cons_linear.c
Go to the documentation of this file.
18 * @brief Constraint handler for linear constraints in their most general form, \f$lhs <= a^T x <= rhs\f$.
48 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
93 #define CONSHDLR_ENFOPRIORITY -1000000 /**< priority of the constraint handler for constraint enforcing */
94 #define CONSHDLR_CHECKPRIORITY -1000000 /**< priority of the constraint handler for checking feasibility */
95 #define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
96 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
97 #define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
99 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
100 #define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
101 #define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
102 #define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
104 #define CONSHDLR_PRESOLTIMING (SCIP_PRESOLTIMING_FAST | SCIP_PRESOLTIMING_EXHAUSTIVE) /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
114 #define DEFAULT_TIGHTENBOUNDSFREQ 1 /**< multiplier on propagation frequency, how often the bounds are tightened */
115 #define DEFAULT_MAXROUNDS 5 /**< maximal number of separation rounds per node (-1: unlimited) */
116 #define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
118 #define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in root node */
119 #define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
120 #define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
121 #define DEFAULT_NMINCOMPARISONS 200000 /**< number for minimal pairwise presolving comparisons */
122 #define DEFAULT_MINGAINPERNMINCOMP 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
124 #define DEFAULT_SORTVARS TRUE /**< should variables be sorted after presolve w.r.t their coefficient absolute for faster
126 #define DEFAULT_CHECKRELMAXABS FALSE /**< should the violation for a constraint with side 0.0 be checked relative
128 #define DEFAULT_MAXAGGRNORMSCALE 0.0 /**< maximal allowed relative gain in maximum norm for constraint aggregation
130 #define DEFAULT_MAXEASYACTIVITYDELTA 1e6 /**< maximum activity delta to run easy propagation on linear constraint
132 #define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
134 #define DEFAULT_SEPARATEALL FALSE /**< should all constraints be subject to cardinality cut generation instead of only
136 #define DEFAULT_AGGREGATEVARIABLES TRUE /**< should presolving search for redundant variables in equations */
137 #define DEFAULT_SIMPLIFYINEQUALITIES TRUE /**< should presolving try to simplify inequalities */
139 #define DEFAULT_SINGLETONSTUFFING TRUE /**< should stuffing of singleton continuous variables be performed? */
140 #define DEFAULT_SINGLEVARSTUFFING FALSE /**< should single variable stuffing be performed, which tries to fulfill
142 #define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
145 #define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
148 #define DEFAULT_DETECTPARTIALOBJECTIVE TRUE/**< should presolving try to detect subsets of constraints parallel to the
151 #define DEFAULT_RANGEDROWARTCONS TRUE /**< should presolving and propagation extract sub-constraints from ranged rows and equations? */
155 #define DEFAULT_MULTAGGRREMOVE FALSE /**< should multi-aggregations only be performed if the constraint can be
157 #define DEFAULT_MAXMULTAGGRQUOT 1e+03 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
158 #define DEFAULT_MAXDUALMULTAGGRQUOT 1e+20 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
163 #define MAXSCALEDCOEFINTEGER 0 /**< maximal coefficient value after scaling if all variables are of integral
170 #define MAXVALRECOMP 1e+06 /**< maximal abolsute value we trust without recomputing the activity */
171 #define MINVALRECOMP 1e-05 /**< minimal abolsute value we trust without recomputing the activity */
174 #define NONLINCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of expressions constraints */
176 /* @todo add multi-aggregation of variables that are in exactly two equations (, if not numerically an issue),
183 {
188 SCIP_Real minactivity; /**< minimal value w.r.t. the variable's local bounds for the constraint's
190 SCIP_Real maxactivity; /**< maximal value w.r.t. the variable's local bounds for the constraint's
196 SCIP_Real glbminactivity; /**< minimal value w.r.t. the variable's global bounds for the constraint's
198 SCIP_Real glbmaxactivity; /**< maximal value w.r.t. the variable's global bounds for the constraint's
200 SCIP_Real lastglbminactivity; /**< last global minimal activity which was computed by complete summation
202 SCIP_Real lastglbmaxactivity; /**< last global maximal activity which was computed by complete summation
204 SCIP_Real maxactdelta; /**< maximal activity contribution of a single variable, or SCIP_INVALID if invalid */
205 SCIP_VAR* maxactdeltavar; /**< variable with maximal activity contribution, or NULL if invalid */
213 int minactivityneginf; /**< number of coefficients contributing with neg. infinite value to minactivity */
214 int minactivityposinf; /**< number of coefficients contributing with pos. infinite value to minactivity */
215 int maxactivityneginf; /**< number of coefficients contributing with neg. infinite value to maxactivity */
216 int maxactivityposinf; /**< number of coefficients contributing with pos. infinite value to maxactivity */
217 int minactivityneghuge; /**< number of coefficients contributing with huge neg. value to minactivity */
218 int minactivityposhuge; /**< number of coefficients contributing with huge pos. value to minactivity */
219 int maxactivityneghuge; /**< number of coefficients contributing with huge neg. value to maxactivity */
220 int maxactivityposhuge; /**< number of coefficients contributing with huge pos. value to maxactivity */
221 int glbminactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbminactivity */
222 int glbminactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbminactivity */
223 int glbmaxactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbmaxactivity */
224 int glbmaxactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbmaxactivity */
225 int glbminactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbminactivity */
226 int glbminactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbminactivity */
227 int glbmaxactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbmaxactivity */
228 int glbmaxactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbmaxactivity */
235 unsigned int rangedrowpropagated:2; /**< did we perform ranged row propagation on this constraint?
247 unsigned int changed:1; /**< was constraint changed since last aggregation round in preprocessing? */
250 unsigned int upgraded:1; /**< is the constraint upgraded and will it be removed after preprocessing? */
255 unsigned int coefsorted:1; /**< are variables sorted by type and their absolute activity delta? */
257 unsigned int hascontvar:1; /**< does the constraint contain at least one continuous variable? */
258 unsigned int hasnonbinvar:1; /**< does the constraint contain at least one non-binary variable? */
259 unsigned int hasnonbinvalid:1; /**< is the information stored in hasnonbinvar and hascontvar valid? */
260 unsigned int checkabsolute:1; /**< should the constraint be checked w.r.t. an absolute feasibilty tolerance? */
275 SCIP_LINCONSUPGRADE** linconsupgrades; /**< linear constraint upgrade methods for specializing linear constraints */
276 SCIP_Real maxaggrnormscale; /**< maximal allowed relative gain in maximum norm for constraint aggregation
278 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
280 SCIP_Real mingainpernmincomp; /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise comparison round */
281 SCIP_Real maxeasyactivitydelta;/**< maximum activity delta to run easy propagation on linear constraint
285 int tightenboundsfreq; /**< multiplier on propagation frequency, how often the bounds are tightened */
292 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
293 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
294 SCIP_Bool separateall; /**< should all constraints be subject to cardinality cut generation instead of only
296 SCIP_Bool aggregatevariables; /**< should presolving search for redundant variables in equations */
297 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
299 SCIP_Bool singletonstuffing; /**< should stuffing of singleton continuous variables be performed? */
300 SCIP_Bool singlevarstuffing; /**< should single variable stuffing be performed, which tries to fulfill
303 SCIP_Bool checkrelmaxabs; /**< should the violation for a constraint with side 0.0 be checked relative
305 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
308 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
311 SCIP_Bool detectpartialobjective;/**< should presolving try to detect subsets of constraints parallel to
313 SCIP_Bool rangedrowpropagation;/**< should presolving and propagation try to improve bounds, detect
316 SCIP_Bool rangedrowartcons; /**< should presolving and propagation extract sub-constraints from ranged rows and equations?*/
319 SCIP_Bool multaggrremove; /**< should multi-aggregations only be performed if the constraint can be
321 SCIP_Real maxmultaggrquot; /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for primal multiaggregation */
322 SCIP_Real maxdualmultaggrquot;/**< maximum coefficient dynamism (ie. maxabsval / minabsval) for dual multiaggregation */
345 PROPRULE_1_RANGEDROW = 3, /**< fixed variables and gcd of all left variables tighten bounds of a
360 } asbits;
362 } val;
383 )
425 /** constructs an inference information out of a propagation rule and a position number, returns info as int */
446 )
457 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->linconsupgrades, conshdlrdata->linconsupgradessize, newsize) );
486 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
542 {
576 SCIPfreeBlockMemoryArrayNull(scip, &(*conshdlrdata)->linconsupgrades, (*conshdlrdata)->linconsupgradessize);
602 SCIPwarningMessage(scip, "Try to add already known upgrade message for constraint handler %s.\n", conshdlrname);
625 SCIP_CALL( conshdlrdataEnsureLinconsupgradesSize(scip, conshdlrdata, conshdlrdata->nlinconsupgrades+1) );
632 assert(0 <= i && i <= conshdlrdata->nlinconsupgrades);
643 /** installs rounding locks for the given variable associated to the given coefficient in the linear constraint */
676 /** removes rounding locks for the given variable associated to the given coefficient in the linear constraint */
770 assert(consdata->eventdata[pos]->cons == cons);
918 if( SCIPisConsCompressionEnabled(scip) && SCIPisEQ(scip, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var)) )
960 /* due to compressed copying, we may have fixed variables contributing to the left and right hand side */
1032 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
1116 {
1118 SCIP_CALL( SCIPwriteVarsLinearsum(scip, file, consdata->vars, consdata->vals, consdata->nvars, TRUE) );
1151 SCIPmessageFPrintInfo(SCIPgetMessagehdlr(scip), file, " [%s] <%s>: ", SCIPconshdlrGetName(SCIPconsGetHdlr(cons)), SCIPconsGetName(cons));
1273 bound = (SCIPvarGetBestBoundType(consdata->vars[i]) == SCIP_BOUNDTYPE_LOWER) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1319 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1321 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1346 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbLocal(consdata->vars[i]) : SCIPvarGetLbLocal(consdata->vars[i]);
1348 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1373 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbGlobal(consdata->vars[i]) : SCIPvarGetUbGlobal(consdata->vars[i]);
1375 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1400 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbGlobal(consdata->vars[i]) : SCIPvarGetLbGlobal(consdata->vars[i]);
1402 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1434 }
1458 {
1466 /** checks the type of all variables of the constraint and sets hasnonbinvar and hascontvar flags accordingly */
1487 {
1563 {
1615 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1667 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1669 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1723 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1725 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1793 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1821 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1846 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1852 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1855 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1861 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1864 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1879 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1885 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1888 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1894 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1897 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1949 /* update the activity, if the current value is valid and there was a change in the finite part */
1998 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2007 consdataUpdateActivities(scip, consdata, var, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, FALSE, checkreliability);
2009 assert(!SCIPisInfinity(scip, -consdata->minactivity) && !SCIPisInfinity(scip, consdata->minactivity));
2010 assert(!SCIPisInfinity(scip, -consdata->maxactivity) && !SCIPisInfinity(scip, consdata->maxactivity));
2023 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2032 consdataUpdateActivities(scip, consdata, var, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, FALSE, checkreliability);
2034 assert(!SCIPisInfinity(scip, -consdata->minactivity) && !SCIPisInfinity(scip, consdata->minactivity));
2035 assert(!SCIPisInfinity(scip, -consdata->maxactivity) && !SCIPisInfinity(scip, consdata->maxactivity));
2047 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2055 consdataUpdateActivities(scip, consdata, NULL, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, TRUE, checkreliability);
2057 assert(!SCIPisInfinity(scip, -consdata->glbminactivity) && !SCIPisInfinity(scip, consdata->glbminactivity));
2058 assert(!SCIPisInfinity(scip, -consdata->glbmaxactivity) && !SCIPisInfinity(scip, consdata->glbmaxactivity));
2060 }
2070 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2078 consdataUpdateActivities(scip, consdata, NULL, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, TRUE, checkreliability);
2080 assert(!SCIPisInfinity(scip, -consdata->glbminactivity) && !SCIPisInfinity(scip, consdata->glbminactivity));
2081 assert(!SCIPisInfinity(scip, -consdata->glbmaxactivity) && !SCIPisInfinity(scip, consdata->glbmaxactivity));
2083 }
2085 /** updates minimum and maximum activity and maximum absolute value for coefficient addition */
2092 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2128 consdataUpdateActivitiesLb(scip, consdata, var, 0.0, SCIPvarGetLbLocal(var), val, checkreliability);
2129 consdataUpdateActivitiesUb(scip, consdata, var, 0.0, SCIPvarGetUbLocal(var), val, checkreliability);
2130 consdataUpdateActivitiesGlbLb(scip, consdata, 0.0, SCIPvarGetLbGlobal(var), val, checkreliability);
2131 consdataUpdateActivitiesGlbUb(scip, consdata, 0.0, SCIPvarGetUbGlobal(var), val, checkreliability);
2135 /** updates minimum and maximum activity for coefficient deletion, invalidates maximum absolute value if necessary */
2142 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2185 consdataUpdateActivitiesLb(scip, consdata, var, SCIPvarGetLbLocal(var), 0.0, val, checkreliability);
2186 consdataUpdateActivitiesUb(scip, consdata, var, SCIPvarGetUbLocal(var), 0.0, val, checkreliability);
2187 consdataUpdateActivitiesGlbLb(scip, consdata, SCIPvarGetLbGlobal(var), 0.0, val, checkreliability);
2188 consdataUpdateActivitiesGlbUb(scip, consdata, SCIPvarGetUbGlobal(var), 0.0, val, checkreliability);
2192 /** updates minimum and maximum activity for coefficient change, invalidates maximum absolute value if necessary */
2200 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2280 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
2286 /* @todo do something more clever here, e.g. if oldval * newval >= 0, do the update directly */
2312 {
2385 /** gets minimal activity for constraint and given values of counters for infinite and huge contributions
2386 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2399 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2403 SCIP_Bool* issettoinfinity /**< pointer to store whether minactivity was set to infinity or calculated */
2408 assert(posinf >= 0);
2430 /* if we have neg. huge contributions, we only know that -infty is a relaxation of the minactivity */
2437 /* we do not need a good relaxation and we have positive huge contributions, so we just return -infty as activity */
2468 * times the minimum value counting as "huge" plus finite (and non-huge) part of minactivity - delta
2486 /** gets maximal activity for constraint and given values of counters for infinite and huge contributions
2487 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2500 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2504 SCIP_Bool* issettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2509 assert(posinf >= 0);
2531 /* if we have pos. huge contributions, we only know that +infty is a relaxation of the maxactivity */
2538 /* we do not need a good relaxation and we have positve huge contributions, so we just return +infty as activity */
2569 * times the minimum value counting as "huge" plus the finite (and non-huge) part of maxactivity minus delta
2596 SCIP_Bool* minisrelax, /**< pointer to store whether the returned minactivity is just a relaxation,
2599 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned maxactivity is just a relaxation,
2602 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minactivity was set to infinity or calculated */
2603 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2728 SCIP_Bool* minisrelax, /**< pointer to store whether the returned residual minactivity is just a
2731 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned residual maxactivity is just a
2734 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2735 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2783 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2784 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2821 consdata->minactivityposhuge, consdata->minactivityneghuge, absval * minactbound, FALSE, goodrelax,
2825 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2826 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2863 consdata->maxactivityposhuge, consdata->maxactivityneghuge, absval * maxactbound, FALSE, goodrelax,
2875 SCIP_Real* glbminactivity, /**< pointer to store the minimal activity, or NULL, if not needed */
2876 SCIP_Real* glbmaxactivity, /**< pointer to store the maximal activity, or NULL, if not needed */
2877 SCIP_Bool* minisrelax, /**< pointer to store whether the returned minactivity is just a relaxation,
2880 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned maxactivity is just a relaxation,
2883 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2884 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2939 SCIP_Real* minresactivity, /**< pointer to store the minimal residual activity, or NULL, if not needed */
2940 SCIP_Real* maxresactivity, /**< pointer to store the maximal residual activity, or NULL, if not needed */
2941 SCIP_Bool* minisrelax, /**< pointer to store whether the returned residual minactivity is just a
2944 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned residual maxactivity is just a
2947 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2948 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2990 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2991 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2997 getMinActivity(scip, consdata, consdata->glbminactivityposinf - 1, consdata->glbminactivityneginf,
3005 getMinActivity(scip, consdata, consdata->glbminactivityposinf, consdata->glbminactivityneginf - 1,
3038 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
3039 * and contribution of variable set to zero that has to be subtracted from finite part of activity
3045 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf, consdata->glbmaxactivityneginf - 1,
3053 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf - 1, consdata->glbmaxactivityneginf,
3120 else if( (SCIPisInfinity(scip, solval) && negsign) || (SCIPisInfinity(scip, -solval) && !negsign) )
3127 SCIPdebugMsg(scip, "activity of linear constraint: %.15g, %d positive infinity values, %d negative infinity values \n", activity, nposinf, nneginf);
3216 /** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3255 /** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3311 SCIP_Real abscont1 = REALABS(consdata->vals[ind1] * (SCIPvarGetUbGlobal(var1) - SCIPvarGetLbGlobal(var1)));
3312 SCIP_Real abscont2 = REALABS(consdata->vals[ind2] * (SCIPvarGetUbGlobal(var2) - SCIPvarGetLbGlobal(var2)));
3346 {
3396 * sorts variables of the remaining problem by binaries, integers, implicit integers, and continuous variables,
3517 /* the left hand side switched from -infinity to a non-infinite value -> install rounding locks */
3542 /* the left hand side switched from a non-infinite value to -infinity -> remove rounding locks */
3563 /* check whether the left hand side is increased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3645 /* the right hand side switched from infinity to a non-infinite value -> install rounding locks */
3670 /* the right hand side switched from a non-infinite value to infinity -> remove rounding locks */
3691 /* check whether the right hand side is decreased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3739 assert(!SCIPvarIsRelaxationOnly(var) || (!SCIPconsIsChecked(cons) && !SCIPconsIsEnforced(cons)));
3854 consdata->indexsorted = consdata->indexsorted && (consdataCompVar((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3860 consdata->coefsorted = consdata->coefsorted && (consdataCompVarProp((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3951 /* if at most one variable is left, the activities should be recalculated (to correspond exactly to the bounds
3963 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4029 assert(0 <= pos && pos < consdata->nvars);
4111 SCIPwarningMessage(scip, "skipped scaling for linear constraint <%s> to avoid numerical troubles (scalar: %.15g)\n",
4122 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4130 SCIPwarningMessage(scip, "coefficient %.15g of variable <%s> in linear constraint <%s> scaled to zero (scalar: %.15g)\n",
4152 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4164 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasCeil, we subtract 0.5 before ceiling up
4201 {
4226 * Apply the following rules in the given order, until the sign of the factor is determined. Later rules only apply,
4231 * 4. the number of positive coefficients must not be smaller than the number of negative coefficients
4234 * Try to identify a rational representation of the fractional coefficients, and multiply all coefficients
4325 SCIPdebugMsg(scip, "divide linear constraint with %g, because all coefficients are in absolute value the same\n", maxabsval);
4367 epsilon = SCIPepsilon(scip) * 0.9; /* slightly decrease epsilon to be safe in rational conversion below */
4376 maxmult = MIN(maxmult, (SCIP_Longint) (MAXSCALEDCOEFINTEGER / MAX(maxabsval, 1.0))); /*lint !e835*/
4402 /* 3. the absolute value of the right hand side must be greater than that of the left hand side */
4411 /* 4. the number of positive coefficients must not be smaller than the number of negative coefficients */
4464 /* it might be that we have really big coefficients, but all are integral, in that case we want to divide them by
4484 SCIPdebugMsg(scip, "scale linear constraint with %" SCIP_LONGINT_FORMAT " to make coefficients integral\n", scm);
4533 /* since the lhs/rhs is not respected for gcd calculation it can happen that we detect infeasibility */
4536 if( SCIPisEQ(scip, consdata->lhs, consdata->rhs) && !SCIPisFeasIntegral(scip, consdata->rhs / gcd) )
4540 SCIPdebugMsg(scip, "detected infeasibility of constraint after scaling with gcd=%" SCIP_LONGINT_FORMAT ":\n", gcd);
4548 SCIPdebugMsg(scip, "divide linear constraint by greatest common divisor %" SCIP_LONGINT_FORMAT "\n", gcd);
4621 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4694 /* if an unmodifiable row has been added to the LP, then we cannot apply fixing anymore (cannot change a row)
4695 * this should not happen, as applyFixings is called in addRelaxation() before creating and adding a row
4697 assert(consdata->row == NULL || !SCIProwIsInLP(consdata->row) || SCIProwIsModifiable(consdata->row));
4850 if( SCIPisEQ(scip, lhssubtrahend, consdata->lhs) && SCIPisFeasGE(scip, REALABS(lhssubtrahend), 1.0) )
4866 if( SCIPisEQ(scip, rhssubtrahend, consdata->rhs ) && SCIPisFeasGE(scip, REALABS(rhssubtrahend), 1.0) )
4880 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have
4899 /** for each variable in the linear constraint, except the inferred variable, adds one bound to the conflict analysis'
4900 * candidate store (bound depends on sign of coefficient and whether the left or right hand side was the reason for the
4901 * inference variable's bound change); the conflict analysis can be initialized with the linear constraint being the
4909 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
4938 /* for each variable, add the bound to the conflict queue, that is responsible for the minimal or maximal
4939 * residual value, depending on whether the left or right hand side is responsible for the bound change:
4944 /* if the variable is integral we only need to add reason bounds until the propagation could be applied */
4957 /* calculate the minimal and maximal global activity of all other variables involved in the constraint */
4962 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, &minresactivity, NULL,
4965 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, NULL, &maxresactivity,
4979 if( (reasonisrhs && !isminsettoinfinity && !minisrelax) || (!reasonisrhs && !ismaxsettoinfinity && !maxisrelax) ) /*lint !e644*/
4986 /* calculate the residual capacity that would be left, if the variable would be set to one more / one less
5041 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound */
5043 rescap -= vals[i] * (SCIPgetVarLbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetLbGlobal(vars[i]));
5047 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound */
5049 rescap -= vals[i] * (SCIPgetVarUbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetUbGlobal(vars[i]));
5069 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound is responsible */
5074 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound is responsible */
5082 /** for each variable in the linear ranged row constraint, except the inferred variable, adds the bounds of all fixed
5083 * variables to the conflict analysis' candidate store; the conflict analysis can be initialized
5084 * with the linear constraint being the conflict detecting constraint by using NULL as inferred variable
5091 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5106 nvars = consdata->nvars;
5123 if( !SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetLbGlobal(vars[v])) )
5129 if( !SCIPisEQ(scip, SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetUbGlobal(vars[v])) )
5139 if( SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE)) )
5141 /* add all bounds of fixed variables which lead to the boundchange of the given inference variable */
5171 {
5198 /** resolves a propagation on the given variable by supplying the variables needed for applying the corresponding
5209 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5210 SCIP_RESULT* result /**< pointer to store the result of the propagation conflict resolving call */
5251 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5252 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5261 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5262 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5271 /* the bound of the variable was tightened, because some variables were already fixed and the leftover only allow
5283 SCIPerrorMessage("invalid inference information %d in linear constraint <%s> at position %d for %s bound of variable <%s>\n",
5294 /** analyzes conflicting bounds on given constraint, and adds conflict constraint to problem */
5303 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5309 /* add the conflicting bound for each variable of infeasible constraint to conflict candidate queue */
5357 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5381 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
5382 SCIPconsGetName(cons), SCIPvarGetName(var), lb, oldub, consdata->vals[pos], consdata->minactivity, consdata->maxactivity, consdata->lhs, consdata->rhs, newub);
5387 SCIP_CALL( SCIPinferVarUbCons(scip, var, newub, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5426 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5450 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
5451 SCIPconsGetName(cons), SCIPvarGetName(var), oldlb, ub, consdata->vals[pos], consdata->minactivity, consdata->maxactivity, consdata->lhs, consdata->rhs, newlb);
5456 SCIP_CALL( SCIPinferVarLbCons(scip, var, newlb, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5492 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5552 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5555 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5567 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5611 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5622 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5658 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5661 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5673 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5716 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5728 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5760 /** analyzes conflicting bounds on given ranged row constraint, and adds conflict constraint to problem */
5783 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5789 /* add the conflicting fixed variables of this ranged row constraint to conflict candidate queue */
5803 * Check ranged rows for possible solutions, possibly detect infeasibility, fix variables due to having only one possible
5804 * solution, tighten bounds if having only two possible solutions or add constraints which propagate a subset of
5889 addartconss = conshdlrdata->rangedrowartcons && SCIPgetDepth(scip) < 1 && !SCIPinProbing(scip) && !SCIPinRepropagation(scip);
5894 /* we are not allowed to add artificial constraints during propagation; if nothing changed on this constraint since
5895 * the last rangedrowpropagation, we can stop; otherwise, we mark this constraint to be rangedrowpropagated without
5913 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5942 * coefficient so that all variables in this group will have a gcd greater than 1, this group will be implicitly
5945 * the second group will contain all left unfixed variables and will be saved as infcheckvars with corresponding
5946 * coefficients as infcheckvals, the order of these variables should be the same as in the consdata object
5949 /* find first integral variables with integral coefficient greater than 1, thereby collecting all other unfixed
5959 /* partition the variables, do not change the order of collection, because it might be used later on */
5963 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5991 while( v < consdata->nvars && SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) );
6005 assert(!SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])));
6006 assert(SCIPisIntegral(scip, consdata->vals[v]) && SCIPvarGetType(consdata->vars[v]) != SCIP_VARTYPE_CONTINUOUS && REALABS(consdata->vals[v]) > 1.5);
6013 /* go on to partition the variables, do not change the order of collection, because it might be used later on;
6017 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6030 if( !SCIPisIntegral(scip, consdata->vals[v]) || SCIPvarGetType(consdata->vars[v]) == SCIP_VARTYPE_CONTINUOUS ||
6069 /* it should not happen that all variables are of integral type and have a gcd >= 2, this should be done by
6128 SCIPdebugMsg(scip, "minactinfvarsinvalid = %u, minactinfvars = %g, maxactinfvarsinvalid = %u, maxactinfvars = %g, gcd = %lld, ninfcheckvars = %d, ncontvars = %d\n",
6129 minactinfvarsinvalid, minactinfvars, maxactinfvarsinvalid, maxactinfvars, gcd, ninfcheckvars, ncontvars);
6131 /* @todo maybe we took the wrong variables as infcheckvars we could try to exchange integer variables */
6132 /* @todo if minactinfvarsinvalid or maxactinfvarsinvalid are true, try to exchange both partitions to maybe get valid
6134 /* @todo calculate minactivity and maxactivity for all non-intcheckvars, and use this for better bounding,
6136 * that therefore the conflict variables in addConflictFixedVars() need to be extended by all variables which
6140 /* check if between left hand side and right hand side exist a feasible point, if not the constraint leads to
6145 SCIPdebugMsg(scip, "no feasible value exist, constraint <%s> lead to infeasibility", SCIPconsGetName(cons));
6150 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6167 gcdinfvars = SCIPcalcGreComDiv(gcdinfvars, (SCIP_Longint)(REALABS(infcheckvals[v]) + feastol));
6175 /* compute solutions for this ranged row, if all variables are of integral type with integral coefficients */
6244 SCIPdebugMsg(scip, "here nsols %s %d, minsolvalue = %g, maxsolvalue = %g, ninfcheckvars = %d, nunfixedvars = %d\n",
6252 SCIPdebugMsg(scip, "no solution found; constraint <%s> lead to infeasibility\n", SCIPconsGetName(cons));
6257 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6285 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6306 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6318 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6400 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6407 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6412 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals,
6464 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6485 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6507 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6519 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6626 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newlb) );
6647 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newub) );
6655 /* at least two solutions and more than one variable, so we add a new constraint which bounds the feasible
6658 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6680 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons1_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6685 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6694 /* @todo maybe add constraint for all variables which are not infcheckvars, lhs should be minvalue, rhs
6715 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6765 if( v == consdata->nvars && !SCIPisHugeValue(scip, -minact) && !SCIPisHugeValue(scip, maxact) )
6780 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons2_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6785 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6811 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
6854 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
6875 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6886 (!SCIPisUbBetter(scip, newub, lb, ub) && (!SCIPisFeasLT(scip, newub, ub) || !SCIPvarIsIntegral(var))
6893 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
6894 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6910 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6927 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6942 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6943 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6959 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6977 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6988 || (!SCIPisLbBetter(scip, newlb, lb, ub) && (!SCIPisFeasGT(scip, newlb, lb) || !SCIPvarIsIntegral(var))
6995 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6996 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
7012 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
7028 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
7043 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g], newub=%.15g\n",
7044 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
7060 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
7080 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7169 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minisrelax, &maxisrelax,
7174 slack = (SCIPisInfinity(scip, consdata->rhs) || isminsettoinfinity) ? SCIPinfinity(scip) : (consdata->rhs - minactivity);
7175 surplus = (SCIPisInfinity(scip, -consdata->lhs) || ismaxsettoinfinity) ? SCIPinfinity(scip) : (maxactivity - consdata->lhs);
7185 /* as long as the bounds might be tightened again, try to tighten them; abort after a maximal number of rounds */
7193 for( nrounds = 0; (force || consdata->boundstightened < tightenmode) && nrounds < MAXTIGHTENROUNDS; ++nrounds ) /*lint !e574*/
7197 * note: it might happen that integer variables become binary during bound tightening at the root node
7208 /* try to tighten the bounds of each variable in the constraint. During solving process, the binary variable
7232 && !SCIPisFeasEQ(scip, SCIPvarGetUbLocal(consdata->vars[v]), SCIPvarGetLbLocal(consdata->vars[v])) )
7239 SCIPdebugMessage("linear constraint <%s> found %d bound changes in round %d\n", SCIPconsGetName(cons),
7247 assert(*cutoff || SCIPisFeasEQ(scip, SCIPvarGetLbLocal(consdata->vars[0]), SCIPvarGetUbLocal(consdata->vars[0])));
7259 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
7260 SCIP_Bool checkrelmaxabs, /**< Should the violation for a constraint with side 0.0 be checked relative
7296 SCIPdebugMsg(scip, " consdata activity=%.15g (lhs=%.15g, rhs=%.15g, row=%p, checklprows=%u, rowinlp=%u, sol=%p, hascurrentnodelp=%u)\n",
7318 /* the activity of pseudo solutions may be invalid if it comprises positive and negative infinity contributions; we
7334 else if( !consdata->checkabsolute && (SCIPisFeasLT(scip, activity, consdata->lhs) || SCIPisFeasGT(scip, activity, consdata->rhs)) )
7347 /* the (much) more complicated check: we try to disregard random noise and violations of a 0.0 side which are
7396 SCIPdebugMsg(scip, " lhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7450 SCIPdebugMsg(scip, " rhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7486 ((!SCIPisInfinity(scip, -consdata->lhs) && SCIPisGT(scip, consdata->lhs-activity, SCIPfeastol(scip))) ||
7487 (!SCIPisInfinity(scip, consdata->rhs) && SCIPisGT(scip, activity-consdata->rhs, SCIPfeastol(scip)))) )
7529 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, cons, SCIPconsGetName(cons), consdata->lhs, consdata->rhs,
7532 SCIP_CALL( SCIPaddVarsToRow(scip, consdata->row, consdata->nvars, consdata->vars, consdata->vals) );
7557 /* replace all fixed variables by active counterparts, as we have no chance to do this anymore after the row has been added to the LP
7611 /* skip deactivated, redundant, or local linear constraints (the NLP does not allow for local rows at the moment) */
7623 0.0, consdata->nvars, consdata->vars, consdata->vals, NULL, consdata->lhs, consdata->rhs, SCIP_EXPRCURV_LINEAR) );
7636 /** separates linear constraint: adds linear constraint as cut, if violated by given solution */
7644 SCIP_Bool separateall, /**< should all constraints be subject to cardinality cut generation instead of only
7666 SCIP_CALL( checkCons(scip, cons, sol, (sol != NULL), conshdlrdata->checkrelmaxabs, &violated) );
7679 /* we only want to call the knapsack cardinality cut separator for rows that have a non-zero dual solution */
7733 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7778 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7817 SCIPdebug( SCIPdebugMsg(scip, "linear constraint <%s> found %d bound changes and %d fixings\n", SCIPconsGetName(cons), *nchgbds - oldnchgbds, nfixedvars); )
7827 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
7832 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (rhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7843 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (lhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7852 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
7854 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7857 /* remove the constraint locally unless it has become empty, in which case it is removed globally */
7915 SCIPdebugMsg(scip, "converting variable <%s> with fixed bounds [%.15g,%.15g] into fixed variable fixed at %.15g\n",
7952 * a) if the constraint has a finite right hand side and the negative infinity counters for the minactivity are zero
7953 * then add the variables as a clique for which all successive pairs of coefficients fullfill the following
7958 * and also add the binary to binary implication also for non-successive variables for which the same argument
7963 * e.g. 5.3 x1 + 3.6 x2 + 3.3 x3 + 2.1 x4 <= 5.5 (all x are binary) would lead to the clique (x1, x2, x3) and the
7966 * b) if the constraint has a finite left hand side and the positive infinity counters for the maxactivity are zero
7967 * then add the variables as a clique for which all successive pairs of coefficients fullfill the follwoing
7972 * and also add the binary to binary implication also for non-successive variables for which the same argument
7979 * c) the constraint has a finite right hand side and a finite minactivity then add the variables as a negated
7980 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7985 * and also add the binary to binary implication also for non-successive variables for which the
7990 * e.g. -4 x1 -3 x2 - 2 x3 + 2 x4 <= -4 would lead to the (negated) clique (~x1, ~x2) and the binary to binary
7993 * d) the constraint has a finite left hand side and a finite maxactivity then add the variables as a negated
7994 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7999 * and also add the binary to binary implication also for non-successive variables for which the same argument
8006 * 2. if the linear constraint represents a set-packing or set-partitioning constraint, the whole constraint is added
8014 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
8058 * for now we only add binary to non-binary implications, and this is only done for the binary variable with the
8059 * maximal absolute contribution and also only if this variable would force all other variables to their bound
8067 /* @todo we might extract implications/cliques if SCIPvarIsBinary() variables exist and we have integer variables
8090 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8092 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8093 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8097 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8160 /* if the right hand side and the minimal activity are finite and changing the variable with the biggest
8161 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8164 if( finiterhs && finiteminact && SCIPisEQ(scip, consdata->glbminactivity, consdata->rhs - maxabscontrib) )
8176 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8183 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8195 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8201 /* if the left hand side and the maximal activity are finite and changing the variable with the biggest
8202 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8205 if( finitelhs && finitemaxact && SCIPisEQ(scip, consdata->glbmaxactivity, consdata->lhs - maxabscontrib) )
8217 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8224 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8236 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8245 SCIPdebugMsg(scip, "extracted %d implications from constraint %s which led to %d bound changes, %scutoff detetcted\n", nimpls, SCIPconsGetName(cons), *nchgbds - oldnchgbds, *cutoff ? "" : "no ");
8250 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8299 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8301 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8302 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8306 /* 1. we wheck whether some variables do not fit together into this constraint and add the corresponding clique
8309 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8346 /* setppc constraints will be handled later; we need at least two binary variables with same sign to extract
8381 #ifdef SCIP_DISABLED_CODE /* assertion should only hold when constraints were fully propagated and boundstightened */
8382 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8420 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8457 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8530 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8531 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8571 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8582 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), NULL, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8610 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8690 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8709 SCIP_CALL( SCIPaddClique(scip, &(binvars[j+1]), values, i - j, FALSE, &infeasible, &nbdchgs) );
8731 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8742 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), values, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8772 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8849 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8888 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8934 /* check if all variables are binary, if the coefficients are +1 or -1, and if the right hand side is equal
8935 * to 1 - number of negative coefficients, or if the left hand side is equal to number of positive coefficients - 1
8966 SCIP_CALL( SCIPaddClique(scip, vars, values, nvars, SCIPisEQ(scip, consdata->lhs, consdata->rhs), &infeasible, &nbdchgs) );
9034 SCIPdebugMsg(scip, "rounding sides=[%.15g,%.15g] of linear constraint <%s> with integral coefficients and variables only "
9068 /** tightens coefficients of binary, integer, and implicit integer variables due to activity bounds in presolving:
9075 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9084 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9092 * A deviation of only one from their bound makes the lhs/rhs feasible (i.e., redundant), even if all other
9093 * variables are set to their "worst" bound. If all variables which are not surely non-redundant cannot make
9094 * the lhs/rhs redundant, even if they are set to their "best" bound, they can be removed from the constraint.
9095 * E.g., for binary variables and an inequality x_1 +x_2 +10y_1 +10y_2 >= 5, setting either of the y_i to one
9096 * suffices to fulfill the inequality, whereas the x_i do not contribute to feasibility and can be removed.
9098 * @todo use also some tightening procedures for (knapsack) constraints with non-integer coefficients, see
9111 SCIP_Real minactivity; /* minimal value w.r.t. the variable's local bounds for the constraint's
9113 SCIP_Real maxactivity; /* maximal value w.r.t. the variable's local bounds for the constraint's
9151 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9174 SCIPisGE(scip, minactivity + val, consdata->lhs) && SCIPisLE(scip, maxactivity - val, consdata->rhs) )
9194 lval -= otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9200 rval += otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9215 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9232 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9237 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9246 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9281 SCIPisGE(scip, minactivity - val, consdata->lhs) && SCIPisLE(scip, maxactivity + val, consdata->rhs) )
9301 lval += otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9307 rval -= otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9322 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9339 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9344 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9353 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9396 /* if the lhs is finite, we will check in the following whether the not non-redundant variables can make lhs feasible;
9397 * this is not valid, if the minactivity is -\infty (aggrlhs would be minus infinity in the following computation)
9398 * or if huge values contributed to the minactivity, because the minactivity is then just a relaxation
9399 * (<= the exact minactivity), and we might falsely claim variables to be redundant in the following
9402 if( !SCIPisInfinity(scip, -consdata->lhs) && (SCIPisInfinity(scip, -minactivity) || minactisrelax) )
9405 /* if the rhs is finite, we will check in the following whether the not non-redundant variables can make rhs feasible;
9406 * this is not valid, if the maxactivity is \infty (aggrrhs would be infinity in the following computation)
9407 * or if huge values contributed to the maxactivity, because the maxactivity is then just a relaxation
9408 * (>= the exact maxactivity), and we might falsely claim variables to be redundant in the following
9411 if( !SCIPisInfinity(scip, consdata->rhs) && (SCIPisInfinity(scip, maxactivity) || maxactisrelax) )
9415 * surely non-redundant variables are all those where a deviation from the bound makes the lhs/rhs redundant
9420 /* check if the constraint contains variables which are redundant. The reasoning is the following:
9421 * Each non-redundant variable can make the lhs/rhs feasible with a deviation of only one in the bound.
9453 SCIPisLT(scip, minactivity + val, consdata->lhs) || SCIPisGT(scip, maxactivity - val, consdata->rhs) )
9457 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9467 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9470 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9481 SCIPisLT(scip, minactivity - val, consdata->lhs) || SCIPisGT(scip, maxactivity + val, consdata->rhs) )
9483 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9493 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9496 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9504 /* the following update step is needed in every iteration cause otherwise it is possible that the surely none-
9506 * e.g. y_1 + 16y_2 >= 25, y1 with bounds [9,12], y2 with bounds [0,2], minactivity would be 9, it follows that
9507 * y_2 is surely not redundant and y_1 is redundant so we would first delete y1 and without updating the sides
9515 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9522 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9534 /** processes equality with only one variable by fixing the variable and deleting the constraint */
9590 /** processes equality with exactly two variables by aggregating one of the variables and deleting the constraint */
9621 SCIP_CALL( SCIPaggregateVars(scip, consdata->vars[0], consdata->vars[1], consdata->vals[0], consdata->vals[1],
9648 /** calculates the new lhs and rhs of the constraint after the given variable is aggregated out */
9696 /** processes equality with more than two variables by multi-aggregating one of the variables and converting the equality
9697 * into an inequality; if multi-aggregation is not possible, tries to identify one continuous or integer variable that
9700 * @todo Check whether a more clever way of avoiding aggregation of variables containing implicitly integer variables
9756 SCIPdebugMsg(scip, "linear constraint <%s>: try to multi-aggregate equality\n", SCIPconsGetName(cons));
9760 * maxnlocksstay: maximal sum of lock numbers if the constraint does not become redundant after the aggregation
9761 * maxnlocksremove: maximal sum of lock numbers if the constraint can be deleted after the aggregation
9768 /* If the constraint becomes redundant, 3 non-zeros are removed, and we get 1 additional non-zero for each
9769 * constraint the variable appears in. Thus, the variable must appear in at most 3 other constraints.
9775 /* If the constraint becomes redundant, 4 non-zeros are removed, and we get 2 additional non-zeros for each
9776 * constraint the variable appears in. Thus, the variable must appear in at most 2 other constraints.
9782 /* If the constraint is redundant but has more than 4 variables, we can only accept one other constraint. */
9833 assert(!SCIPconsIsChecked(cons) || SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) >= 1); /* because variable is locked in this equality */
9878 /* check, if variable is used in too many other constraints, even if this constraint could be deleted */
9879 nlocks = SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL);
9927 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
9930 /* do not perform the multi-aggregation due to numerics, if we have huge contributions in the residual
9937 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9942 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
9945 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity)
9949 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9960 /* if the constraint does not become redundant, only accept the variable if it does not appear in
9979 /* if all coefficients and variables are integral, the right hand side must also be integral */
9992 /* check whether the the infimum and the supremum of the multi-aggregation can be get infinite */
10029 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
10030 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
10033 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
10037 /* if the slack variable is of integer type, and the constraint itself may take fractional values,
10081 SCIPdebugMsg(scip, "linear constraint <%s>: multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(slackvar));
10087 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g], nlocks=%d, maxnlocks=%d, removescons=%u\n",
10088 aggrconst, SCIPvarGetName(slackvar), SCIPvarGetLbGlobal(slackvar), SCIPvarGetUbGlobal(slackvar),
10102 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
10112 SCIPdebugMsg(scip, "linear constraint <%s>: redundant after multi-aggregation\n", SCIPconsGetName(cons));
10129 /* upgrade continuous variable to an implicit one, if the absolute value of the coefficient is one */
10133 SCIPdebugMsg(scip, "linear constraint <%s>: converting continuous variable <%s> to implicit integer variable\n",
10138 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10144 /* aggregate continuous variable to an implicit one, if the absolute value of the coefficient is unequal to one */
10145 /* @todo check if the aggregation coefficient should be in some range(, which is not too big) */
10159 SCIP_CALL( SCIPcreateVar(scip, &newvar, newvarname, -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
10160 SCIP_VARTYPE_IMPLINT, SCIPvarIsInitial(var), SCIPvarIsRemovable(var), NULL, NULL, NULL, NULL, NULL) );
10175 SCIPdebugMsg(scip, "linear constraint <%s>: aggregating continuous variable <%s> to newly created implicit integer variable <%s>, aggregation factor = %g\n",
10179 SCIP_CALL( SCIPaggregateVars(scip, var, newvar, absval, -1.0, 0.0, &infeasible, &redundant, &aggregated) );
10183 SCIPdebugMsg(scip, "infeasible aggregation of variable <%s> to implicit variable <%s>, domain is empty\n",
10202 /* we do not have any event on vartype changes, so we need to manually force this constraint to be presolved
10214 /* this seems to help for rococo instances, but does not for rout (where all coefficients are +/- 1.0)
10227 SCIPdebugMsg(scip, "linear constraint <%s>: converting integer variable <%s> to implicit integer variable\n",
10232 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10243 /** checks if the given variables and their coefficient are equal (w.r.t. scaling factor) to the objective function */
10281 /* if a variable has a zero objective coefficient the linear constraint is not a subset of the objective
10319 /** check if the linear equality constraint is equal to a subset of the objective function; if so we can remove the
10348 /* check if the linear equality constraints does not have more variables than the objective function */
10354 (nvars == nobjvars && (!conshdlrdata->detectcutoffbound || !conshdlrdata->detectlowerbound)) )
10360 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10372 SCIPdebugMsg(scip, "linear equality constraint <%s> == %g (offset %g) is a subset of the objective function\n",
10388 /** updates the cutoff if the given primal bound (which is implied by the given constraint) is better */
10398 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are still
10416 /* we cannot disable the enforcement and propagation on ranged rows, because the cutoffbound could only have
10421 /* in case the cutoff bound is worse then the currently known one, we additionally avoid enforcement and
10432 /** check if the linear constraint is parallel to objective function; if so update the cutoff bound and avoid that the
10463 /* check if the linear inequality constraints has the same number of variables as the objective function and if the
10472 /* There are no variables in the objective function and in the constraint. Thus, the constraint is redundant or proves
10473 * infeasibility. Since we have a pure feasibility problem, we do not want to set a cutoff or lower bound.
10478 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10494 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10506 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10515 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10528 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10540 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10549 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10612 /** returns whether the linear sum of all variables/coefficients except the given one divided by the given value is always
10631 if( v != pos && (!SCIPvarIsIntegral(consdata->vars[v]) || !SCIPisIntegral(scip, consdata->vals[v]/val)) )
10638 /** check if \f$lhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$,
10639 * check if \f$rhs/a_i - \sum_{j \neq i} a_j/a_i x_j\f$ is always inside the bounds of \f$x_i\f$
10661 *minval = (side - maxresactivity)/val;
10683 /** applies dual presolving for variables that are locked only once in a direction, and this locking is due to a
10716 * otherwise we would have to check for variables with nlocks == 0, and these are already processed by the
10728 /* search for a single-locked variable which can be multi-aggregated; if a valid continuous variable was found, we
10735 /* We only want to multi-aggregate variables, if they appear in maximal one additional constraint,
10737 * - If there are only two variables in the constraint from which the multi-aggregation arises, no fill-in will be
10739 * - If there are three variables in the constraint, multi-aggregation in three additional constraints will remove
10740 * six nonzeros (three from the constraint and the three entries of the multi-aggregated variable) and add
10742 * - If there at most four variables in the constraint, multi-aggregation in two additional constraints will remove
10743 * six nonzeros (four from the constraint and the two entries of the multi-aggregated variable) and add
10755 /* if this constraint has both sides, it also provides a lock for the other side and thus we can allow one more lock */
10787 isint = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
10793 /* better do not multi-aggregate binary variables, since most plugins rely on their binary variables to be either
10811 * - fix x_i to the smallest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10815 * - fix x_i to the largest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10819 * - fix x_i to the largest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10823 * - fix x_i to the smallest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10825 * but: all this is only applicable, if the aggregated value is inside x_i's bounds for all possible values
10830 && ((val > 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10832 || (val < 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10835 && ((val > 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10837 || (val < 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10851 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
10864 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10879 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10887 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10899 /* check again if lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10900 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10907 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10910 if( !isint || (SCIPisIntegral(scip, consdata->lhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10924 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10939 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10946 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10955 /* check again if rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10956 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10962 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10965 if( !isint || (SCIPisIntegral(scip, consdata->rhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
11003 (SCIPvarGetType(bestvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(bestvar) == SCIP_VARTYPE_INTEGER));
11011 SCIPdebugMsg(scip, "linear constraint <%s> (dual): multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(bestvar));
11084 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g]\n", aggrconst, SCIPvarGetName(bestvar),
11101 /* @todo if multi-aggregate makes them numerical trouble, avoid them if the coefficients differ to much, see
11104 SCIP_CALL( SCIPmultiaggregateVar(scip, bestvar, naggrs, aggrvars, aggrcoefs, aggrconst, &infeasible, &aggregated) );
11106 /** if the multi-aggregate bestvar is integer, we need to convert implicit integers to integers because
11115 /** If the multi-aggregation was not infeasible, then setting implicit integers to integers should not
11128 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
11129 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
11130 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
11139 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
11368 /** sorting method for constraint data, compares two variables on given indices, continuous variables will be sorted to
11369 * the end and for all other variables the sortation will be in non-increasing order of their absolute value of the
11402 /* for all non-continuous variables, the variables are sorted after decreasing absolute coefficients */
11406 /** tries to simplify coefficients and delete variables in ranged row of the form lhs <= a^Tx <= rhs, e.g. using the greatest
11409 * 1. lhs <= a^Tx <= rhs, forall a_i >= lhs, a_i <= rhs, and forall pairs a_i + a_j > rhs then we can change this
11487 if( SCIPisGE(scip, minval, lhs) && SCIPisLE(scip, maxval, rhs) && SCIPisGT(scip, minval + secondminval, rhs) )
11506 /** tries to simplify coefficients and delete variables in constraints of the form lhs <= a^Tx <= rhs
11511 * 1. We try to determine parts of the constraint which will not change anything on (in-)feasibility of the constraint
11517 * e.g. 5.2x1 + 5.1x2 + 3x3 <= 8.3 => will be changed to 5x1 + 5x2 + 3x3 <= 8 if all x are binary
11521 * e.g. 10x1 + 5y2 + 5x3 + 3x4 <= 15 => will be changed to 2x1 + y2 + x3 + x4 <= 3 if all xi are binary and y2 is
11603 /* @todo the following might be too hard, check which steps can be applied and what code must be corrected
11610 /* @todo: change the following: due to vartype changes, the status of the normalization can be wrong, need an event
11652 /* if we have a normalized inequality (not ranged) the one side should be positive, @see normalizeCons() */
11659 /* call sorting method, order continuous variables to the end and all other variables after non-increasing absolute
11673 assert(consdata->validmaxabsval ? (SCIPisFeasEQ(scip, consdata->maxabsval, REALABS(vals[0])) || SCIPvarGetType(vars[nvars - 1]) == SCIP_VARTYPE_CONTINUOUS) : TRUE);
11683 if( SCIPisEQ(scip, REALABS(vals[0]), 1.0) && ((hasrhs && SCIPisIntegral(scip, rhs)) || (haslhs && SCIPisIntegral(scip, lhs))) )
11711 /* we now determine coefficients as large as the side of the constraint to retrieve a better reduction where we
11715 * c1: +5x1 + 5x2 + 3x3 + 3x4 + x5 >= 5 (x5 is redundant and does not change (in-)feasibility of this constraint)
11716 * c2: +4x1 + 4x2 + 3x3 + 3x4 + x5 >= 4 (gcd (without the coefficient of x5) after the large coefficients is 3
11717 * c3: +30x1 + 29x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 30 (gcd (without the coefficient of x2) after the large coefficients is 7
11722 * c2: +6x1 + 6x2 + 3x3 + 3x4 + 3x5 >= 6 (will be changed to c2: +2x1 + 2x2 + x3 + x4 + x5 >= 2)
11723 * c3: +28x1 + 28x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 28 (will be changed to c3: +4x1 + 4x2 + 2x3 + 2z1 + x5 + x6 <= 4)
11726 /* if the minimal activity is negative and we found more than one variable with a coefficient bigger than the left
11729 * e.g. 7x1 + 7x2 - 4x3 - 4x4 >= 7 => xi = 1 for all i is not a solution, but if we would do a change on the
11730 * coefficients due to the gcd on the "small" coefficients we would get 8x1 + 8x2 - 4x3 - 4x4 >= 8 were xi = 1
11741 /* if we have integer variable with "side"-coefficients but also with a lower bound greater than 0 we stop this
11753 /* easy and quick fix: if all coefficients were equal to the side, we cannot apply further simplifications */
11754 /* todo find numerically stable normalization conditions to scale this cons to have coefficients almost equal to 1 */
11766 /* all but one variable are processed or the next variable is continuous we cannot perform the extra coefficient
11793 /* find and remove redundant variables which do not interact with the (in-)feasibility of this constraint
11915 SCIPdebugMsg(scip, "stopped at pos %d (of %d), subactivities [%g, %g], redundant = %u, hasrhs = %u, siderest = %g, gcd = %" SCIP_LONGINT_FORMAT ", offset position for 'side' coefficients = %d\n",
11920 numericsok = REALABS(maxact) < MAXACTVAL && REALABS(maxactsub) < MAXACTVAL && REALABS(minact) < MAXACTVAL &&
11979 SCIPdebugMsg(scip, "removing %d last variables from constraint <%s>, because they never change anything on the feasibility of this constraint\n",
12080 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12167 /* new coeffcient must not be zero if we would loose the implication that a variable needs to be 0 if
12193 if( (!notchangable && hasrhs && ((!SCIPisFeasIntegral(scip, rhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(rhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd))) ||
12194 ( haslhs && (!SCIPisFeasIntegral(scip, lhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(lhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd)) )
12247 /* @todo we still can remove continuous variables if they are redundant due to the non-integrality argument */
12263 /* check if the non-integrality part of all integral variables is smaller than the non-inegrality part of the right
12264 * hand side or bigger than the left hand side respectively, so we can make all of them integral
12268 if( (hasrhs && !SCIPisFeasIntegral(scip, rhs)) || (haslhs && !SCIPisFeasIntegral(scip, lhs)) )
12313 /* if we exceed the fractional part of the right hand side, we cannot tighten the coefficients
12406 /* the fractional part on each variable need to exceed the fractional part on the left hand side */
12507 /* maximal absolute value of coefficients in constraint is one, so we cannot tighten it further */
12524 if( SCIPisEQ(scip, REALABS(vals[nvars - 1]), 1.0) && SCIPisEQ(scip, REALABS(vals[nvars - 2]), 1.0) )
12529 /* calculate greatest common divisor over all integer variables; note that the onlybin flag needs to be recomputed
12551 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12552 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12573 /* we need at least one binary variable and a gcd greater than 1 to try to perform further coefficient changes */
12582 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
12590 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12591 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12608 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12619 /* if we have only binary variables and both first coefficients have a gcd of 1, both are candidates for
12653 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
12661 /* check again, if we have a normalized inequality (not ranged) the one side should be positive,
12717 assert(SCIPisZero(scip, newcoef) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(newcoef) + feastol)) == gcd);
12719 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restcoef = %" SCIP_LONGINT_FORMAT "; changing coef of variable <%s> to %g and %s by %" SCIP_LONGINT_FORMAT "\n", gcd, rest, restcoef, SCIPvarGetName(vars[candpos]), newcoef, hasrhs ? "reduced rhs" : "increased lhs", hasrhs ? rest : (rest > 0 ? gcd - rest : 0));
12750 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
12758 /** tries to aggregate an (in)equality and an equality in order to decrease the number of variables in the (in)equality:
12760 * where a = val1[v] and b = -val0[v] for common variable v which removes most variable weight;
12762 * the variable weight is a weighted sum over all included variables, where each binary variable weighs BINWEIGHT,
12763 * each integer or implicit integer variable weighs INTWEIGHT and each continuous variable weighs CONTWEIGHT
12772 int* diffidx0minus1, /**< array with indices of variables in cons0, that don't appear in cons1 */
12773 int* diffidx1minus0, /**< array with indices of variables in cons1, that don't appear in cons0 */
12776 int diffidx0minus1weight, /**< variable weight sum of variables in cons0, that don't appear in cons1 */
12777 int diffidx1minus0weight, /**< variable weight sum of variables in cons1, that don't appear in cons0 */
12778 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
12792 SCIP_Bool commonvarlindependent; /* indicates whether coefficient vector of common variables in linearly dependent */
12818 SCIPdebugMsg(scip, "try aggregation of <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
12854 /* count the number of variables in the potential new constraint a * consdata0 + b * consdata1 */
12879 * v's common coefficient in cons1 / v's common coefficient in cons0 should be constant, i.e., equal 0's common coefficient in cons1 / 0's common coefficient in cons0
12947 /* setup best* variables that were not setup above because we are in the commonvarlindependent case */
12952 SCIPdebugMsg(scip, "aggregate linear constraints <%s> := %.15g*<%s> + %.15g*<%s> -> nvars: %d -> %d, weight: %d -> %d\n",
12983 /* if we recognized linear dependency of the common coefficients, then the aggregation coefficient should be 0.0 for every common variable */
13036 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, SCIPconsGetName(cons0), newnvars, newvars, newvals, newlhs, newrhs,
13057 if( consdataGetMaxAbsval(SCIPconsGetData(newcons)) <= maxaggrnormscale * consdataGetMaxAbsval(consdata0) )
13092 /** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
13176 assert(consdata->indexsorted);
13189 /** returns the key for deciding which of two parallel constraints should be kept (smaller key should be kept);
13190 * prefers non-upgraded constraints and as second criterion the constraint with the smallest position
13204 return (((unsigned int)consdata->upgraded)<<31) + (unsigned int)SCIPconsGetPos(cons); /*lint !e571*/
13214 SCIP_CONS** querycons, /**< pointer to linear constraint used to look for duplicates in the hash table;
13227 while( (parallelcons = (SCIP_CONS*)SCIPhashtableRetrieve(hashtable, (void*)(*querycons))) != NULL )
13269 /** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
13326 /* get constraints from current hash table with same variables as cons0 and with coefficients equal
13327 * to the ones of cons0 when both are scaled such that maxabsval is 1.0 and the coefficient of the
13358 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
13389 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with equal coefficients into single ranged row\n",
13403 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with negated coefficients into single ranged row\n",
13415 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13427 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13432 /* ensure that lhs <= rhs holds without tolerances as we only allow such rows to enter the LP */
13472 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
13486 uint64_t negsignature0;
13536 for( c = (cons0changed ? 0 : firstchange); c < chkind && !(*cutoff) && conss[chkind] != NULL; ++c )
13575 /* SCIPdebugMsg(scip, "preprocess linear constraint pair <%s>[chgd:%d, upgd:%d] and <%s>[chgd:%d, upgd:%d]\n",
13602 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13603 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13605 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13606 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13608 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13609 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13611 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13612 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13627 * - if lhs0 >= lhs1 and for each variable v and each solution value x_v val0[v]*x_v <= val1[v]*x_v,
13629 * - if rhs0 <= rhs1 and for each variable v and each solution value x_v val0[v]*x_v >= val1[v]*x_v,
13631 * - if val0[v] == -val1[v] for all variables v, the two inequalities can be replaced by a single
13633 * - if at least one constraint is an equality, count the weighted number of common variables W_c
13634 * and the weighted number of variable in the difference sets W_0 = w(V_0 \ V_1), W_1 = w(V_1 \ V_0),
13635 * where the weight of each variable depends on its type, such that aggregations in order to remove the
13637 * - if W_c > W_1, try to aggregate consdata0 := a * consdata0 + b * consdata1 in order to decrease the
13638 * variable weight in consdata0, where a = +/- val1[v] and b = -/+ val0[v] for common v which leads to
13639 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13641 * - if W_c > W_0, try to aggregate consdata1 := a * consdata1 + b * consdata0 in order to decrease the
13642 * variable weight in consdata1, where a = +/- val0[v] and b = -/+ val1[v] for common v which leads to
13643 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13777 /* the coefficients in both rows are either equal or negated: create a new constraint with same coefficients and
13780 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with %s coefficients into single ranged row\n",
13799 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13840 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13852 /* check for domination: remove dominated sides, but don't touch equalities as long as they are not totally
13855 if( cons1dominateslhs && (!cons0isequality || cons1dominatesrhs || SCIPisInfinity(scip, consdata0->rhs) ) )
13866 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13879 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13886 else if( cons0dominateslhs && (!cons1isequality || cons0dominatesrhs || SCIPisInfinity(scip, consdata1->rhs)) )
13897 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13909 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13916 if( cons1dominatesrhs && (!cons0isequality || cons1dominateslhs || SCIPisInfinity(scip, -consdata0->lhs)) )
13927 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13940 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13947 else if( cons0dominatesrhs && (!cons1isequality || cons0dominateslhs || SCIPisInfinity(scip, -consdata1->lhs)) )
13958 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13970 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13987 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
14002 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
14024 SCIP_CALL( aggregateConstraints(scip, cons0, cons1, commonidx0, commonidx1, diffidx0minus1, diffidx1minus0,
14039 if( !aggregated && cons0isequality && !consdata1->upgraded && commonidxweight > diffidx0minus1weight )
14042 SCIP_CALL( aggregateConstraints(scip, cons1, cons0, commonidx1, commonidx0, diffidx1minus0, diffidx0minus1,
14074 SCIP_Bool singletonstuffing, /**< should stuffing of singleton continuous variables be performed? */
14075 SCIP_Bool singlevarstuffing, /**< should single variable stuffing be performed, which tries to fulfill
14121 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
14132 /* we want to have a <= constraint, if the rhs is infinite, we implicitly multiply the constraint by -1,
14160 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14194 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14291 if( tryfixing && nsingletons > 0 && (SCIPisGT(scip, rhs, maxcondactivity) || SCIPisLE(scip, rhs, mincondactivity)) )
14353 /* @note: we could in theory tighten the bound of the first singleton variable which does not fall into the above case,
14354 * since it cannot be fully fixed. However, this is not needed and should be done by activity-based bound tightening
14355 * anyway after all other continuous singleton columns were fixed; doing it here may introduce numerical
14386 SCIPdebugMsg(scip, "### stuffing fixed %d variables and changed %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds);
14400 * setting all variables to their upper bound (giving us the maximal activity of the constraint) is worst w.r.t.
14401 * feasibility of the constraint. On the other hand, this gives the best objective function contribution of the
14402 * variables contained in the constraint. The maximal activity should be larger than the rhs, otherwise the constraint
14404 * Now we are searching for a variable x_k with maximal ratio c_k / a_k (note that all these ratios are negative), so
14405 * that by reducing the value of this variable we reduce the activity of the constraint while having the smallest
14406 * objective deterioration per activity unit. If x_k has no downlocks, is continuous, and can be reduced enough to
14407 * render the constraint feasible, and ALL other variables have only the one uplock installed by the current constraint,
14408 * we can reduce the upper bound of x_k such that the maxactivity equals the rhs and fix all other variables to their
14410 * Note that the others variables may have downlocks from other constraints, which we do not need to care
14411 * about since we are setting them to the highest possible value. Also, they may be integer or binary, because the
14412 * computed ratio is still a lower bound on the change in the objective caused by reducing those variable to reach
14413 * constraint feasibility. On the other hand, uplocks on x_k from other constraint do no interfer with the method.
14414 * With a slight adjustment, the procedure even works for integral x_k. If (maxactivity - rhs)/val is integral,
14415 * the variable gets an integral value in order to fulfill the constraint tightly, and we can just apply the procedure.
14416 * If (maxactivity - rhs)/val is fractional, we need to check, if overfulfilling the constraint by setting x_k to
14417 * ceil((maxactivity - rhs)/val) is still better than setting x_k to ceil((maxactivity - rhs)/val) - 1 and
14418 * filling the remaining gap in the constraint with the next-best variable. For this, we check that
14420 * c_k * floor((maxactivity - rhs)/val) + c_j * ((maxactivity - rhs) - (floor((maxactivity - rhs)/val) * val))/a_j.
14422 * If there are variables with a_i < 0 and c_i > 0, they are negated to obtain the above form, variables with same
14449 /* if both objective and constraint push the variable to the same direction, we can do nothing here */
14471 if( ratio > bestratio || ((ratio == bestratio) && downlocks == 0 && (bestdownlocks > 0 /*lint !e777*/
14536 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14537 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/-val) )
14564 SCIPdebugMsg(scip, "tighten the lower bound of <%s> from %g to %g (ub=%g)\n", SCIPvarGetName(var), lb, lb + bounddelta, ub);
14573 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14574 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/val))
14601 SCIPdebugMsg(scip, "tighten the upper bound of <%s> from %g to %g (lb=%g)\n", SCIPvarGetName(var), ub, ub - bounddelta, lb);
14616 SCIPdebugMsg(scip, "cons <%s>: %g <=\n", SCIPconsGetName(cons), factor > 0 ? consdata->lhs : -consdata->rhs);
14619 SCIPdebugMsg(scip, "%+g <%s>([%g,%g],%g,[%d,%d],%s)\n", factor * vals[v], SCIPvarGetName(vars[v]),
14652 SCIPdebug( SCIPdebugMsg(scip, "### new stuffing fixed %d vars, tightened %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds); )
14686 * redlb[v] == k : if x_v >= k, we can always round x_v down to x_v == k without violating any constraint
14687 * redub[v] == k : if x_v <= k, we can always round x_v up to x_v == k without violating any constraint
14700 * This is because then, the value of the variable is either determined by one of its bounds or
14722 /* copy the variable array since this array might change during the curse of this algorithm */
14744 /* Initialize isimplint array: variable may be implied integer if rounded to their best bound they are integral.
14760 isimplint[v] = (SCIPisInfinity(scip, -lb) || SCIPisIntegral(scip, lb)) && (SCIPisInfinity(scip, ub) || SCIPisIntegral(scip, ub));
14776 /* we only need to consider constraints that have been locked (i.e., checked constraints or constraints that are
14810 assert(0 <= contv && contv < ncontvars); /* variable should be active due to applyFixings() */
14862 consdataGetGlbActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
14872 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastglbminactivity) )
14876 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastglbmaxactivity) )
14882 assert(0 <= arrayindex && arrayindex < nvars); /* variable should be active due to applyFixings() */
14951 /* there is more than one continuous variable or the integer variables have fractional coefficients:
14969 /* there is exactly one continuous variable and the integer variables have integral coefficients:
14970 * this is the interesting case, and we have to check whether the coefficient is +/-1 and the corresponding
15023 * if largest bound to make constraints redundant is -infinity, we better do nothing for numerical reasons
15031 /* if x_v >= redlb[v], we can always round x_v down to x_v == redlb[v] without violating any constraint
15034 SCIPdebugMsg(scip, "variable <%s> only locked down in linear constraints: dual presolve <%s>[%.15g,%.15g] <= %.15g\n",
15050 * if smallest bound to make constraints redundant is +infinity, we better do nothing for numerical reasons
15058 /* if x_v <= redub[v], we can always round x_v up to x_v == redub[v] without violating any constraint
15061 SCIPdebugMsg(scip, "variable <%s> only locked up in linear constraints: dual presolve <%s>[%.15g,%.15g] >= %.15g\n",
15099 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
15105 SCIPdebugMsg(scip, "dual presolve: converting continuous variable <%s>[%g,%g] to implicit integer\n",
15151 SCIPdebugMsg(scip, "Enforcement method of linear constraints for %s solution\n", sol == NULL ? "LP" : "relaxation");
15190 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
15215 /** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
15265 /** deinitialization method of constraint handler (called before transformed problem is freed) */
15308 return !(SCIPisEQ(scip, lhs, rhs) || SCIPisInfinity(scip, -lhs) || SCIPisInfinity(scip, rhs) );
15325 * iterates through all linear constraints and stores relevant statistics in the linear constraint statistics \p linconsstats.
15327 * @note only constraints are iterated that belong to the linear constraint handler. If the problem has been presolved already,
15328 * constraints that were upgraded to more special types such as, e.g., varbound constraints, will not be shown correctly anymore.
15329 * Similarly, if specialized constraints were created through the API, these are currently not present.
15350 }
15415 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_SINGLETON, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15435 /* precedence constraints have the same coefficient, but with opposite sign for the same variable type */
15454 /* is constraint of type SCIP_CONSTYPE_{SETPARTITION, SETPACKING, SETCOVERING, CARDINALITY, INVKNAPSACK}? */
15466 /* scan through variables and detect if all variables are binary and have a coefficient +/-1 */
15542 /* if both sides are infinite at this point, no further classification is necessary for this constraint */
15593 SCIPlinConsStatsIncTypeCount(linconsstats, matched ? SCIP_LINCONSTYPE_BINPACKING : SCIP_LINCONSTYPE_KNAPSACK, 1);
15596 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15628 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15653 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_MIXEDBINARY, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15662 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_GENERAL, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15669 /** presolving deinitialization method of constraint handler (called after presolving has been finished) */
15690 ngoodconss = 0;
15715 SCIPstatisticMessage("below threshold: %d / %d ratio= %g\n", ngoodconss, nallconss, (100.0 * ngoodconss / nallconss));
15731 /* this is no problem reduction, because the upgraded constraint was added to the problem before, and the
15732 * (redundant) linear constraint was only kept in order to support presolving the the linear constraint handler
15738 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
15764 /** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
15804 "(restart) converted %d cuts from the global cut pool into linear constraints\n", ncutsadded);
15805 /* an extra blank line should be printed separately since the buffer message handler only handles up to one
15923 SCIP_CALL( consdataCreate(scip, &targetdata, sourcedata->nvars, sourcedata->vars, sourcedata->vals, sourcedata->lhs, sourcedata->rhs) );
15926 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
15936 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
15937 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
15940 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
15946 /** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
15999 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
16022 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, NULL, separatecards, conshdlrdata->separateall, &ncuts, &cutoff) );
16065 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
16080 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, sol, TRUE, conshdlrdata->separateall, &ncuts, &cutoff) );
16156 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
16208 SCIPinfoMessage(scip, NULL, "activity invalid due to positive and negative infinity contributions\n");
16210 SCIPinfoMessage(scip, NULL, "violation: left hand side is violated by %.15g\n", consdata->lhs - activity);
16212 SCIPinfoMessage(scip, NULL, "violation: right hand side is violated by %.15g\n", activity - consdata->rhs);
16243 /* check, if we want to tighten variable's bounds (in probing, we always want to tighten the bounds) */
16257 && ((tightenboundsfreq == 0 && depth == 0) || (tightenboundsfreq >= 1 && (depth % tightenboundsfreq == 0)));
16265 && ((rangedrowfreq == 0 && depth == 0) || (rangedrowfreq >= 1 && (depth % rangedrowfreq == 0)));
16393 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16406 /* apply presolving as long as possible on the single constraint (however, abort after a certain number of rounds
16449 SCIP_CALL( tightenBounds(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars, &cutoff, nchgbds) );
16459 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
16461 if( SCIPisFeasGT(scip, minactivity, consdata->rhs) || SCIPisFeasLT(scip, maxactivity, consdata->lhs) )
16463 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16468 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
16470 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16479 else if( !SCIPisInfinity(scip, -consdata->lhs) && SCIPisGE(scip, minactivity, consdata->lhs) )
16481 SCIPdebugMsg(scip, "linear constraint <%s> left hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16489 SCIPdebugMsg(scip, "linear constraint <%s> right hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16518 /* reduce big-M coefficients, that make the constraint redundant if the variable is on a bound */
16561 SCIP_CALL( extractCliques(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars,
16589 SCIP_CALL( convertEquality(scip, cons, conshdlrdata, &cutoff, nfixedvars, naggrvars, ndelconss) );
16593 if( !cutoff && SCIPconsIsActive(cons) && conshdlrdata->dualpresolving && SCIPallowStrongDualReds(scip) )
16595 SCIP_CALL( dualPresolve(scip, conshdlrdata, cons, &cutoff, nfixedvars, naggrvars, ndelconss) );
16608 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16615 (conshdlrdata->singletonstuffing || conshdlrdata->singlevarstuffing) && SCIPallowStrongDualReds(scip) )
16647 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && (conshdlrdata->presolusehashing || conshdlrdata->presolpairwise) && !SCIPisStopped(scip) )
16653 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
16654 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &firstchange, &cutoff,
16697 npaircomparisons += (SCIPconsGetData(conss[c])->changed) ? c : (c - firstchange); /*lint !e776*/
16700 SCIP_CALL( preprocessConstraintPairs(scip, usefulconss, firstchange, c, conshdlrdata->maxaggrnormscale,
16706 if( ((*ndelconss - oldndelconss) + (*nchgsides - oldnchgsides)/2.0 + (*nchgcoefs - oldnchgcoefs)/10.0) / ((SCIP_Real) npaircomparisons) < conshdlrdata->mingainpernmincomp )
16719 /* before upgrading, check whether we can apply some additional dual presolving, because a variable only appears
16723 && *nfixedvars == oldnfixedvars && *naggrvars == oldnaggrvars && *nchgbds == oldnchgbds && *ndelconss == oldndelconss
16734 * only upgrade constraints, if no reductions were found in this round (otherwise, the linear constraint handler
16735 * may find additional reductions before giving control away to other (less intelligent?) constraint handlers)
16737 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) )
16750 /* only upgrade completely presolved constraints, that changed since the last upgrading call */
16777 * delete upgraded equalities, if we don't need it anymore for aggregation and redundancy checking
16793 else if( *nfixedvars > oldnfixedvars || *naggrvars > oldnaggrvars || *nchgbds > oldnchgbds || *ndelconss > oldndelconss
16811 SCIP_CALL( resolvePropagation(scip, cons, infervar, intToInferInfo(inferinfo), boundtype, bdchgidx, result) );
16838 {
16917 SCIP_CALL( SCIPcopyConsLinear(scip, cons, sourcescip, consname, nvars, sourcevars, sourcecoefs,
16918 SCIPgetLhsLinear(sourcescip, sourcecons), SCIPgetRhsLinear(sourcescip, sourcecons), varmap, consmap,
16919 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
16929 * There should only be one operator, except for ranged rows for which exactly two operators '<=' must be present.
16986 /* assign the found operator to the first or second pointer and check for violations of the linear constraint grammar */
17068 /* find operators in the line first, all other remaining parsing depends on occurence of the operators '<=', '>=', '==',
17081 /* assign the strings for parsing the left hand side, right hand side, and the linear variable sum */
17122 SCIPerrorMessage("Parsing has wrong operator character '%c', should be one of <=>[", *firstop);
17158 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17167 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17168 assert(!*success || requsize <= coefssize); /* if successful, then should have had enough space now */
17178 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17211 /** constraint method of constraint handler which returns the number of variables (if possible) */
17293 /* bound change can turn the constraint infeasible or redundant only if it was a tightening */
17298 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17311 if( (val > 0.0 ? !SCIPisInfinity(scip, consdata->rhs) : !SCIPisInfinity(scip, -consdata->lhs)) )
17315 if( (val > 0.0 ? !SCIPisInfinity(scip, -consdata->lhs) : !SCIPisInfinity(scip, consdata->rhs)) )
17354 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17363 /* there is only one lock left: we may multi-aggregate the variable as slack of an equation */
17394 /* if the variable is binary but not fixed it had to become binary due to this global change */
17395 if( SCIPvarIsBinary(var) && SCIPisGT(scip, SCIPvarGetUbGlobal(var), SCIPvarGetLbGlobal(var)) )
17407 /* for presolving it only matters if a variable type changed from continuous to some kind of integer */
17408 consdata->presolved = (consdata->presolved && SCIPeventGetOldtype(event) < SCIP_VARTYPE_CONTINUOUS);
17410 /* the ordering is preserved if the type changes from something different to binary to binary but SCIPvarIsBinary() is true */
17411 consdata->indexsorted = (consdata->indexsorted && SCIPeventGetNewtype(event) == SCIP_VARTYPE_BINARY && SCIPvarIsBinary(var));
17451 /* create array of variables and coefficients: sum_{i \in P} x_i - sum_{i \in N} x_i >= 1 - |N| */
17483 (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "cf%" SCIP_LONGINT_FORMAT, SCIPgetNConflictConssApplied(scip));
17484 SCIP_CALL( SCIPcreateConsLinear(scip, &cons, consname, nbdchginfos, vars, vals, lhs, SCIPinfinity(scip),
17487 /* try to automatically convert a linear constraint into a more specific and more specialized constraint */
17531 * (unless the expression is a variable or a constant or a constant*variable, but these are simplified away in cons_nonlinear)
17542 lhs = SCIPisInfinity(scip, -SCIPgetLhsNonlinear(cons)) ? -SCIPinfinity(scip) : (SCIPgetLhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17543 rhs = SCIPisInfinity(scip, SCIPgetRhsNonlinear(cons)) ? SCIPinfinity(scip) : (SCIPgetRhsNonlinear(cons) - SCIPgetConstantExprSum(expr));
17559 SCIP_CALL( addCoef(scip, upgdconss[0], SCIPgetVarExprVar(SCIPexprGetChildren(expr)[i]), SCIPgetCoefsExprSum(expr)[i]) );
17562 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original nonlinear constraint */
17594 SCIP_CALL( SCIPincludeConflicthdlrBasic(scip, &conflicthdlr, CONFLICTHDLR_NAME, CONFLICTHDLR_DESC, CONFLICTHDLR_PRIORITY,
17624 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolLinear, CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
17626 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropLinear, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
17629 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpLinear, consSepasolLinear, CONSHDLR_SEPAFREQ,
17637 SCIP_CALL( SCIPincludeConsUpgradeNonlinear(scip, upgradeConsNonlinear, NONLINCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17643 "multiplier on propagation frequency, how often the bounds are tightened (-1: never, 0: only at root)",
17644 &conshdlrdata->tightenboundsfreq, TRUE, DEFAULT_TIGHTENBOUNDSFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17679 "maximal allowed relative gain in maximum norm for constraint aggregation (0.0: disable constraint aggregation)",
17680 &conshdlrdata->maxaggrnormscale, TRUE, DEFAULT_MAXAGGRNORMSCALE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17683 "maximum activity delta to run easy propagation on linear constraint (faster, but numerically less stable)",
17684 &conshdlrdata->maxeasyactivitydelta, TRUE, DEFAULT_MAXEASYACTIVITYDELTA, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17687 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cardinality cuts",
17691 "should all constraints be subject to cardinality cut generation instead of only the ones with non-zero dual value?",
17711 "should single variable stuffing be performed, which tries to fulfill constraints using the cheapest variable?",
17714 "constraints/" CONSHDLR_NAME "/sortvars", "apply binaries sorting in decr. order of coeff abs value?",
17718 "should the violation for a constraint with side 0.0 be checked relative to 1.0 (FALSE) or to the maximum absolute value in the activity (TRUE)?",
17722 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
17726 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
17734 "should presolving and propagation try to improve bounds, detect infeasibility, and extract sub-constraints from ranged rows and equations?",
17747 &conshdlrdata->rangedrowfreq, TRUE, DEFAULT_RANGEDROWFREQ, 1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17755 &conshdlrdata->maxmultaggrquot, TRUE, DEFAULT_MAXMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17759 &conshdlrdata->maxdualmultaggrquot, TRUE, DEFAULT_MAXDUALMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17807 (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "constraints/linear/upgrade/%s", conshdlrname);
17808 (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "enable linear upgrading for constraint handler <%s>", conshdlrname);
17819 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17848 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
17850 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
17869 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
17885 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
17893 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
17907 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17917 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17933 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17943 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17986 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
17996 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
18003 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
18004 * method SCIPcreateConsLinear(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
18008 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
18037 SCIP_Real* sourcecoefs, /**< coefficient array of the linear constraint, or NULL if all coefficients are one */
18040 SCIP_HASHMAP* varmap, /**< a SCIP_HASHMAP mapping variables of the source SCIP to corresponding
18042 SCIP_HASHMAP* consmap, /**< a hashmap to store the mapping of source constraints to the corresponding
18052 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup? */
18053 SCIP_Bool stickingatnode, /**< should the constraint always be kept at the node where it was added, even
18078 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18099 /* transform source variable to active variables of the source SCIP since only these can be mapped to variables of
18104 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, nvars, &constant, &requiredsize, TRUE) );
18111 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, requiredsize, &constant, &requiredsize, TRUE) );
18132 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18135 SCIP_CALL( SCIPgetVarCopy(sourcescip, scip, var, &vars[v], varmap, consmap, global, &success) );
18149 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18179 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
18201 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
18209 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
18230 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18240 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18256 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18266 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18316 /** changes coefficient of variable in linear constraint; deletes the variable if coefficient is zero; adds variable if
18319 * @note This method may only be called during problem creation stage for an original constraint and variable.
18321 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18345 if( SCIPgetStage(scip) > SCIP_STAGE_PROBLEM || !SCIPconsIsOriginal(cons) || !SCIPvarIsOriginal(var) )
18347 SCIPerrorMessage("method may only be called during problem creation stage for original constraints and variables\n");
18365 /* decrease i by one since otherwise we would skip the coefficient which has been switched to position i */
18387 * @note This method may only be called during problem creation stage for an original constraint and variable.
18389 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18410 )
18517 /** gets the array of variables in the linear constraint; the user must not modify this array! */
18541 /** gets the array of coefficient values in the linear constraint; the user must not modify this array! */
18567 * @note if the solution contains values at infinity, this method will return SCIP_INVALID in case the activity
18681 /** returns the linear relaxation of the given linear constraint; may return NULL if no LP row was yet created;
18707 /** tries to automatically convert a linear constraint into a more specific and more specialized constraint */
18750 /* we cannot upgrade a modifiable linear constraint, since we don't know what additional coefficients to expect */
18772 /* check, if the constraint was already upgraded and will be deleted anyway after preprocessing */
18781 SCIPerrorMessage("cannot upgrade linear constraint that is already stored as row in the LP\n");
18793 /* normalizeCons() can only detect infeasibility when scaling with the gcd. in that case, the scaling was
18798 * TODO: this needs to be fixed on master by changing the API and passing a pointer to whether the constraint is
18916 SCIPdebugMsg(scip, " +bin=%d -bin=%d +int=%d -int=%d +impl=%d -impl=%d +cont=%d -cont=%d +1=%d -1=%d +I=%d -I=%d +F=%d -F=%d possum=%.15g negsum=%.15g integral=%u\n",
18928 nposbin, nnegbin, nposint, nnegint, nposimpl, nnegimpl, nposimplbin, nnegimplbin, nposcont, nnegcont,
18939 SCIPdebugMsg(scip, " -> upgraded to constraint type <%s>\n", SCIPconshdlrGetName(SCIPconsGetHdlr(*upgdcons)));
18951 SCIP_Bool* infeasible /**< pointer to return whether the problem was detected to be infeasible */
18966 nconss = onlychecked ? SCIPconshdlrGetNCheckConss(conshdlr) : SCIPconshdlrGetNActiveConss(conshdlr);
void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4205
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONS *cons, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1413
SCIP_Real SCIPgetActivityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18589
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:90
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1690
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:563
Definition: type_result.h:33
Definition: type_result.h:37
Definition: struct_cons.h:280
static SCIP_RETCODE tightenVarBounds(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:6824
static void consdataCalcMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1458
static SCIP_DECL_CONSDEACTIVE(consDeactiveLinear)
Definition: cons_linear.c:15851
Definition: type_cons.h:77
Definition: struct_var.h:99
SCIP_RETCODE SCIPincludeConshdlrLinear(SCIP *scip)
Definition: cons_linear.c:17597
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:867
static SCIP_RETCODE consCatchEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:731
static SCIP_RETCODE chgCoefPos(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Real newval)
Definition: cons_linear.c:4029
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5200
static SCIP_Real consdataGetFeasibility(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3171
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2125
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:773
public methods for SCIP parameter handling
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3289
SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:17702
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:586
SCIP_RETCODE SCIPincludeConsUpgradeNonlinear(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nlconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_nonlinear.c:11062
Definition: type_var.h:40
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:18029
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:786
Definition: struct_scip.h:59
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1989
static void calculateMinvalAndMaxval(SCIP *scip, SCIP_Real side, SCIP_Real val, SCIP_Real minresactivity, SCIP_Real maxresactivity, SCIP_Real *minval, SCIP_Real *maxval)
Definition: cons_linear.c:10661
static void consdataUpdateSignatures(SCIP_CONSDATA *consdata, int pos)
Definition: cons_linear.c:3192
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2487
static void consdataUpdateActivities(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_Real val, SCIP_BOUNDTYPE boundtype, SCIP_Bool global, SCIP_Bool checkreliability)
Definition: cons_linear.c:1625
public methods for memory management
Definition: type_conflict.h:50
static void consdataRecomputeMaxActivityDelta(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1563
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:345
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:877
static SCIP_Bool checkEqualObjective(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real *scale, SCIP_Real *offset)
Definition: cons_linear.c:10264
static SCIP_RETCODE fixVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars)
Definition: cons_linear.c:7895
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1136
static SCIP_RETCODE convertUnaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *ndelconss)
Definition: cons_linear.c:9555
static SCIP_RETCODE tightenVarLb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5436
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:816
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:18049
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1604
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3347
SCIP_RETCODE SCIPcleanupConssLinear(SCIP *scip, SCIP_Bool onlychecked, SCIP_Bool *infeasible)
Definition: cons_linear.c:18967
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:397
public methods for conflict handler plugins and conflict analysis
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:308
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1749
static SCIP_RETCODE consDropAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:836
void SCIPlinConsStatsIncTypeCount(SCIP_LINCONSSTATS *linconsstats, SCIP_LINCONSTYPE linconstype, int increment)
Definition: cons.c:7979
Definition: type_result.h:49
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1686
Definition: type_cons.h:73
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1308
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1214
static void consdataUpdateActivitiesGlbUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2083
SCIP_Bool SCIPisUpdateUnreliable(SCIP *scip, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: scip_numerics.c:1321
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:490
Definition: type_set.h:37
SCIP_RETCODE SCIPsetConshdlrDeactive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDEACTIVE((*consdeactive)))
Definition: scip_cons.c:678
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:95
static SCIP_Real consdataGetMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2312
static SCIP_RETCODE linconsupgradeCreate(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority)
Definition: cons_linear.c:521
void SCIPsortDownRealPtr(SCIP_Real *realarray, void **ptrarray, int len)
Definition: struct_var.h:198
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1436
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1461
static void consdataRecomputeMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1326
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:862
static SCIP_RETCODE normalizeCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4260
SCIP_RETCODE SCIPconvertCutsToConss(SCIP *scip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, int *ncutsadded)
Definition: scip_copy.c:2054
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:825
static void consdataGetGlbActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *glbminactivity, SCIP_Real *glbmaxactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2889
Definition: type_cons.h:79
Definition: type_message.h:45
static void permSortConsdata(SCIP_CONSDATA *consdata, int *perm, int nvars)
Definition: cons_linear.c:3346
Definition: cons_linear.c:366
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4547
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:4642
static SCIP_DECL_HASHGETKEY(hashGetKeyLinearcons)
Definition: cons_linear.c:13105
static void consdataInvalidateActivities(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1227
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:315
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:166
static void consdataGetGlbActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2951
static SCIP_Bool conshdlrdataHasUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_DECL_LINCONSUPGD((*linconsupgd)), const char *conshdlrname)
Definition: cons_linear.c:602
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1979
SCIP_Real SCIPvarGetNegationConstant(SCIP_VAR *var)
Definition: var.c:17747
SCIP_ROW * SCIPgetRowLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18703
SCIP_RETCODE SCIPaddConflictUb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:410
Definition: type_var.h:53
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_SOL *sol, SCIP_Bool separatecards, SCIP_Bool separateall, int *ncuts, SCIP_Bool *cutoff)
Definition: cons_linear.c:7657
static SCIP_Bool consdataIsResidualIntegral(SCIP *scip, SCIP_CONSDATA *consdata, int pos, SCIP_Real val)
Definition: cons_linear.c:10635
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, SCIP_Real maxaggrnormscale, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides, int *nchgcoefs)
Definition: cons_linear.c:13486
Definition: cons_linear.c:364
Definition: type_expr.h:53
Definition: type_cons.h:71
void SCIPlinConsStatsReset(SCIP_LINCONSSTATS *linconsstats)
Definition: cons.c:7947
public methods for problem variables
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:314
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5317
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:220
SCIP_Real SCIPselectSimpleValue(SCIP_Real lb, SCIP_Real ub, SCIP_Longint maxdnom)
Definition: misc.c:9719
Definition: type_result.h:40
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:123
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:438
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, int *firstchange, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides)
Definition: cons_linear.c:13292
static SCIP_RETCODE aggregateConstraints(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1, int *commonidx0, int *commonidx1, int *diffidx0minus1, int *diffidx1minus0, int nvarscommon, int commonidxweight, int diffidx0minus1weight, int diffidx1minus0weight, SCIP_Real maxaggrnormscale, int *nchgcoefs, SCIP_Bool *aggregated, SCIP_Bool *infeasible)
Definition: cons_linear.c:12785
static SCIP_RETCODE rangedRowPropagation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds, int *naddconss)
Definition: cons_linear.c:5839
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:4610
SCIP_RETCODE SCIPdelCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_linear.c:18410
static SCIP_RETCODE consDropEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:770
public methods for SCIP variables
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:747
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:609
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:111
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:74
static SCIP_Real consdataGetMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2328
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1477
SCIP_Real SCIPgetRhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18450
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:793
static SCIP_RETCODE tightenSides(SCIP *scip, SCIP_CONS *cons, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:8999
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18181
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:199
Definition: type_cons.h:76
static SCIP_RETCODE addConflictFixedVars(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos)
Definition: cons_linear.c:5106
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:934
SCIP_RETCODE SCIPparseVarsLinearsum(SCIP *scip, const char *str, SCIP_VAR **vars, SCIP_Real *vals, int *nvars, int varssize, int *requiredsize, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:700
SCIP_RETCODE SCIPaddConflictLb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:343
public methods for numerical tolerances
Definition: struct_conflict.h:40
static SCIP_RETCODE rangedRowSimplify(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:11432
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2236
public functions to work with algebraic expressions
public methods for querying solving statistics
Definition: struct_sol.h:64
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4256
Definition: type_cons.h:64
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:292
public methods for the branch-and-bound tree
Definition: type_cons.h:66
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:9295
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1121
static void linconsupgradeFree(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade)
Definition: cons_linear.c:542
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1233
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8173
static SCIP_RETCODE analyzeConflict(SCIP *scip, SCIP_CONS *cons, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:5315
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool checkrelmaxabs, SCIP_Bool *violated)
Definition: cons_linear.c:7274
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6918
SCIP_RETCODE SCIPsetConshdlrInitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITSOL((*consinitsol)))
Definition: scip_cons.c:429
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10455
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:96
SCIP_RETCODE SCIPmultiaggregateVar(SCIP *scip, SCIP_VAR *var, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: scip_var.c:8532
Definition: struct_misc.h:128
public methods for managing constraints
Constraint handler for knapsack constraints of the form , x binary and .
static SCIP_RETCODE updateCutoffbound(SCIP *scip, SCIP_CONS *cons, SCIP_Real primalbound)
Definition: cons_linear.c:10409
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:332
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:11544
static SCIP_RETCODE tightenVarUb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newub, SCIP_Real oldub, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5367
static void getMaxActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *maxactivity, SCIP_Bool *isrelax, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2509
Definition: type_retcode.h:36
SCIP_Bool SCIPisSumRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1240
Definition: type_result.h:35
Definition: struct_cons.h:37
SCIP_Real SCIPgetDualsolLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18645
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:451
SCIP_RETCODE SCIPaddConsLocal(SCIP *scip, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition: scip_prob.c:3392
SCIP_Bool SCIPdoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8595
Definition: struct_cons.h:117
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3473
public methods for event handler plugins and event handlers
SCIP_RETCODE SCIPinferVarFixCons(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5429
SCIP_RETCODE SCIPupgradeConsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_CONS **upgdcons)
Definition: cons_linear.c:18727
SCIP_RETCODE SCIPreleaseNlRow(SCIP *scip, SCIP_NLROW **nlrow)
Definition: scip_nlp.c:1016
Definition: type_lp.h:47
SCIP_RETCODE SCIPgetProbvarSum(SCIP *scip, SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: scip_var.c:1791
Definition: type_cons.h:72
static void consdataCalcMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1434
SCIP_RETCODE SCIPaddVarImplication(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6777
static SCIP_RETCODE chgRhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:3615
Definition: type_result.h:36
static SCIP_RETCODE conshdlrdataEnsureLinconsupgradesSize(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, int num)
Definition: cons_linear.c:461
static void consdataUpdateDelCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2156
static SCIP_RETCODE consdataSort(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3422
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4434
static void consdataUpdateAddCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2106
static int inferInfoGetProprule(INFERINFO inferinfo)
Definition: cons_linear.c:409
static SCIP_RETCODE consdataTightenCoefs(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:9121
static SCIP_RETCODE aggregateVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars)
Definition: cons_linear.c:11220
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:357
Definition: type_var.h:42
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4195
SCIP_EXPR * SCIPgetExprNonlinear(SCIP_CONS *cons)
Definition: cons_nonlinear.c:12250
Definition: type_var.h:44
static SCIP_RETCODE addConflictReasonVars(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5171
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1951
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_linear.c:3908
static SCIP_RETCODE resolvePropagation(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, INFERINFO inferinfo, SCIP_BOUNDTYPE boundtype, SCIP_BDCHGIDX *bdchgidx, SCIP_RESULT *result)
Definition: cons_linear.c:5222
SCIP_RETCODE SCIPgetIntParam(SCIP *scip, const char *name, int *value)
Definition: scip_param.c:260
static SCIP_RETCODE checkPartialObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10342
static SCIP_RETCODE conshdlrdataIncludeUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_LINCONSUPGRADE *linconsupgrade)
Definition: cons_linear.c:632
Definition: type_set.h:43
Definition: type_retcode.h:33
public methods for problem copies
static void consdataGetActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Real *maxactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2608
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:812
static SCIP_RETCODE tightenVarBoundsEasy(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5505
SCIP_RETCODE SCIPgetProbvarLinearSum(SCIP *scip, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize, SCIP_Bool mergemultiples)
Definition: scip_var.c:1735
SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:17714
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2617
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:276
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:799
static void getMinActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Bool *isrelax, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2408
Definition: type_result.h:42
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:694
Definition: type_cons.h:63
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:216
static SCIP_Bool isFiniteNonnegativeIntegral(SCIP *scip, SCIP_Real x)
Definition: cons_linear.c:15332
Definition: graph_load.c:93
static SCIP_RETCODE scaleCons(SCIP *scip, SCIP_CONS *cons, SCIP_Real scalar)
Definition: cons_linear.c:4108
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:241
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:632
static SCIP_DECL_HASHKEYVAL(hashKeyValLinearcons)
Definition: cons_linear.c:13176
public methods for constraint handler plugins and constraints
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool tightenbounds, SCIP_Bool rangedrowpropagation, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7747
SCIP_Real SCIPgetDualfarkasLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18673
static void consdataUpdateChgCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldval, SCIP_Real newval, SCIP_Bool checkreliability)
Definition: cons_linear.c:2213
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:4510
Definition: struct_expr.h:95
static SCIP_RETCODE consdataPrint(SCIP *scip, SCIP_CONSDATA *consdata, FILE *file)
Definition: cons_linear.c:1116
void SCIPhashtablePrintStatistics(SCIP_HASHTABLE *hashtable, SCIP_MESSAGEHDLR *messagehdlr)
Definition: misc.c:2744
static SCIP_RETCODE retrieveParallelConstraints(SCIP_HASHTABLE *hashtable, SCIP_CONS **querycons, SCIP_CONS **parallelconss, int *nparallelconss)
Definition: cons_linear.c:13231
public data structures and miscellaneous methods
static SCIP_RETCODE chgLhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:3489
SCIP_Bool SCIPisSumGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:711
SCIP_RETCODE SCIPchgRowRhs(SCIP *scip, SCIP_ROW *row, SCIP_Real rhs)
Definition: scip_lp.c:1598
Definition: type_var.h:55
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_linear.c:4201
static void consdataRecomputeGlbMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1407
static SCIP_Real consdataGetActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3103
constraint handler for nonlinear constraints specified by algebraic expressions
static void conshdlrdataFree(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata)
Definition: cons_linear.c:580
Definition: type_var.h:54
Definition: type_var.h:46
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2473
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:4593
Definition: struct_lp.h:192
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_linear.c:7558
methods for debugging
public methods for LP management
SCIP_RETCODE SCIPhashtableSafeInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2519
static SCIP_RETCODE presolStuffing(SCIP *scip, SCIP_CONS *cons, SCIP_Bool singletonstuffing, SCIP_Bool singlevarstuffing, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds)
Definition: cons_linear.c:14090
SCIP_RETCODE SCIPchgRowLhs(SCIP *scip, SCIP_ROW *row, SCIP_Real lhs)
Definition: scip_lp.c:1574
public methods for cuts and aggregation rows
static void consdataUpdateActivitiesGlbLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2060
Definition: type_cons.h:68
Definition: type_set.h:41
static SCIP_Real consdataComputePseudoActivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1273
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:391
SCIP_Real SCIPbdchginfoGetNewbound(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:18502
Definition: type_cons.h:78
static void consdataCalcActivities(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2346
SCIP_RETCODE SCIPcreateVar(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:105
SCIP_RETCODE SCIPcreateNlRow(SCIP *scip, SCIP_NLROW **nlrow, const char *name, SCIP_Real constant, int nlinvars, SCIP_VAR **linvars, SCIP_Real *lincoefs, SCIP_EXPR *expr, SCIP_Real lhs, SCIP_Real rhs, SCIP_EXPRCURV curvature)
Definition: scip_nlp.c:912
Definition: type_var.h:41
Definition: type_var.h:45
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8273
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4348
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:770
Constraint handler for linear constraints in their most general form, .
SCIP_Longint SCIPgetNConflictConssApplied(SCIP *scip)
Definition: scip_solvingstats.c:1144
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2548
SCIP_RETCODE SCIPchgRhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:18495
SCIP_Bool SCIPisSumRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1266
Definition: type_set.h:42
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2129
static void findOperators(const char *str, char **firstoperator, char **secondoperator, SCIP_Bool *success)
Definition: cons_linear.c:16951
SCIP_RETCODE SCIPvarGetOrigvarSum(SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:12773
SCIP_Real SCIPgetFeasibilityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18617
SCIP_RETCODE SCIPinferVarLbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5498
SCIP_RETCODE SCIPclassifyConstraintTypesLinear(SCIP *scip, SCIP_LINCONSSTATS *linconsstats)
Definition: cons_linear.c:15350
int SCIPconshdlrGetNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4624
public methods for the LP relaxation, rows and columns
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17788
static void consdataGetReliableResidualActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *cancelvar, SCIP_Real *resactivity, SCIP_Bool isminresact, SCIP_Bool useglobalbounds)
Definition: cons_linear.c:2657
static void consdataRecomputeMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1353
SCIP_RETCODE SCIPwriteVarsLinearsum(SCIP *scip, FILE *file, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Bool type)
Definition: scip_var.c:334
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3695
static SCIP_DECL_CONSENFORELAX(consEnforelaxLinear)
Definition: cons_linear.c:16126
Definition: type_set.h:36
methods for sorting joint arrays of various types
SCIP_Bool SCIPconsIsLockedType(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8478
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_linear.c:17840
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:501
static SCIP_RETCODE conshdlrdataCreate(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:556
public methods for branching rule plugins and branching
static void consdataCalcSignatures(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3217
Definition: type_cons.h:67
Definition: struct_misc.h:80
public methods for managing events
static SCIP_RETCODE analyzeConflictRangedRow(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5781
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:664
general public methods
Definition: type_cons.h:74
void SCIPsort(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:5440
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:477
Definition: type_cons.h:75
static void consdataGetActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2738
static SCIP_RETCODE fullDualPresolve(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:14681
public methods for solutions
SCIP_RETCODE SCIPgetVarCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR *sourcevar, SCIP_VAR **targetvar, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *success)
Definition: scip_copy.c:702
SCIP_VAR ** SCIPgetVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18537
SCIP_RETCODE SCIPinferVarUbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5612
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:381
SCIP_CONS ** SCIPconshdlrGetCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4567
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1258
static void consdataCheckNonbinvar(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1487
static SCIP_RETCODE consCatchAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:804
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:405
Definition: type_lp.h:48
public methods for conflict analysis handlers
static SCIP_RETCODE extractCliques(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, int *nfixedvars, int *nchgbds, SCIP_Bool *cutoff)
Definition: cons_linear.c:8030
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:651
public methods for the probing mode
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1110
Definition: type_cons.h:69
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyLinear)
Definition: cons_linear.c:15220
SCIP_RETCODE SCIPincludeConflicthdlrBasic(SCIP *scip, SCIP_CONFLICTHDLR **conflicthdlrptr, const char *name, const char *desc, int priority, SCIP_DECL_CONFLICTEXEC((*conflictexec)), SCIP_CONFLICTHDLRDATA *conflicthdlrdata)
Definition: scip_conflict.c:99
const char * SCIPconflicthdlrGetName(SCIP_CONFLICTHDLR *conflicthdlr)
Definition: conflict.c:763
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:525
public methods for message output
Definition: type_result.h:43
Definition: type_var.h:84
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:850
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:609
static SCIP_RETCODE convertBinaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9611
SCIP_RETCODE SCIPaggregateVars(SCIP *scip, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *redundant, SCIP_Bool *aggregated)
Definition: scip_var.c:8398
static SCIP_RETCODE tightenBounds(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7096
SCIP_RETCODE SCIPaddVarsToRow(SCIP *scip, SCIP_ROW *row, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_lp.c:1712
static void getNewSidesAfterAggregation(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *slackvar, SCIP_Real slackcoef, SCIP_Real *newlhs, SCIP_Real *newrhs)
Definition: cons_linear.c:9669
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:839
SCIP_Bool SCIPisScalingIntegral(SCIP *scip, SCIP_Real val, SCIP_Real scalar)
Definition: scip_numerics.c:599
Definition: struct_nlp.h:55
static SCIP_RETCODE convertEquality(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10580
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4664
int SCIPconshdlrGetNCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4610
public methods for message handling
static SCIP_RETCODE consPrintConsSol(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, FILE *file)
Definition: cons_linear.c:1155
static unsigned int getParallelConsKey(SCIP_CONS *cons)
Definition: cons_linear.c:13212
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2197
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:3743
static SCIP_DECL_CONFLICTEXEC(conflictExecLinear)
Definition: cons_linear.c:17448
Definition: type_retcode.h:45
SCIP_Real SCIPgetRowSolFeasibility(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2152
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num)
Definition: cons_linear.c:486
Definition: type_set.h:44
Definition: cons_linear.c:346
static SCIP_DECL_NONLINCONSUPGD(upgradeConsNonlinear)
Definition: cons_linear.c:17534
Definition: cons_linear.c:360
static void consdataRecomputeGlbMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1380
SCIP_Real * SCIPgetValsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18561
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:464
static SCIP_RETCODE convertLongEquality(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9723
SCIP_RETCODE SCIPchgLhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:18474
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:102
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:874
SCIP_Bool SCIPconsIsMarkedPropagate(SCIP_CONS *cons)
Definition: cons.c:8294
Definition: type_cons.h:65
static SCIP_Bool isRangedRow(SCIP *scip, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:15319
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:697
SCIP_RETCODE SCIPsetConshdlrActive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSACTIVE((*consactive)))
Definition: scip_cons.c:655
SCIPallocBlockMemory(scip, subsol))
SCIP_RETCODE SCIPaddConflict(SCIP *scip, SCIP_NODE *node, SCIP_CONS *cons, SCIP_NODE *validnode, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_prob.c:3227
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_linear.c:15144
Definition: type_retcode.h:43
static SCIP_DECL_CONSGETNVARS(consGetNVarsLinear)
Definition: cons_linear.c:17232
Definition: objbenders.h:33
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:453
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:221
public methods for global and local (sub)problems
Definition: type_var.h:43
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9022
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1352
SCIP_RETCODE SCIPaddObjoffset(SCIP *scip, SCIP_Real addval)
Definition: scip_prob.c:1267
int SCIPgetNVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18513
SCIP_Real SCIPgetLhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18426
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:130
static SCIP_RETCODE dualPresolve(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10706
static SCIP_RETCODE addConflictBounds(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:4924
SCIP_Longint SCIPcalcSmaComMul(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9274
Definition: cons_linear.c:362
Definition: type_result.h:39
Definition: struct_event.h:195
static void consdataUpdateActivitiesLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2010
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5773
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:48
SCIP_RETCODE SCIPchgCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18342
static void consdataUpdateActivitiesUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2035
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata)
Definition: cons_linear.c:1075
Definition: type_cons.h:70
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:266
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1208
memory allocation routines
Definition: type_var.h:58