SCIP_Bool success;
2305  SCIP_NLHDLRDATA* nlhdlrdata;
2306 
2307  assert(expr != NULL);
2308 
2309  /* don't try if no sepa is required
2310  * TODO implement some bound strengthening
2311  */
2312  if( (*enforcing & SCIP_NLHDLR_METHOD_SEPABOTH) == SCIP_NLHDLR_METHOD_SEPABOTH )
2313  return SCIP_OKAY;
2314 
2315  assert(SCIPgetExprNAuxvarUsesNonlinear(expr) > 0); /* since some sepa is required, there should have been demand for it */
2316 
2317  nlhdlrdata = SCIPnlhdlrGetData(nlhdlr);
2318  assert(nlhdlrdata != NULL);
2319 
2320  conslhs = (cons == NULL ? SCIP_INVALID : SCIPgetLhsNonlinear(cons));
2321  consrhs = (cons == NULL ? SCIP_INVALID : SCIPgetRhsNonlinear(cons));
2322 
2323  SCIP_CALL( detectSOC(scip, nlhdlrdata, expr, conslhs, consrhs, nlhdlrexprdata, &enforcebelow, &success) );
2324 
2325  if( !success )
2326  return SCIP_OKAY;
2327 
2328  /* inform what we can do */
2329  *participating = enforcebelow ? SCIP_NLHDLR_METHOD_SEPABELOW : SCIP_NLHDLR_METHOD_SEPAABOVE;
2330 
2331  /* if we have been successful on sqrt(...) <= auxvar, then we enforce
2332  * otherwise, expr is quadratic and we separate for expr <= ub(auxvar) only
2333  * in that case, we enforce only if expr is the root of a constraint, since then replacing auxvar by up(auxvar) does not relax anything (auxvar <= ub(auxvar) is the only constraint on auxvar)
2334  */
2335  if( (SCIPisExprPower(scip, expr) && SCIPgetExponentExprPow(expr) == 0.5) || (cons != NULL) )
2336  *enforcing |= *participating;
2337 
2338  return SCIP_OKAY;
2339 }
2340 
2341 
2342 /** auxiliary evaluation callback of nonlinear handler
2343  * @todo: remember if we are in the original variables and avoid reevaluating
2344  */
2345 static
2346 SCIP_DECL_NLHDLREVALAUX(nlhdlrEvalauxSoc)
2347 { /*lint --e{715}*/
2348  int i;
2349 
2350  assert(nlhdlrexprdata != NULL);
2351  assert(nlhdlrexprdata->vars != NULL);
2352  assert(nlhdlrexprdata->transcoefs != NULL);
2353  assert(nlhdlrexprdata->transcoefsidx != NULL);
2354  assert(nlhdlrexprdata->nterms > 1);
2355 
2356  /* if the original expression is a norm, evaluate w.r.t. the auxiliary variables */
2357  if( SCIPisExprPower(scip, expr) )
2358  {
2359  assert(SCIPgetExponentExprPow(expr) == 0.5);
2360 
2361  /* compute sum_i coef_i expr_i^2 */
2362  *auxvalue = 0.0;
2363  for( i = 0; i < nlhdlrexprdata->nterms - 1; ++i )
2364  {
2365  SCIP_Real termval;
2366 
2367  termval = evalSingleTerm(scip, nlhdlrexprdata, sol, i);
2368  *auxvalue += SQR(termval);
2369  }
2370 
2371  assert(*auxvalue >= 0.0);
2372 
2373  /* compute SQRT(sum_i coef_i expr_i^2) */
2374  *auxvalue = SQRT(*auxvalue);
2375  }
2376  /* otherwise, evaluate the original quadratic expression w.r.t. the created auxvars of the children */
2377  else
2378  {
2379  SCIP_EXPR** children;
2380  SCIP_Real* childcoefs;
2381  int nchildren;
2382 
2383  assert(SCIPisExprSum(scip, expr));
2384 
2385  children = SCIPexprGetChildren(expr);
2386  childcoefs = SCIPgetCoefsExprSum(expr);
2387  nchildren = SCIPexprGetNChildren(expr);
2388 
2389  *auxvalue = SCIPgetConstantExprSum(expr);
2390 
2391  for( i = 0; i < nchildren; ++i )
2392  {
2393  if( SCIPisExprPower(scip, children[i]) )
2394  {
2395  SCIP_VAR* argauxvar;
2396  SCIP_Real solval;
2397 
2398  assert(SCIPgetExponentExprPow(children[i]) == 2.0);
2399 
2400  argauxvar = SCIPgetExprAuxVarNonlinear(SCIPexprGetChildren(children[i])[0]);
2401  assert(argauxvar != NULL);
2402 
2403  solval = SCIPgetSolVal(scip, sol, argauxvar);
2404  *auxvalue += childcoefs[i] * SQR( solval );
2405  }
2406  else if( SCIPisExprProduct(scip, children[i]) )
2407  {
2408  SCIP_VAR* argauxvar1;
2409  SCIP_VAR* argauxvar2;
2410 
2411  assert(SCIPexprGetNChildren(children[i]) == 2);
2412 
2413  argauxvar1 = SCIPgetExprAuxVarNonlinear(SCIPexprGetChildren(children[i])[0]);
2414  argauxvar2 = SCIPgetExprAuxVarNonlinear(SCIPexprGetChildren(children[i])[1]);
2415  assert(argauxvar1 != NULL);
2416  assert(argauxvar2 != NULL);
2417 
2418  *auxvalue += childcoefs[i] * SCIPgetSolVal(scip, sol, argauxvar1) * SCIPgetSolVal(scip, sol, argauxvar2);
2419  }
2420  else
2421  {
2422  SCIP_VAR* argauxvar;
2423 
2424  argauxvar = SCIPgetExprAuxVarNonlinear(children[i]);
2425  assert(argauxvar != NULL);
2426 
2427  *auxvalue += childcoefs[i] * SCIPgetSolVal(scip, sol, argauxvar);
2428  }
2429  }
2430  }
2431 
2432  return SCIP_OKAY;
2433 }
2434 
2435 
2436 /** separation deinitialization method of a nonlinear handler (called during CONSINITLP) */
2437 static
2438 SCIP_DECL_NLHDLRINITSEPA(nlhdlrInitSepaSoc)
2439 { /*lint --e{715}*/
2440  assert(conshdlr != NULL);
2441  assert(expr != NULL);
2442  assert(nlhdlrexprdata != NULL);
2443 
2444  /* if we have 3 or more terms in lhs create variable and row for disaggregation */
2445  if( nlhdlrexprdata->nterms > 3 )
2446  {
2447  /* create variables for cone disaggregation */
2448  SCIP_CALL( createDisaggrVars(scip, expr, nlhdlrexprdata) );
2449 
2450 #ifdef WITH_DEBUG_SOLUTION
2451  if( SCIPdebugIsMainscip(scip) )
2452  {
2453  SCIP_Real lhsval;
2454  SCIP_Real rhsval;
2455  SCIP_Real disvarval;
2456  int ndisvars;
2457  int nterms;
2458  int i;
2459  int k;
2460 
2461  /* the debug solution value of the disaggregation variables is set to
2462  * (v_i^T x + beta_i)^2 / (v_{n+1}^T x + beta_{n+1})
2463  * if (v_{n+1}^T x + beta_{n+1}) is different from 0.
2464  * Otherwise, the debug solution value is set to 0.
2465  */
2466 
2467  nterms = nlhdlrexprdata->nterms;
2468 
2469  /* find value of rhs */
2470  rhsval = nlhdlrexprdata->offsets[nterms - 1];
2471  for( i = nlhdlrexprdata->termbegins[nterms - 1]; i < nlhdlrexprdata->termbegins[nterms]; ++i )
2472  {
2473  SCIP_VAR* var;
2474  SCIP_Real varval;
2475 
2476  var = SCIPgetVarExprVar(nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[i]]);
2477 
2478  SCIP_CALL( SCIPdebugGetSolVal(scip, var, &varval) );
2479  rhsval += nlhdlrexprdata->transcoefs[i] * varval;
2480  }
2481 
2482  /* set value of disaggregation vars */
2483  ndisvars = nlhdlrexprdata->nterms - 1;
2484 
2485  if( SCIPisZero(scip, rhsval) )
2486  {
2487  for( i = 0; i < ndisvars; ++i )
2488  {
2489  SCIP_CALL( SCIPdebugAddSolVal(scip, nlhdlrexprdata->disvars[i], 0.0) );
2490  }
2491  }
2492  else
2493  {
2494  /* set value for each disaggregation variable corresponding to quadratic term */
2495  for( k = 0; k < ndisvars; ++k )
2496  {
2497  lhsval = nlhdlrexprdata->offsets[k];
2498 
2499  for( i = nlhdlrexprdata->termbegins[k]; i < nlhdlrexprdata->termbegins[k + 1]; ++i )
2500  {
2501  SCIP_VAR* var;
2502  SCIP_Real varval;
2503 
2504  var = SCIPgetVarExprVar(nlhdlrexprdata->vars[nlhdlrexprdata->transcoefsidx[i]]);
2505 
2506  SCIP_CALL( SCIPdebugGetSolVal(scip, var, &varval) );
2507  lhsval += nlhdlrexprdata->transcoefs[i] * varval;
2508  }
2509 
2510  disvarval = SQR(lhsval) / rhsval;
2511 
2512  SCIP_CALL( SCIPdebugAddSolVal(scip, nlhdlrexprdata->disvars[k], disvarval) );
2513  }
2514  }
2515  }
2516 #endif
2517 
2518  /* create the disaggregation row and store it in nlhdlrexprdata */
2519  SCIP_CALL( createDisaggrRow(scip, conshdlr, expr, nlhdlrexprdata) );
2520  }
2521 
2522  /* TODO add something to the LP as well, at least the disaggregation row */
2523 
2524  return SCIP_OKAY;
2525 }
2526 
2527 
2528 /** separation deinitialization method of a nonlinear handler (called during CONSEXITSOL) */
2529 static
2530 SCIP_DECL_NLHDLREXITSEPA(nlhdlrExitSepaSoc)
2531 { /*lint --e{715}*/
2532  assert(nlhdlrexprdata != NULL);
2533 
2534  /* free disaggreagation row */
2535  if( nlhdlrexprdata->disrow != NULL )
2536  {
2537  SCIP_CALL( SCIPreleaseRow(scip, &nlhdlrexprdata->disrow) );
2538  }
2539 
2540  return SCIP_OKAY;
2541 }
2542 
2543 
2544 /** nonlinear handler separation callback */
2545 static
2546 SCIP_DECL_NLHDLRENFO(nlhdlrEnfoSoc)
2547 { /*lint --e{715}*/
2548  SCIP_NLHDLRDATA* nlhdlrdata;
2549  SCIP_Real rhsval;
2550  int ndisaggrs;
2551  int k;
2552  SCIP_Bool infeasible;
2553 
2554  assert(nlhdlrexprdata != NULL);
2555  assert(nlhdlrexprdata->nterms < 4 || nlhdlrexprdata->disrow != NULL);
2556  assert(nlhdlrexprdata->nterms > 1);
2557 
2558  *result = SCIP_DIDNOTFIND;
2559 
2560  nlhdlrdata = SCIPnlhdlrGetData(nlhdlr);
2561  assert(nlhdlrdata != NULL);
2562 
2563  rhsval = evalSingleTerm(scip, nlhdlrexprdata, sol, nlhdlrexprdata->nterms - 1);
2564 
2565  /* if there are three or two terms just compute gradient cut */
2566  if( nlhdlrexprdata->nterms < 4 )
2567  {
2568  SCIP_ROW* row;
2569 
2570  /* compute gradient cut */
2571  SCIP_CALL( generateCutSolSOC(scip, expr, cons, sol, nlhdlrexprdata, SCIPgetLPFeastol(scip), rhsval, &row) );
2572 
2573  /* TODO this code repeats below, factorize out */
2574  if( row != NULL )
2575  {
2576  SCIP_Real cutefficacy;
2577 
2578  cutefficacy = SCIPgetCutEfficacy(scip, sol, row);
2579 
2580  SCIPdebugMsg(scip, "generated row for %d-SOC, efficacy=%g, minefficacy=%g, allowweakcuts=%u\n",
2581  nlhdlrexprdata->nterms, cutefficacy, nlhdlrdata->mincutefficacy, allowweakcuts);
2582 
2583  /* check whether cut is applicable */
2584  if( SCIPisCutApplicable(scip, row) && (allowweakcuts || cutefficacy >= nlhdlrdata->mincutefficacy) )
2585  {
2586  SCIP_CALL( SCIPaddRow(scip, row, FALSE, &infeasible) );
2587 
2588 #ifdef SCIP_CONSNONLINEAR_ROWNOTREMOVABLE
2589  /* mark row as not removable from LP for current node, if in enforcement (==addbranchscores) (this can prevent some cycling) */
2590  if( addbranchscores )
2591  SCIPmarkRowNotRemovableLocal(scip, row);
2592 #endif
2593 
2594  if( infeasible )
2595  *result = SCIP_CUTOFF;
2596  else
2597  *result = SCIP_SEPARATED;
2598  }
2599 
2600  /* release row */
2601  SCIP_CALL( SCIPreleaseRow(scip, &row) );
2602  }
2603 #ifdef SCIP_DEBUG
2604  else
2605  {
2606  SCIPdebugMsg(scip, "failed to generate SOC\n");
2607  }
2608 #endif
2609 
2610  return SCIP_OKAY;
2611  }
2612 
2613  ndisaggrs = nlhdlrexprdata->nterms - 1;
2614 
2615  /* check whether the aggregation row is in the LP */
2616  if( !SCIProwIsInLP(nlhdlrexprdata->disrow) && -SCIPgetRowSolFeasibility(scip, nlhdlrexprdata->disrow, sol) > SCIPgetLPFeastol(scip) )
2617  {
2618  SCIP_CALL( SCIPaddRow(scip, nlhdlrexprdata->disrow, TRUE, &infeasible) );
2619  SCIPdebugMsg(scip, "added disaggregation row to LP, cutoff=%u\n", infeasible);
2620 
2621  if( infeasible )
2622  {
2623  *result = SCIP_CUTOFF;
2624  return SCIP_OKAY;
2625  }
2626 
2627  *result = SCIP_SEPARATED;
2628  }
2629 
2630  for( k = 0; k < ndisaggrs && *result != SCIP_CUTOFF; ++k )
2631  {
2632  SCIP_ROW* row;
2633 
2634  /* compute gradient cut */
2635  SCIP_CALL( generateCutSolDisagg(scip, expr, cons, sol, nlhdlrexprdata, k, SCIPgetLPFeastol(scip), rhsval, &row) );
2636 
2637  if( row != NULL )
2638  {
2639  SCIP_Real cutefficacy;
2640 
2641  cutefficacy = SCIPgetCutEfficacy(scip, sol, row);
2642 
2643  SCIPdebugMsg(scip, "generated row for disaggregation %d, efficacy=%g, minefficacy=%g, allowweakcuts=%u\n",
2644  k, cutefficacy, nlhdlrdata->mincutefficacy, allowweakcuts);
2645 
2646  /* check whether cut is applicable */
2647  if( SCIPisCutApplicable(scip, row) && (allowweakcuts || cutefficacy >= nlhdlrdata->mincutefficacy) )
2648  {
2649  SCIP_CALL( SCIPaddRow(scip, row, FALSE, &infeasible) );
2650 
2651 #ifdef SCIP_CONSNONLINEAR_ROWNOTREMOVABLE
2652  /* mark row as not removable from LP for current node, if in enforcement (==addbranchscores) (this can prevent some cycling) */
2653  if( addbranchscores )
2654  SCIPmarkRowNotRemovableLocal(scip, row);
2655 #endif
2656 
2657  if( infeasible )
2658  *result = SCIP_CUTOFF;
2659  else
2660  *result = SCIP_SEPARATED;
2661  }
2662 
2663  /* release row */
2664  SCIP_CALL( SCIPreleaseRow(scip, &row) );
2665  }
2666  }
2667 
2668  return SCIP_OKAY;
2669 }
2670 
2671 /*
2672  * nonlinear handler specific interface methods
2673  */
2674 
2675 /** includes SOC nonlinear handler in nonlinear constraint handler */
2677  SCIP* scip /**< SCIP data structure */
2678  )
2679 {
2680  SCIP_NLHDLRDATA* nlhdlrdata;
2681  SCIP_NLHDLR* nlhdlr;
2682 
2683  assert(scip != NULL);
2684 
2685  /* create nonlinear handler data */
2686  SCIP_CALL( SCIPallocClearBlockMemory(scip, &nlhdlrdata) );
2687 
2688  SCIP_CALL( SCIPincludeNlhdlrNonlinear(scip, &nlhdlr, NLHDLR_NAME, NLHDLR_DESC, NLHDLR_DETECTPRIORITY, NLHDLR_ENFOPRIORITY, nlhdlrDetectSoc, nlhdlrEvalauxSoc, nlhdlrdata) );
2689  assert(nlhdlr != NULL);
2690 
2691  SCIPnlhdlrSetCopyHdlr(nlhdlr, nlhdlrCopyhdlrSoc);
2692  SCIPnlhdlrSetFreeHdlrData(nlhdlr, nlhdlrFreehdlrdataSoc);
2693  SCIPnlhdlrSetFreeExprData(nlhdlr, nlhdlrFreeExprDataSoc);
2695  SCIPnlhdlrSetSepa(nlhdlr, nlhdlrInitSepaSoc, nlhdlrEnfoSoc, NULL, nlhdlrExitSepaSoc);
2696 
2697  /* add soc nlhdlr parameters */
2698  /* TODO should we get rid of this and use separating/mineffiacy(root) instead, which is 1e-4? */
2699  SCIP_CALL( SCIPaddRealParam(scip, "nlhdlr/" NLHDLR_NAME "/mincutefficacy",
2700  "Minimum efficacy which a cut needs in order to be added.",
2701  &nlhdlrdata->mincutefficacy, FALSE, DEFAULT_MINCUTEFFICACY, 0.0, SCIPinfinity(scip), NULL, NULL) );
2702 
2703  SCIP_CALL( SCIPaddBoolParam(scip, "nlhdlr/" NLHDLR_NAME "/compeigenvalues",
2704  "Should Eigenvalue computations be done to detect complex cases in quadratic constraints?",
2705  &nlhdlrdata->compeigenvalues, FALSE, DEFAULT_COMPEIGENVALUES, NULL, NULL) );
2706 
2707  return SCIP_OKAY;
2708 }
2709 
2710 /** checks whether constraint is SOC representable in original variables and returns the SOC representation
2711  *
2712  * The SOC representation has the form:
2713  * \f$\sqrt{\sum_{i=1}^{n} (v_i^T x + \beta_i)^2} - v_{n+1}^T x - \beta_{n+1} \lessgtr 0\f$,
2714  * where \f$n+1 = \text{nterms}\f$ and the inequality type is given by sidetype (`SCIP_SIDETYPE_RIGHT` if inequality
2715  * is \f$\leq\f$, `SCIP_SIDETYPE_LEFT` if \f$\geq\f$).
2716  *
2717  * For each term (i.e. for each \f$i\f$ in the above notation as well as \f$n+1\f$), the constant \f$\beta_i\f$ is given by the
2718  * corresponding element `offsets[i-1]` and `termbegins[i-1]` is the starting position of the term in arrays
2719  * `transcoefs` and `transcoefsidx`. The overall number of nonzeros is `termbegins[nterms]`.
2720  *
2721  * Arrays `transcoefs` and `transcoefsidx` have size `termbegins[nterms]` and define the linear expressions \f$v_i^T x\f$
2722  * for each term. For a term \f$i\f$ in the above notation, the nonzeroes are given by elements
2723  * `termbegins[i-1]...termbegins[i]` of `transcoefs` and `transcoefsidx`. There may be no nonzeroes for some term (i.e.,
2724  * constant terms are possible). `transcoefs` contains the coefficients \f$v_i\f$ and `transcoefsidx` contains positions of
2725  * variables in the `vars` array.
2726  *
2727  * The `vars` array has size `nvars` and contains \f$x\f$ variables; each variable is included at most once.
2728  *
2729  * The arrays should be freed by calling SCIPfreeSOCArraysNonlinear().
2730  *
2731  * This function uses the methods that are used in the detection algorithm of the SOC nonlinear handler.
2732  */
2734  SCIP* scip, /**< SCIP data structure */
2735  SCIP_CONS* cons, /**< nonlinear constraint */
2736  SCIP_Bool compeigenvalues, /**< whether eigenvalues should be computed to detect complex cases */
2737  SCIP_Bool* success, /**< pointer to store whether SOC structure has been detected */
2738  SCIP_SIDETYPE* sidetype, /**< pointer to store which side of cons is SOC representable; only
2739  * valid when success is TRUE */
2740  SCIP_VAR*** vars, /**< variables (x) that appear on both sides; no duplicates are allowed */
2741  SCIP_Real** offsets, /**< offsets of both sides (beta_i) */
2742  SCIP_Real** transcoefs, /**< non-zeros of linear transformation vectors (v_i) */
2743  int** transcoefsidx, /**< mapping of transformation coefficients to variable indices in vars */
2744  int** termbegins, /**< starting indices of transcoefs for each term */
2745  int* nvars, /**< total number of variables appearing (i.e. size of vars) */
2746  int* nterms /**< number of summands in the SQRT +1 for RHS (n+1) */
2747  )
2748 {
2749  SCIP_NLHDLRDATA nlhdlrdata;
2750  SCIP_NLHDLREXPRDATA *nlhdlrexprdata;
2751  SCIP_Real conslhs;
2752  SCIP_Real consrhs;
2753  SCIP_EXPR* expr;
2754  SCIP_Bool enforcebelow;
2755  int i;
2756 
2757  assert(cons != NULL);
2758 
2759  expr = SCIPgetExprNonlinear(cons);
2760  assert(expr != NULL);
2761 
2762  nlhdlrdata.mincutefficacy = 0.0;
2763  nlhdlrdata.compeigenvalues = compeigenvalues;
2764 
2765  conslhs = SCIPgetLhsNonlinear(cons);
2766  consrhs = SCIPgetRhsNonlinear(cons);
2767 
2768  SCIP_CALL( detectSOC(scip, &nlhdlrdata, expr, conslhs, consrhs, &nlhdlrexprdata, &enforcebelow, success) );
2769 
2770  /* the constraint must be SOC representable in original variables */
2771  if( *success )
2772  {
2773  assert(nlhdlrexprdata != NULL);
2774 
2775  for( i = 0; i < nlhdlrexprdata->nvars; ++i )
2776  {
2777  if( !SCIPisExprVar(scip, nlhdlrexprdata->vars[i]) )
2778  {
2779  *success = FALSE;
2780  break;
2781  }
2782  }
2783  }
2784 
2785  if( *success )
2786  {
2787  *sidetype = enforcebelow ? SCIP_SIDETYPE_RIGHT : SCIP_SIDETYPE_LEFT;
2788  SCIP_CALL( SCIPallocBlockMemoryArray(scip, vars, nlhdlrexprdata->nvars) );
2789 
2790  for( i = 0; i < nlhdlrexprdata->nvars; ++i )
2791  {
2792  (*vars)[i] = SCIPgetVarExprVar(nlhdlrexprdata->vars[i]);
2793  assert((*vars)[i] != NULL);
2794  }
2795  SCIPfreeBlockMemoryArray(scip, &nlhdlrexprdata->vars, nlhdlrexprdata->nvars);
2796  *offsets = nlhdlrexprdata->offsets;
2797  *transcoefs = nlhdlrexprdata->transcoefs;
2798  *transcoefsidx = nlhdlrexprdata->transcoefsidx;
2799  *termbegins = nlhdlrexprdata->termbegins;
2800  *nvars = nlhdlrexprdata->nvars;
2801  *nterms = nlhdlrexprdata->nterms;
2802  SCIPfreeBlockMemory(scip, &nlhdlrexprdata);
2803  }
2804  else
2805  {
2806  if( nlhdlrexprdata != NULL )
2807  {
2808  SCIP_CALL( freeNlhdlrExprData(scip, &nlhdlrexprdata) );
2809  }
2810  *vars = NULL;
2811  *offsets = NULL;
2812  *transcoefs = NULL;
2813  *transcoefsidx = NULL;
2814  *termbegins = NULL;
2815  *nvars = 0;
2816  *nterms = 0;
2817  }
2818 
2819  return SCIP_OKAY;
2820 }
2821 
2822 /** frees arrays created by SCIPisSOCNonlinear() */
2824  SCIP* scip, /**< SCIP data structure */
2825  SCIP_VAR*** vars, /**< variables that appear on both sides (x) */
2826  SCIP_Real** offsets, /**< offsets of both sides (beta_i) */
2827  SCIP_Real** transcoefs, /**< non-zeros of linear transformation vectors (v_i) */
2828  int** transcoefsidx, /**< mapping of transformation coefficients to variable indices in vars */
2829  int** termbegins, /**< starting indices of transcoefs for each term */
2830  int nvars, /**< total number of variables appearing */
2831  int nterms /**< number of summands in the SQRT +1 for RHS (n+1) */
2832  )
2833 {
2834  int ntranscoefs;
2835 
2836  if( nvars == 0 )
2837  return;
2838 
2839  assert(vars != NULL);
2840  assert(offsets != NULL);
2841  assert(transcoefs != NULL);
2842  assert(transcoefsidx != NULL);
2843  assert(termbegins != NULL);
2844 
2845  ntranscoefs = (*termbegins)[nterms];
2846 
2847  SCIPfreeBlockMemoryArray(scip, termbegins, nterms + 1);
2848  SCIPfreeBlockMemoryArray(scip, transcoefsidx, ntranscoefs);
2849  SCIPfreeBlockMemoryArray(scip, transcoefs, ntranscoefs);
2850  SCIPfreeBlockMemoryArray(scip, offsets, nterms);
2851  SCIPfreeBlockMemoryArray(scip, vars, nvars);
2852 }
#define SCIPfreeBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:110
SCIP_Bool SCIPisIpoptAvailableIpopt(void)
#define nlhdlrInitSoc
Definition: nlhdlr_soc.c:2278
static SCIP_DECL_NLHDLRFREEHDLRDATA(nlhdlrFreehdlrdataSoc)
Definition: nlhdlr_soc.c:2246
static volatile int nterms
Definition: interrupt.c:47
#define SCIPallocBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:93
static SCIP_RETCODE createDisaggrVars(SCIP *scip, SCIP_EXPR *expr, SCIP_NLHDLREXPRDATA *nlhdlrexprdata)
Definition: nlhdlr_soc.c:214
SCIP_RETCODE SCIPhashsetRemove(SCIP_HASHSET *hashset, void *element)
Definition: misc.c:3808
SCIP_RETCODE SCIPprintExpr(SCIP *scip, SCIP_EXPR *expr, FILE *file)
Definition: scip_expr.c:1476
unsigned int SCIPgetExprNAuxvarUsesNonlinear(SCIP_EXPR *expr)
SCIP_RETCODE SCIPevalExprActivity(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1707
#define SCIP_NLHDLR_METHOD_SEPABELOW
Definition: type_nlhdlr.h:51
int SCIPhashsetGetNElements(SCIP_HASHSET *hashset)
Definition: misc.c:3942
int SCIPexprGetNChildren(SCIP_EXPR *expr)
Definition: expr.c:3801
#define SCIPallocClearBufferArray(scip, ptr, num)
Definition: scip_mem.h:126
static SCIP_RETCODE tryFillNlhdlrExprDataQuad(SCIP *scip, SCIP_EXPR **occurringexprs, SCIP_Real *eigvecmatrix, SCIP_Real *eigvals, SCIP_Real *bp, int nvars, int *termbegins, SCIP_Real *transcoefs, int *transcoefsidx, SCIP_Real *offsets, SCIP_Real *lhsconstant, int *nterms, SCIP_Bool *success)
Definition: nlhdlr_soc.c:930
#define SCIP_MAXSTRLEN
Definition: def.h:302
void SCIPnlhdlrSetFreeExprData(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRFREEEXPRDATA((*freeexprdata)))
Definition: nlhdlr.c:94
SCIP_RETCODE SCIPcleanupRowprep2(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_SOL *sol, SCIP_Real maxcoefbound, SCIP_Bool *success)
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1701
SCIP_Bool SCIPisPositive(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPgetConstantExprSum(SCIP_EXPR *expr)
Definition: expr_sum.c:1181
#define NLHDLR_DETECTPRIORITY
Definition: nlhdlr_soc.c:58
SCIP_Real SCIPgetRhsNonlinear(SCIP_CONS *cons)
SCIP_RETCODE SCIPreleaseVar(SCIP *scip, SCIP_VAR **var)
Definition: scip_var.c:1248
SCIP_Bool SCIPvarIsBinary(SCIP_VAR *var)
Definition: var.c:17422
SCIP_RETCODE SCIPregisterExprUsageNonlinear(SCIP *scip, SCIP_EXPR *expr, SCIP_Bool useauxvar, SCIP_Bool useactivityforprop, SCIP_Bool useactivityforsepabelow, SCIP_Bool useactivityforsepaabove)
SCIP_RETCODE SCIPcallLapackDsyevIpopt(SCIP_Bool computeeigenvectors, int N, SCIP_Real *a, SCIP_Real *w)
#define FALSE
Definition: def.h:96
SCIP_RETCODE SCIPhashmapCreate(SCIP_HASHMAP **hashmap, BMS_BLKMEM *blkmem, int mapsize)
Definition: misc.c:3024
void SCIPnlhdlrSetFreeHdlrData(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRFREEHDLRDATA((*freehdlrdata)))
Definition: nlhdlr.c:83
char * SCIProwprepGetName(SCIP_ROWPREP *rowprep)
Definition: misc_rowprep.c:687
SCIP_Real SCIPinfinity(SCIP *scip)
int SCIPsnprintf(char *t, int len, const char *s,...)
Definition: misc.c:10788
SCIP_Bool SCIPisNegative(SCIP *scip, SCIP_Real val)
SCIP_Real SCIPgetExponentExprPow(SCIP_EXPR *expr)
Definition: expr_pow.c:3352
#define TRUE
Definition: def.h:95
SCIP_RETCODE SCIPhashsetCreate(SCIP_HASHSET **hashset, BMS_BLKMEM *blkmem, int size)
Definition: misc.c:3709
enum SCIP_Retcode SCIP_RETCODE
Definition: type_retcode.h:63
#define DEFAULT_COMPEIGENVALUES
Definition: nlhdlr_soc.c:61
SCIP_RETCODE SCIPhashmapInsertInt(SCIP_HASHMAP *hashmap, void *origin, int image)
Definition: misc.c:3142
SCIP_Real SCIPgetLPFeastol(SCIP *scip)
Definition: scip_lp.c:428
SCIP_Bool SCIPhashsetExists(SCIP_HASHSET *hashset, void *element)
Definition: misc.c:3767
SCIP_RETCODE SCIPcreateVarBasic(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype)
Definition: scip_var.c:194
SCIP_INTERVAL SCIPexprGetActivity(SCIP_EXPR *expr)
Definition: expr.c:3957
void SCIPswapReals(SCIP_Real *value1, SCIP_Real *value2)
Definition: misc.c:10294
#define SCIPfreeBlockMemory(scip, ptr)
Definition: scip_mem.h:108
void SCIPfreeSOCArraysNonlinear(SCIP *scip, SCIP_VAR ***vars, SCIP_Real **offsets, SCIP_Real **transcoefs, int **transcoefsidx, int **termbegins, int nvars, int nterms)
Definition: nlhdlr_soc.c:2823
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:132
static SCIP_RETCODE createNlhdlrExprData(SCIP *scip, SCIP_EXPR **vars, SCIP_Real *offsets, SCIP_Real *transcoefs, int *transcoefsidx, int *termbegins, int nvars, int nterms, SCIP_NLHDLREXPRDATA **nlhdlrexprdata)
Definition: nlhdlr_soc.c:331
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
static SCIP_RETCODE detectSocQuadraticComplex(SCIP *scip, SCIP_EXPR *expr, SCIP_Real conslhs, SCIP_Real consrhs, SCIP_NLHDLREXPRDATA **nlhdlrexprdata, SCIP_Bool *enforcebelow, SCIP_Bool *success)
Definition: nlhdlr_soc.c:1909
#define SCIPfreeBufferArray(scip, ptr)
Definition: scip_mem.h:136
#define SCIPallocBlockMemory(scip, ptr)
Definition: scip_mem.h:89
variable expression handler
SCIP_RETCODE SCIPensureRowprepSize(SCIP *scip, SCIP_ROWPREP *rowprep, int size)
Definition: misc_rowprep.c:878
#define SCIPdebugMsg
Definition: scip_message.h:78
static SCIP_RETCODE detectSocQuadraticSimple(SCIP *scip, SCIP_EXPR *expr, SCIP_Real conslhs, SCIP_Real consrhs, SCIP_NLHDLREXPRDATA **nlhdlrexprdata, SCIP_Bool *enforcebelow, SCIP_Bool *success)
Definition: nlhdlr_soc.c:1441
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:208
SCIP_Bool SCIPisExprProduct(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1454
SCIP_RETCODE SCIPgetRowprepRowCons(SCIP *scip, SCIP_ROW **row, SCIP_ROWPREP *rowprep, SCIP_CONS *cons)
SCIP_Bool SCIProwIsInLP(SCIP_ROW *row)
Definition: lp.c:17523
SCIP_Bool SCIPhashmapExists(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3373
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4259
static SCIP_RETCODE detectSocNorm(SCIP *scip, SCIP_EXPR *expr, SCIP_NLHDLREXPRDATA **nlhdlrexprdata, SCIP_Bool *success)
Definition: nlhdlr_soc.c:1157
SCIP_EXPR ** SCIPexprGetChildren(SCIP_EXPR *expr)
Definition: expr.c:3811
#define DEFAULT_MINCUTEFFICACY
Definition: nlhdlr_soc.c:60
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:105
SCIP_Real inf
Definition: intervalarith.h:55
#define NLHDLR_ENFOPRIORITY
Definition: nlhdlr_soc.c:59
void SCIPmarkRowNotRemovableLocal(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1868
SCIP_Real * SCIPgetCoefsExprSum(SCIP_EXPR *expr)
Definition: expr_sum.c:1166
static SCIP_DECL_NLHDLRINITSEPA(nlhdlrInitSepaSoc)
Definition: nlhdlr_soc.c:2438
#define SCIPerrorMessage
Definition: pub_message.h:64
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
static void buildQuadExprMatrix(SCIP *scip, SCIP_EXPR *quadexpr, SCIP_HASHMAP *expr2idx, int nexprs, SCIP_Real *quadmatrix, SCIP_Real *linvector)
Definition: nlhdlr_soc.c:849
const char * SCIPnlhdlrGetName(SCIP_NLHDLR *nlhdlr)
Definition: nlhdlr.c:150
SCIP_VAR * SCIPgetVarExprVar(SCIP_EXPR *expr)
Definition: expr_var.c:416
void SCIPhashsetFree(SCIP_HASHSET **hashset, BMS_BLKMEM *blkmem)
Definition: misc.c:3740
SCIP_RETCODE SCIPincludeNlhdlrNonlinear(SCIP *scip, SCIP_NLHDLR **nlhdlr, const char *name, const char *desc, int detectpriority, int enfopriority, SCIP_DECL_NLHDLRDETECT((*detect)), SCIP_DECL_NLHDLREVALAUX((*evalaux)), SCIP_NLHDLRDATA *nlhdlrdata)
#define SCIPfreeBufferArrayNull(scip, ptr)
Definition: scip_mem.h:137
BMS_BLKMEM * SCIPblkmem(SCIP *scip)
Definition: scip_mem.c:57
static SCIP_RETCODE createDisaggrRow(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_EXPR *expr, SCIP_NLHDLREXPRDATA *nlhdlrexprdata)
Definition: nlhdlr_soc.c:278
const char * SCIPvarGetName(SCIP_VAR *var)
Definition: var.c:17242
soc nonlinear handler
void SCIPhashmapFree(SCIP_HASHMAP **hashmap)
Definition: misc.c:3058
SCIP_EXPR * SCIPgetExprNonlinear(SCIP_CONS *cons)
#define NULL
Definition: lpi_spx1.cpp:164
power and signed power expression handlers
SCIP_Bool SCIPisExprSum(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1443
void SCIPfreeRowprep(SCIP *scip, SCIP_ROWPREP **rowprep)
Definition: misc_rowprep.c:581
#define SCIP_CALL(x)
Definition: def.h:394
void SCIProwprepAddSide(SCIP_ROWPREP *rowprep, SCIP_Real side)
Definition: misc_rowprep.c:737
static SCIP_DECL_NLHDLREVALAUX(nlhdlrEvalauxSoc)
Definition: nlhdlr_soc.c:2346
SCIP_Real sup
Definition: intervalarith.h:56
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:225
SCIP_Real SCIPgetRowprepViolation(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_SOL *sol, SCIP_Bool *reliable)
Definition: misc_rowprep.c:963
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:250
#define SCIPdebugGetSolVal(scip, var, val)
Definition: debug.h:299
void SCIPnlhdlrSetSepa(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRINITSEPA((*initsepa)), SCIP_DECL_NLHDLRENFO((*enfo)), SCIP_DECL_NLHDLRESTIMATE((*estimate)), SCIP_DECL_NLHDLREXITSEPA((*exitsepa)))
Definition: nlhdlr.c:132
int SCIPgetExprNLocksNegNonlinear(SCIP_EXPR *expr)
Ipopt NLP interface.
#define SCIPallocBufferArray(scip, ptr, num)
Definition: scip_mem.h:124
#define SCIP_Bool
Definition: def.h:93
static SCIP_DECL_NLHDLRDETECT(nlhdlrDetectSoc)
Definition: nlhdlr_soc.c:2299
void SCIPvarMarkRelaxationOnly(SCIP_VAR *var)
Definition: var.c:17547
constraint handler for nonlinear constraints specified by algebraic expressions
static SCIP_DECL_NLHDLRCOPYHDLR(nlhdlrCopyhdlrSoc)
Definition: nlhdlr_soc.c:2233
#define SCIP_DECL_NLHDLRINIT(x)
Definition: type_nlhdlr.h:105
#define MAX(x, y)
Definition: tclique_def.h:92
methods for debugging
SCIP_Real SCIPgetCutEfficacy(SCIP *scip, SCIP_SOL *sol, SCIP_ROW *cut)
Definition: scip_cut.c:94
#define nlhdlrExitSoc
Definition: nlhdlr_soc.c:2293
static SCIP_RETCODE generateCutSolDisagg(SCIP *scip, SCIP_EXPR *expr, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, int disaggidx, SCIP_Real mincutviolation, SCIP_Real rhsval, SCIP_ROW **cut)
Definition: nlhdlr_soc.c:586
static SCIP_Real evalSingleTerm(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_SOL *sol, int k)
Definition: nlhdlr_soc.c:404
SCIP_Bool SCIPisExprPower(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1465
SCIP_Bool SCIPisCutApplicable(SCIP *scip, SCIP_ROW *cut)
Definition: scip_cut.c:207
SCIP_Bool SCIPisInfinity(SCIP *scip, SCIP_Real val)
int SCIPgetExprNLocksPosNonlinear(SCIP_EXPR *expr)
SCIP_RETCODE SCIPreleaseRow(SCIP *scip, SCIP_ROW **row)
Definition: scip_lp.c:1562
int SCIPhashmapGetNElements(SCIP_HASHMAP *hashmap)
Definition: misc.c:3483
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_RETCODE SCIPaddVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_prob.c:1668
#define NLHDLR_DESC
Definition: nlhdlr_soc.c:57
#define NLHDLR_NAME
Definition: nlhdlr_soc.c:56
SCIP_Bool SCIPisExprVar(SCIP *scip, SCIP_EXPR *expr)
Definition: scip_expr.c:1421
SCIP_RETCODE SCIPhashsetInsert(SCIP_HASHSET *hashset, BMS_BLKMEM *blkmem, void *element)
Definition: misc.c:3750
SCIP_RETCODE SCIPincludeNlhdlrSoc(SCIP *scip)
Definition: nlhdlr_soc.c:2676
void SCIPnlhdlrSetInitExit(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRINIT((*init)), SCIP_DECL_NLHDLREXIT((*exit_)))
Definition: nlhdlr.c:106
#define SCIP_Real
Definition: def.h:186
static SCIP_DECL_NLHDLRENFO(nlhdlrEnfoSoc)
Definition: nlhdlr_soc.c:2546
static SCIP_RETCODE detectSOC(SCIP *scip, SCIP_NLHDLRDATA *nlhdlrdata, SCIP_EXPR *expr, SCIP_Real conslhs, SCIP_Real consrhs, SCIP_NLHDLREXPRDATA **nlhdlrexprdata, SCIP_Bool *enforcebelow, SCIP_Bool *success)
Definition: nlhdlr_soc.c:2183
#define SCIP_INVALID
Definition: def.h:206
SCIP_NLHDLRDATA * SCIPnlhdlrGetData(SCIP_NLHDLR *nlhdlr)
Definition: nlhdlr.c:200
#define SCIP_DECL_NLHDLREXIT(x)
Definition: type_nlhdlr.h:114
SCIP_Real SCIPgetRowSolFeasibility(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2167
struct SCIP_NlhdlrExprData SCIP_NLHDLREXPRDATA
Definition: type_nlhdlr.h:413
#define SCIPdebugAddSolVal(scip, var, val)
Definition: debug.h:298
SCIP_RETCODE SCIPcreateRowprep(SCIP *scip, SCIP_ROWPREP **rowprep, SCIP_SIDETYPE sidetype, SCIP_Bool local)
Definition: misc_rowprep.c:561
struct SCIP_NlhdlrData SCIP_NLHDLRDATA
Definition: type_nlhdlr.h:412
SCIP_Bool SCIPisZero(SCIP *scip, SCIP_Real val)
static SCIP_RETCODE checkAndCollectQuadratic(SCIP *scip, SCIP_EXPR *quadexpr, SCIP_HASHMAP *expr2idx, SCIP_EXPR **occurringexprs, int *nexprs, SCIP_Bool *success)
Definition: nlhdlr_soc.c:734
sum expression handler
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
SCIP_RETCODE SCIPaddRowprepTerm(SCIP *scip, SCIP_ROWPREP *rowprep, SCIP_VAR *var, SCIP_Real coef)
Definition: misc_rowprep.c:904
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:111
SCIP_RETCODE SCIPisSOCNonlinear(SCIP *scip, SCIP_CONS *cons, SCIP_Bool compeigenvalues, SCIP_Bool *success, SCIP_SIDETYPE *sidetype, SCIP_VAR ***vars, SCIP_Real **offsets, SCIP_Real **transcoefs, int **transcoefsidx, int **termbegins, int *nvars, int *nterms)
Definition: nlhdlr_soc.c:2733
SCIP_RETCODE SCIPdismantleExpr(SCIP *scip, FILE *file, SCIP_EXPR *expr)
Definition: scip_expr.c:1598
SCIP_VAR * SCIPgetExprAuxVarNonlinear(SCIP_EXPR *expr)
#define SCIPallocClearBlockMemory(scip, ptr)
Definition: scip_mem.h:91
static SCIP_DECL_NLHDLRFREEEXPRDATA(nlhdlrFreeExprDataSoc)
Definition: nlhdlr_soc.c:2257
int SCIPhashmapGetImageInt(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3231
public functions of nonlinear handlers of nonlinear constraints
SCIP_RETCODE SCIPcreateEmptyRowConshdlr(SCIP *scip, SCIP_ROW **row, SCIP_CONSHDLR *conshdlr, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1391
static SCIP_DECL_NLHDLREXITSEPA(nlhdlrExitSepaSoc)
Definition: nlhdlr_soc.c:2530
SCIP_Longint SCIPgetNLPs(SCIP *scip)
#define SCIPABORT()
Definition: def.h:366
static SCIP_RETCODE freeNlhdlrExprData(SCIP *scip, SCIP_NLHDLREXPRDATA **nlhdlrexprdata)
Definition: nlhdlr_soc.c:377
SCIP_Real SCIPgetLhsNonlinear(SCIP_CONS *cons)
#define SCIP_NLHDLR_METHOD_SEPABOTH
Definition: type_nlhdlr.h:53
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1361
#define SCIP_NLHDLR_METHOD_SEPAABOVE
Definition: type_nlhdlr.h:52
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:139
static SCIP_RETCODE freeDisaggrVars(SCIP *scip, SCIP_NLHDLREXPRDATA *nlhdlrexprdata)
Definition: nlhdlr_soc.c:248
static SCIP_RETCODE generateCutSolSOC(SCIP *scip, SCIP_EXPR *expr, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_NLHDLREXPRDATA *nlhdlrexprdata, SCIP_Real mincutviolation, SCIP_Real rhsval, SCIP_ROW **cut)
Definition: nlhdlr_soc.c:450
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:57
void SCIPnlhdlrSetCopyHdlr(SCIP_NLHDLR *nlhdlr, SCIP_DECL_NLHDLRCOPYHDLR((*copy)))
Definition: nlhdlr.c:72
enum SCIP_SideType SCIP_SIDETYPE
Definition: type_lp.h:67