lp.c
Go to the documentation of this file.
32 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
63 * using the LP solver activity is potentially faster, but may not be consistent with the SCIP_ROW calculations
509 /* we do not save the farkas coefficient, since it can be recomputed; thus, we invalidate it here */
512 /* if the column was created after performing the storage (possibly during probing), we treat it as implicitly zero;
597 /* if the row was created after performing the storage (possibly during probing), we treat it as basic;
647 #ifdef SCIP_MORE_DEBUG /* enable this to check the sortings within rows (for debugging, very slow!) */
768 /* recompute the loose objective value from scratch, if it was marked to be unreliable before */
797 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
810 /* recompute the pseudo solution value from scratch, if it was marked to be unreliable before */
834 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
852 /* recompute the global pseudo solution value from scratch, if it was marked to be unreliable before */
876 /* we are only interested in variables with a finite impact, because the infinity counters should be correct */
958 /** sorts column entries of linked rows currently in the LP such that lower row indices precede higher ones */
989 /** sorts column entries of unlinked rows or rows currently not in the LP such that lower row indices precede higher
1006 SCIPsortPtrRealInt((void**)(&(col->rows[col->nlprows])), &(col->vals[col->nlprows]), &(col->linkpos[col->nlprows]), SCIProwComp, col->len - col->nlprows);
1022 /** sorts row entries of linked columns currently in the LP such that lower column indices precede higher ones */
1037 SCIPsortIntPtrIntReal(row->cols_index, (void**)row->cols, row->linkpos, row->vals, row->nlpcols);
1053 /** sorts row entries of unlinked columns or columns currently not in the LP such that lower column indices precede
1072 SCIPsortIntPtrIntReal(&(row->cols_index[row->nlpcols]), (void**)(&(row->cols[row->nlpcols])), &(row->linkpos[row->nlpcols]), &(row->vals[row->nlpcols]), row->len - row->nlpcols);
1090 /** searches coefficient in part of the column, returns position in col vector or -1 if not found */
1165 /** searches coefficient in part of the row, returns position in col vector or -1 if not found */
1257 /** moves a coefficient in a column to a different place, and updates all corresponding data structures */
1353 /** moves a coefficient in a row to a different place, and updates all corresponding data structures */
1474 if( (row->eventfilter->len > 0 && (row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWCOEFCHANGED) != 0) )
1479 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1502 if( (row->eventfilter->len > 0 && (row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWCONSTCHANGED)) )
1507 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1531 if( (row->eventfilter->len > 0 && !(row->eventfilter->eventmask & SCIP_EVENTTYPE_ROWSIDECHANGED)) )
1536 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, row->eventfilter, &event) );
1542 #ifdef SCIP_MORE_DEBUG /* enable this to check links between columns and rows in LP data structure (for debugging, very slow!) */
1708 /*assert(colSearchCoef(col, row) == -1);*/ /* this assert would lead to slight differences in the solution process */
1718 /* if the row is in current LP and is linked to the column, we have to insert it at the end of the linked LP rows
1732 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
1743 /* if the column is in current LP, we have to link it to the row, because otherwise, the primal information
1748 /* this call might swap the current row with the first non-LP/not linked row, s.t. insertion position
1770 /* if the column is in current LP, now both conditions, row->cols[linkpos]->lppos >= 0 and row->linkpos[linkpos] >= 0
1802 SCIPsetDebugMsg(set, "added coefficient %g * <%s> at position %d (%d/%d) to column <%s> (nunlinked=%d)\n",
1836 /* if row is a linked LP row, move last linked LP coefficient to position of empty slot (deleted coefficient) */
1872 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
1918 /* Euclidean norm, sum norm, and objective function scalar product only take LP columns into account */
2003 /* Euclidean norm, sum norm, and objective function scalar product only take LP columns into account */
2054 /*assert(rowSearchCoef(row, col) == -1);*/ /* this assert would lead to slight differences in the solution process */
2069 /* if the column is in current LP and is linked to the row, we have to insert it at the end of the linked LP columns
2083 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
2096 /* if the row is in current LP, we have to link it to the column, because otherwise, the dual information
2101 /* this call might swap the current column with the first non-LP/not linked column, s.t. insertion position
2123 /* if the row is in current LP, now both conditions, col->rows[linkpos]->lppos >= 0 and col->linkpos[linkpos] >= 0
2164 SCIPsetDebugMsg(set, "added coefficient %g * <%s> at position %d (%d/%d) to row <%s> (nunlinked=%d)\n",
2202 SCIPerrorMessage("cannot delete a coefficient from the locked unmodifiable row <%s>\n", row->name);
2209 /* if column is a linked LP column, move last linked LP coefficient to position of empty slot (deleted coefficient) */
2255 SCIPerrorMessage("cannot change a coefficient of the locked unmodifiable row <%s>\n", row->name);
2259 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
2370 /* this call might swap the current row with the first non-LP/not linked row, but this is of no harm */
2375 assert(col->nlprows == 0 || col->rows[col->nlprows-1]->cols[col->linkpos[col->nlprows-1]] == col);
2376 assert(col->nlprows == 0 || col->rows[col->nlprows-1]->linkpos[col->linkpos[col->nlprows-1]] == col->nlprows-1);
2452 /* this call might swap the current column with the first non-LP/not linked column, but this is of no harm */
2457 assert(row->nlpcols == 0 || row->cols[row->nlpcols-1]->rows[row->linkpos[row->nlpcols-1]] == row);
2458 assert(row->nlpcols == 0 || row->cols[row->nlpcols-1]->linkpos[row->linkpos[row->nlpcols-1]] == row->nlpcols-1);
2574 /** checks, that parameter of type int in LP solver has the given value, ignoring unknown parameters */
2599 /** checks, that parameter of type SCIP_Bool in LP solver has the given value, ignoring unknown parameters */
2610 /** checks, that parameter of type SCIP_Real in LP solver has the given value, ignoring unknown parameters */
2641 #define lpCutoffDisabled(set) (set->lp_disablecutoff == 1 || (set->nactivepricers > 0 && set->lp_disablecutoff == 2))
2661 /* We disabled the objective limit in the LP solver or we want so solve exactly and thus cannot rely on the LP
2662 * solver's objective limit handling, so we return here and do not apply the objective limit. */
2679 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2718 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2761 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2804 /* check whether the parameter was actually changed or already was at the boundary of the LP solver's parameter range */
2873 /* We might only set lp->solved to false if fastmip is turned off, since the latter should be the more
3042 /** sets the pricing strategy of the LP solver (given the character representation of the strategy) */
3202 /* we don't check this parameter because SoPlex will always return its current random seed, not the initial one */
3413 SCIPmessageFPrintInfo(messagehdlr, file, "(obj: %.15g) [%.15g,%.15g], ", col->obj, col->lb, col->ub);
3427 /** sorts column entries such that LP rows precede non-LP rows and inside both parts lower row indices precede higher ones
3483 SCIPerrorMessage("coefficient for row <%s> doesn't exist in column <%s>\n", row->name, SCIPvarGetName(col->var));
3599 SCIP_CALL( rowChgCoefPos(row, blkmem, set, eventqueue, lp, col->linkpos[pos], col->vals[pos] + incval) );
3634 * @note: Here we only consider cancellations which can occur during decreasing the oldvalue to newvalue; not the
3673 if( SCIPsetIsLT(set, lp->objsqrnorm, 0.0) || isNewValueUnreliable(set, lp->objsqrnorm, oldvalue) )
3679 /* due to numerical troubles it still can appear that lp->objsqrnorm is a little bit smaller than 0 */
3705 SCIPsetDebugMsg(set, "changing objective value of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->obj, newobj);
3721 /* in any case, when the sign of the objective (and thereby the best bound) changes, the variable has to enter the
3735 /* update original objective value, as long as we are not in diving or probing and changed objective values */
3764 SCIPsetDebugMsg(set, "changing lower bound of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->lb, newlb);
3780 /* in any case, when the best bound is zero and gets changed, the variable has to enter the LP and the LP has to be
3809 SCIPsetDebugMsg(set, "changing upper bound of column <%s> from %f to %f\n", SCIPvarGetName(col->var), col->ub, newub);
3825 /* in any case, when the best bound is zero and gets changed, the variable has to enter the LP and the LP has to be
4023 /** calculates the Farkas coefficient y^T A_i of a column i using the given dual Farkas vector y */
4152 /** gets the Farkas value of a column in last LP (which must be infeasible), i.e. the Farkas coefficient y^T A_i times
4305 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4363 /* if a loose variables has an infinite best bound, the LP bound is -infinity and no gain can be achieved */
4390 retcode = SCIPlpiStrongbranchInt(lp->lpi, col->lpipos, col->primsol, itlim, down == NULL ? NULL : &sbdown, up == NULL ? NULL : &sbup, &sbdownvalid, &sbupvalid, &iter);
4394 retcode = SCIPlpiStrongbranchFrac(lp->lpi, col->lpipos, col->primsol, itlim, down == NULL ? NULL : &sbdown, up == NULL ? NULL : &sbup, &sbdownvalid, &sbupvalid, &iter);
4427 iter = stat->ndualresolvelps > 0 ? (int)(2*stat->ndualresolvelpiterations / stat->ndualresolvelps)
4429 : stat->nprimalresolvelps > 0 ? (int)(2*stat->nprimalresolvelpiterations / stat->nprimalresolvelps)
4489 SCIP_Bool* downvalid, /**< stores whether the returned down values are valid dual bounds, or NULL;
4562 /* if a loose variables has an infinite best bound, the LP bound is -infinity and no gain can be achieved */
4590 SCIPsetDebugMsg(set, "performing strong branching on %d variables with %d iterations\n", ncols, itlim);
4594 retcode = SCIPlpiStrongbranchesInt(lp->lpi, lpipos, nsubcols, primsols, itlim, sbdown, sbup, sbdownvalid, sbupvalid, &iter);
4596 retcode = SCIPlpiStrongbranchesFrac(lp->lpi, lpipos, nsubcols, primsols, itlim, sbdown, sbup, sbdownvalid, sbupvalid, &iter);
4665 iter = stat->ndualresolvelps > 0 ? (int)(2*stat->ndualresolvelpiterations / stat->ndualresolvelps)
4667 : stat->nprimalresolvelps > 0 ? (int)(2*stat->nprimalresolvelpiterations / stat->nprimalresolvelps)
4699 * keep in mind, that the returned old values may have nothing to do with the current LP solution
4705 SCIP_Bool* downvalid, /**< stores whether the returned down value is a valid dual bound, or NULL;
4709 SCIP_Real* solval, /**< stores LP solution value of column at last strong branching call, or NULL */
4729 /** if strong branching was already applied on the column at the current node, returns the number of LPs solved after
4744 /** marks a column to be not removable from the LP in the current node because it became obsolete */
4754 /* lpRemoveObsoleteCols() does not remove a column if the node number stored in obsoletenode equals the current node number */
4892 /** checks, whether the given scalar scales the given value to an integral number with error in the given bounds */
4897 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
4898 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
4931 * if the row's activity is proven to be integral, the sides are automatically rounded to the next integer
4942 SCIP_Bool integralcontvars, /**< should the coefficients of the continuous variables also be made integral,
4944 SCIP_Real minrounddelta, /**< minimal relative difference of scaled coefficient s*c and integral i,
4946 SCIP_Real maxrounddelta /**< maximal relative difference of scaled coefficient s*c and integral i
4970 SCIPsetDebugMsg(set, "scale row <%s> with %g (tolerance=[%g,%g])\n", row->name, scaleval, minrounddelta, maxrounddelta);
4978 /* scale the row coefficients, thereby recalculating whether the row's activity is always integral;
4979 * if the row coefficients are rounded to the nearest integer value, calculate the maximal activity difference,
4991 /* get local or global bounds for column, depending on the local or global feasibility of the row */
5055 /* scale the row sides, and move the constant to the sides; relax the sides with accumulated delta in order
5092 for( c = 0; c < row->len && SCIPcolIsIntegral(row->cols[c]) && SCIPsetIsIntegral(set, row->vals[c]); ++c )
5116 void* origin, /**< pointer to constraint handler or separator who created the row (NULL if unkown) */
5118 SCIP_Bool modifiable, /**< is row modifiable during node processing (subject to column generation)? */
5128 * in case, for example, lhs > rhs but they are equal with tolerances, one could pass lhs=rhs=lhs+rhs/2 to
5320 SCIPmessageFPrintInfo(messagehdlr, file, "%+.15g<%s> ", row->vals[i], SCIPvarGetName(row->cols[i]->var));
5340 SCIPdebugMessage("capture row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5358 SCIPsetDebugMsg(set, "release row <%s> with nuses=%d and nlocks=%u\n", (*row)->name, (*row)->nuses, (*row)->nlocks);
5370 /** locks an unmodifiable row, which forbids further changes; has no effect on modifiable rows */
5380 SCIPdebugMessage("lock row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5385 /** unlocks a lock of an unmodifiable row; a row with no sealed lock may be modified; has no effect on modifiable rows */
5395 SCIPdebugMessage("unlock row <%s> with nuses=%d and nlocks=%u\n", row->name, row->nuses, row->nlocks);
5445 SCIPerrorMessage("coefficient for column <%s> doesn't exist in row <%s>\n", SCIPvarGetName(col->var), row->name);
5547 /* coefficient doesn't exist, or sorting is delayed: add coefficient to the end of the row's arrays */
5652 SCIP_CALL( SCIProwChgConstant(row, blkmem, set, stat, eventqueue, lp, row->constant + addval) );
5683 SCIP_CALL( rowEventSideChanged(row, blkmem, set, eventqueue, SCIP_SIDETYPE_LEFT, oldlhs, lhs) );
5715 SCIP_CALL( rowEventSideChanged(row, blkmem, set, eventqueue, SCIP_SIDETYPE_RIGHT, oldrhs, rhs) );
5739 /** tries to find a value, such that all row coefficients, if scaled with this value become integral */
5743 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
5744 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
5747 SCIP_Bool usecontvars, /**< should the coefficients of the continuous variables also be made integral? */
5748 SCIP_Real* intscalar, /**< pointer to store scalar that would make the coefficients integral, or NULL */
5770 /**@todo call misc.c:SCIPcalcIntegralScalar() instead - if usecontvars == FALSE, filter the integer variables first */
5780 SCIPsetDebugMsg(set, "trying to find rational representation for row <%s> (contvars: %u)\n", SCIProwGetName(row), usecontvars);
5781 SCIPdebug( val = 0; ); /* avoid warning "val might be used uninitialized; see SCIPdebugMessage lastval=%g below */
5821 /* try, if row coefficients can be made integral by multiplying them with the reciprocal of the smallest coefficient
5850 SCIPsetDebugMsg(set, " -> val=%g, scaleval=%g, val*scaleval=%g, scalable=%u\n", val, scaleval, val*scaleval, scalable);
5861 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (minval=%g)\n", scaleval, minval);
5879 && (absval * twomultval < 0.5 || !isIntegralScalar(val, twomultval, mindelta, maxdelta, NULL)) )
5903 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (power of 2)\n", twomultval);
5908 /* convert each coefficient into a rational number, calculate the greatest common divisor of the numerators
5928 SCIPsetDebugMsg(set, " -> first rational: val: %g == %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", rational=%u\n",
5948 SCIPsetDebugMsg(set, " -> next rational : val: %g == %" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ", gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", rational=%u\n",
5956 /* make row coefficients integral by multiplying them with the smallest common multiple of the denominators */
5961 SCIPsetDebugMsg(set, " -> integrality can be achieved by scaling with %g (rational:%" SCIP_LONGINT_FORMAT "/%" SCIP_LONGINT_FORMAT ")\n",
5967 SCIPsetDebugMsg(set, " -> rationalizing failed: gcd=%" SCIP_LONGINT_FORMAT ", scm=%" SCIP_LONGINT_FORMAT ", lastval=%g\n", gcd, scm, val); /*lint !e771*/
5981 SCIP_Real mindelta, /**< minimal relative allowed difference of scaled coefficient s*c and integral i */
5982 SCIP_Real maxdelta, /**< maximal relative allowed difference of scaled coefficient s*c and integral i */
5985 SCIP_Bool usecontvars, /**< should the coefficients of the continuous variables also be made integral? */
5994 SCIP_CALL( SCIProwCalcIntegralScalar(row, set, mindelta, maxdelta, maxdnom, maxscale, usecontvars,
6000 SCIP_CALL( rowScale(row, blkmem, set, eventqueue, stat, lp, intscalar, usecontvars, mindelta, maxdelta) );
6006 /** sorts row entries such that LP columns precede non-LP columns and inside both parts lower column indices precede
6036 /** sorts row, and merges equal column entries (resulting from lazy sorting and adding) into a single entry; removes
6096 /* in case the coefficient is integral w.r.t. numerics we explicitly round the coefficient to an integral value */
6099 row->integral = row->integral && SCIPcolIsIntegral(cols[t]) && SCIPsetIsIntegral(set, vals[t]);
6109 row->integral = row->integral && SCIPcolIsIntegral(cols[t]) && SCIPsetIsIntegral(set, vals[t]);
6118 /* if equal entries were merged, we have to recalculate the norms, since the squared Euclidean norm is wrong */
6246 /** returns the feasibility of a row in the current LP solution: negative value means infeasibility */
6263 /** returns the feasibility of a row in the relaxed solution solution: negative value means infeasibility
6325 /** returns the feasibility of a row in the current NLP solution: negative value means infeasibility
6411 assert(!row->integral || EPSISINT(row->pseudoactivity - row->constant, SCIP_DEFAULT_SUMEPSILON));
6442 /** returns the pseudo feasibility of a row in the current pseudo solution: negative value means infeasibility */
6576 /* even if the row is integral, the bounds on the variables used for computing minimum and maximum activity might
6577 * be integral only within feasibility tolerance; this can happen, e.g., if a continuous variable is promoted to
6578 * an (implicit) integer variable and the bounds cannot be adjusted because they are minimally tighter than the
6579 * rounded bound value; hence, the activity may violate integrality; we allow 1000 times the default feasibility
6582 assert(!row->integral || mininfinite || REALABS(row->minactivity - row->constant) > 1.0/SCIPsetSumepsilon(set)
6584 assert(!row->integral || maxinfinite || REALABS(row->maxactivity - row->constant) > 1.0/SCIPsetSumepsilon(set)
6795 solcutoffdist = -SCIProwGetLPFeasibility(row, set, stat, lp) / ABS(solcutoffdist); /*lint !e795*/
6841 /** returns whether the row's efficacy with respect to the current LP solution is greater than the minimal cut efficacy */
6898 /** returns whether the row's efficacy with respect to the given primal solution is greater than the minimal cut
7017 * The columns in a row are divided into two parts: LP columns, which are currently in the LP and non-LP columns;
7018 * we sort the rows, but that only ensures that within these two parts, columns are sorted w.r.t. their index.
7019 * Normally, this should be suficient, because a column contained in both rows should either be one of the LP columns
7021 * However, directly after a row was created, before a row is added to the LP, the row is not linked to all its
7022 * columns and all columns are treated as non-LP columns. Moreover, for example when doing column generation,
7023 * columns can be added later and remain unlinked while all previously added columns might already be linked.
7024 * Therefore, we have to be very careful about whether we can rely on the partitioning of the variables.
7039 * -> we need to compare three partitions: the LP part of the completely linked row and both partitions of the
7043 * -> we need to compare three partitions: the complete unlinked row and both partitions of the other row
7062 /* check that we can rely on the partition into LP columns and non-LP columns if the rows are completely linked */
7106 /* set the iterators to the last column we want to regard in the row: nunlinked is either 0 or row->len,
7131 /* the "harder" cases 3) - 5): start with four partitions and reduce their number iteratively */
7153 while( ilp1 < row1->nlpcols && inlp1 < row1->len && ilp2 < row2->nlpcols && inlp2 < row2->len )
7162 assert((row1->cols[inlp1] == row2->cols[inlp2]) == (row1colsidx[inlp1] == row2colsidx[inlp2]));
7229 /* One partition was completely handled, we just have to handle the three remaining partitions:
7231 * If necessary, we swap the partitions to ensure that row1 is the row with only one remaining partition.
7250 /* determine section of row 1 that we want to look at (current iterator = begin, end, LP-columns?)
7268 /* handle the case of three partitions (case 4) until one partition is finished, this reduces our problem to case 1), 2), or 5);
7310 /* if the second section of row 1 was finished, we can stop; otherwise, we have to consider the remaining parts of
7315 /* determine section of row 2 that we want to look at (current iterator = begin, end, LP-columns?) */
7330 /* handle the case of two partitions (standard case 5, or case 1 or 2 due to partition reduction) */
7374 * The columns in a row are divided into two parts: LP columns, which are currently in the LP and non-LP columns;
7375 * we sort the rows, but that only ensures that within these two parts, columns are sorted w.r.t. their index.
7376 * Normally, this should be suficient, because a column contained in both rows should either be one of the LP columns
7378 * However, directly after a row was created, before a row is added to the LP, the row is not linked to all its
7379 * columns and all columns are treated as non-LP columns. Moreover, for example when doing column generation,
7380 * columns can be added later and remain unlinked while all previously added columns might already be linked.
7381 * Therefore, we have to be very careful about whether we can rely on the partitioning of the variables.
7396 * -> we need to compare three partitions: the LP part of the completely linked row and both partitions of the
7400 * -> we need to compare three partitions: the complete unlinked row and both partitions of the other row
7419 /* check that we can rely on the partition into LP columns and non-LP columns if the rows are completely linked */
7463 /* set the iterators to the last column we want to regard in the row: nunlinked is either 0 or row->len,
7488 /* the "harder" cases 3) - 5): start with four partitions and reduce their number iteratively */
7510 while( ilp1 < row1->nlpcols && inlp1 < row1->len && ilp2 < row2->nlpcols && inlp2 < row2->len )
7519 assert((row1->cols[inlp1] == row2->cols[inlp2]) == (row1colsidx[inlp1] == row2colsidx[inlp2]));
7586 /* One partition was completely handled, we just have to handle the three remaining partitions:
7588 * If necessary, we swap the partitions to ensure that row1 is the row with only one remaining partition.
7607 /* determine section of row 1 that we want to look at (current iterator = begin, end, LP-columns?)
7625 /* handle the case of three partitions (case 4) until one partition is finished, this reduces our problem to case 1), 2), or 5);
7667 /* if the second section of row 1 was finished, we can stop; otherwise, we have to consider the remaining parts of
7672 /* determine section of row 2 that we want to look at (current iterator = begin, end, LP-columns?) */
7687 /* handle the case of two partitions (standard case 5, or case 1 or 2 due to partition reduction) */
7713 /** returns the degree of parallelism between the hyperplanes defined by the two row vectors v, w:
7765 parallelism = scalarprod / (sqrt((SCIP_Real) SCIProwGetNNonz(row1)) * sqrt((SCIP_Real) SCIProwGetNNonz(row2)));
7777 /** returns the degree of orthogonality between the hyperplanes defined by the two row vectors v, w:
7790 /** gets parallelism of row with objective function: if the returned value is 1, the row is parallel to the objective
7832 SCIP_EVENTDATA* eventdata, /**< event data to pass to the event handler for the event processing */
7841 SCIPsetDebugMsg(set, "catch event of type 0x%" SCIP_EVENTTYPE_FORMAT " of row <%s> with handler %p and data %p\n",
7844 SCIP_CALL( SCIPeventfilterAdd(row->eventfilter, blkmem, set, eventtype, eventhdlr, eventdata, filterpos) );
7856 SCIP_EVENTDATA* eventdata, /**< event data to pass to the event handler for the event processing */
7863 SCIPsetDebugMsg(set, "drop event of row <%s> with handler %p and data %p\n", row->name, (void*)eventhdlr, (void*)eventdata);
7865 SCIP_CALL( SCIPeventfilterDel(row->eventfilter, blkmem, set, eventtype, eventhdlr, eventdata, filterpos) );
7870 /** marks a row to be not removable from the LP in the current node because it became obsolete */
7880 /* lpRemoveObsoleteRows() does not remove a row if the node number stored in obsoletenode equals the current node number */
7936 SCIPdebugMessage("flushing col deletions: shrink LP from %d to %d columns\n", lp->nlpicols, lp->lpifirstchgcol);
7982 if( SCIPsetIsInfinity(set, -col->lb) || (SCIPsetIsLE(set, col->lb, col->lazylb) && !SCIPlpDiving(lp)) )
7990 if( SCIPsetIsInfinity(set, col->ub) || (SCIPsetIsGE(set, col->ub, col->lazyub) && !SCIPlpDiving(lp)) )
8127 SCIPsetDebugMsg(set, "flushing col additions: enlarge LP from %d to %d columns\n", lp->nlpicols, lp->ncols);
8197 SCIPsetDebugMsg(set, "flushing row deletions: shrink LP from %d to %d rows\n", lp->nlpirows, lp->lpifirstchgrow);
8325 SCIPsetDebugMsgPrint(set, " %+gx%d(<%s>)", row->vals[i], lpipos+1, SCIPvarGetName(row->cols[i]->var));
8342 SCIPsetDebugMsg(set, "flushing row additions: enlarge LP from %d to %d rows\n", lp->nlpirows, lp->nrows);
8428 || (!SCIPsetIsInfinity(set, -lpilb) && !SCIPsetIsInfinity(set, -col->flushedlb) && SCIPsetIsFeasEQ(set, lpilb, col->flushedlb)));
8430 || (!SCIPsetIsInfinity(set, lpiub) && !SCIPsetIsInfinity(set, col->flushedub) && SCIPsetIsFeasEQ(set, lpiub, col->flushedub)));
8478 SCIPsetDebugMsg(set, "flushing objective changes: change %d objective values of %d changed columns\n", nobjchg, lp->nchgcols);
8492 SCIPsetDebugMsg(set, "flushing bound changes: change %d bounds of %d changed columns\n", nbdchg, lp->nchgcols);
8593 SCIPsetDebugMsg(set, "flushing side changes: change %d sides of %d rows\n", nchg, lp->nchgrows);
8674 SCIPsetDebugMsg(set, "flushing LP changes: old (%d cols, %d rows), nchgcols=%d, nchgrows=%d, firstchgcol=%d, firstchgrow=%d, new (%d cols, %d rows), flushed=%u\n",
8675 lp->nlpicols, lp->nlpirows, lp->nchgcols, lp->nchgrows, lp->lpifirstchgcol, lp->lpifirstchgrow, lp->ncols, lp->nrows, lp->flushed);
8696 /* if the cutoff bound was changed in between and it is not disabled (e.g. for column generation),
8698 if( lp->cutoffbound != lp->lpiobjlim && lp->ncols > 0 && ! lpCutoffDisabled(set) ) /*lint !e777*/
8795 assert(col->flushedlb == (SCIPsetIsInfinity(set, -col->lb) ? -SCIPlpiInfinity(lp->lpi) : col->lb)); /*lint !e777*/
8796 assert(col->flushedub == (SCIPsetIsInfinity(set, col->ub) ? SCIPlpiInfinity(lp->lpi) : col->ub)); /*lint !e777*/
8827 assert(row->flushedlhs == (SCIPsetIsInfinity(set, -row->lhs) ? -SCIPlpiInfinity(lp->lpi) : row->lhs - row->constant)); /*lint !e777*/
8828 assert(row->flushedrhs == (SCIPsetIsInfinity(set, row->rhs) ? SCIPlpiInfinity(lp->lpi) : row->rhs - row->constant)); /*lint !e777*/
9141 (*lp)->validsollp = stat->lpcount; /* the initial (empty) SCIP_LP is solved with primal and dual solution of zero */
9213 "LP Solver <%s>: objective limit cannot be set -- can lead to unnecessary simplex iterations\n",
9221 "LP Solver <%s>: primal feasibility tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9229 "LP Solver <%s>: dual feasibility tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9237 "LP Solver <%s>: barrier convergence tolerance cannot be set -- tolerance of SCIP and LP solver may differ\n",
9276 "LP Solver <%s>: iteration limit cannot be set -- can lead to unnecessary simplex iterations\n",
9298 "LP Solver <%s>: row representation of the basis not available -- SCIP parameter lp/rowrepswitch has no effect\n",
9301 SCIP_CALL( lpSetIntpar(*lp, SCIP_LPPAR_POLISHING, ((*lp)->lpisolutionpolishing ? 1 : 0), &success) );
9306 "LP Solver <%s>: solution polishing not available -- SCIP parameter lp/solutionpolishing has no effect\n",
9314 "LP Solver <%s>: refactorization interval not available -- SCIP parameter lp/refactorinterval has no effect\n",
9321 "LP Solver <%s>: condition number limit for the basis not available -- SCIP parameter lp/conditionlimit has no effect\n",
9328 "LP Solver <%s>: markowitz threshhold not available -- SCIP parameter lp/minmarkowitz has no effect\n",
9350 /* Check that infinity value of LP-solver is at least as large as the one used in SCIP. This is necessary, because we
9354 SCIPerrorMessage("The infinity value of the LP solver has to be at least as large as the one of SCIP.\n");
9404 /** resets the LP to the empty LP by removing all columns and rows from LP, releasing all rows, and flushing the
9424 lp->validsollp = stat->lpcount; /* the initial (empty) SCIP_LP is solved with primal and dual solution of zero */
9458 SCIPsetDebugMsg(set, "adding column <%s> to LP (%d rows, %d cols)\n", SCIPvarGetName(col->var), lp->nrows, lp->ncols);
9518 SCIPsetDebugMsg(set, "adding row <%s> to LP (%d rows, %d cols)\n", row->name, lp->nrows, lp->ncols);
9558 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
9566 /** method checks if all columns in the lazycols array have at least one lazy bound and also have a counter part in the
9567 * cols array; furthermore, it is checked if columns in the cols array which have a lazy bound have a counter part in
9587 assert(!SCIPsetIsInfinity(set, lp->lazycols[i]->lazyub) || !SCIPsetIsInfinity(set, -lp->lazycols[i]->lazylb));
9594 assert(!SCIPsetIsInfinity(set, lp->cols[c]->lazyub) || !SCIPsetIsInfinity(set, -lp->cols[c]->lazylb));
9601 /* check if each column in the column array which has at least one lazy bound has a counter part in the lazy column *
9616 assert(contained == (!SCIPsetIsInfinity(set, lp->cols[c]->lazyub) || !SCIPsetIsInfinity(set, -lp->cols[c]->lazylb)));
9743 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
9806 /** gets all indices of basic columns and rows: index i >= 0 corresponds to column i, index i < 0 to row -i-1 */
9823 /** gets current basis status for columns and rows; arrays must be large enough to store the basis status */
9888 /** gets a row from the product of inverse basis matrix B^-1 and coefficient matrix A (i.e. from B^-1 * A) */
9911 /** gets a column from the product of inverse basis matrix B^-1 and coefficient matrix A (i.e. from B^-1 * A),
9935 /** calculates a weighted sum of all LP rows; for negative weights, the left and right hand side of the corresponding
9943 SCIP_REALARRAY* sumcoef, /**< array to store sum coefficients indexed by variables' probindex */
9965 SCIP_CALL( SCIPrealarrayExtend(sumcoef, set->mem_arraygrowinit, set->mem_arraygrowfac, 0, prob->nvars-1) );
9990 SCIP_CALL( SCIPrealarrayIncVal(sumcoef, set->mem_arraygrowinit, set->mem_arraygrowfac, idx, weights[r] * row->vals[i]) );
10055 SCIP_Bool wasprimchecked, /**< true if the LP solution has passed the primal feasibility check */
10057 SCIP_Bool wasdualchecked /**< true if the LP solution has passed the dual feasibility check */
10078 /* @todo: setting feasibility to TRUE might be wrong because in probing mode, the state is even saved when the LP was
10200 SCIPsetDebugMsg(set, "setting LP upper objective limit from %g to %g\n", lp->cutoffbound, cutoffbound);
10202 /* if the objective function was changed in diving, the cutoff bound has no meaning (it will be set correctly
10211 /* if the cutoff bound is increased, and the LP was proved to exceed the old cutoff, it is no longer solved */
10219 /* if the cutoff bound is decreased below the current optimal value, the LP now exceeds the objective limit;
10220 * if the objective limit in the LP solver was disabled, the solution status of the LP is not changed
10255 SCIPsetDebugMsg(set, "setting LP primal feasibility tolerance from %g to %g\n", lp->feastol, newfeastol);
10269 * Sets primal feasibility tolerance to min of numerics/lpfeastolfactor * numerics/feastol and relaxfeastol.
10281 SCIPlpSetFeastol(lp, set, MIN(SCIPsetRelaxfeastol(set), SCIPsetLPFeastolFactor(set) * SCIPsetFeastol(set))); /*lint !e666*/
10309 /** calls LPI to perform primal simplex, measures time and counts iterations, gets basis feasibility status */
10316 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10331 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with primal simplex (diving=%d, nprimallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10332 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nprimallps, stat->ndivinglps);
10340 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
10342 SCIPsetDebugMsg(set, "wrote LP to file <%s> (primal simplex, objlim=%.15g, feastol=%.15g/%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
10375 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") primal simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10461 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with primal simplex (diving=%d, nprimallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10474 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10489 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10490 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nduallps, stat->ndivinglps);
10498 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
10500 SCIPsetDebugMsg(set, "wrote LP to file <%s> (dual simplex, objlim=%.15g, feastol=%.15g/%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
10533 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10619 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10625 /** calls LPI to perform lexicographic dual simplex to find a lexicographically minimal optimal solution, measures time and counts iterations
10634 * We do, however, not aim for the exact lexicographically minimal optimal solutions, but perform a
10637 * More precisely, we first solve the problem with the dual simplex algorithm. Then we fix those
10639 * variables) that have nonzero reduced cost. This fixes the objective function value, because only
10642 * Then the not yet fixed variables are considered in turn. If they are at their lower bounds and
10643 * nonbasic, they are fixed to this bound, since their value cannot be decreased further. Once a
10644 * candidate is found, we set the objective to minimize this variable. We run the primal simplex
10646 * variables out of the basis have been fixed to their lower bound, the basis is also not primal
10647 * feasible anymore). After the optimization, we again fix nonbasic variables that have nonzero
10654 * @todo Can we skip the consideration of basic variables that are at their lower bound? How can we
10655 * guarantee that these variables will not be changed in later stages? We can fix these variables
10665 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
10682 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with lex dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
10683 stat->lpcount+1, lp->ncols, lp->nrows, lp->diving || lp->probing, stat->nduallps, stat->ndivinglps);
10708 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
10947 /* check columns: find first candidate (either basic or nonbasic and zero reduced cost) and fix variables */
11074 /* solve with primal simplex, because we are primal feasible, but not necessarily dual feasible */
11079 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") in lex-dual: primal simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11157 while( pos >= 0 && nDualDeg > 0 && (set->lp_lexdualmaxrounds == -1 || rounds < set->lp_lexdualmaxrounds) );
11164 /* resolve to update solvers internal data structures - should only produce few pivots - is this needed? */
11169 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") dual simplex solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11233 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with lex dual simplex (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
11256 /** calls LPI to perform barrier, measures time and counts iterations, gets basis feasibility status */
11263 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11277 SCIPsetDebugMsg(set, "solving LP %" SCIP_LONGINT_FORMAT " (%d cols, %d rows) with barrier%s (diving=%d, nbarrierlps=%" SCIP_LONGINT_FORMAT ", ndivinglps=%" SCIP_LONGINT_FORMAT ")\n",
11278 stat->lpcount+1, lp->ncols, lp->nrows, crossover ? "/crossover" : "", lp->diving || lp->probing,
11287 (void) SCIPsnprintf(fname, SCIP_MAXSTRLEN, "lp%" SCIP_LONGINT_FORMAT "_%" SCIP_LONGINT_FORMAT ".lp", stat->nnodes, stat->lpcount);
11289 SCIPsetDebugMsg(set, "wrote LP to file <%s> (barrier, objlim=%.15g, feastol=%.15g/%.15g, convtol=%.15g, fromscratch=%d, fastmip=%d, scaling=%d, presolving=%d)\n",
11316 SCIPsetDebugMsg(set, "(node %" SCIP_LONGINT_FORMAT ") barrier solving error in LP %" SCIP_LONGINT_FORMAT "\n", stat->nnodes, stat->nlps);
11387 SCIPsetDebugMsg(set, "solved LP %" SCIP_LONGINT_FORMAT " with barrier%s (diving=%d, nduallps=%" SCIP_LONGINT_FORMAT ", nbarrierlps=%" SCIP_LONGINT_FORMAT ")\n",
11388 stat->lpcount, crossover ? "/crossover" : "", lp->diving || lp->probing, stat->nbarrierlps, stat->ndivinglps);
11401 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11430 SCIPsetDebugMsg(set, "calling LP algorithm <%s> with a time limit of %g seconds\n", lpalgoName(lpalgo), lptimelimit);
11441 if( set->lp_lexdualalgo && (!set->lp_lexdualrootonly || stat->maxdepth == 0) && (!set->lp_lexdualstalling || lp->installing) )
11469 SCIPsetDebugMsg(set, "LP feasibility: primalfeasible=%u, dualfeasible=%u\n", lp->primalfeasible, lp->dualfeasible);
11475 /** maximal number of verblevel-high messages about numerical trouble in LP that will be printed
11476 * when this number is reached and display/verblevel is not full, then further messages are suppressed in this run
11506 /* if already max number of messages about numerical trouble in LP on verblevel at most high, then skip message */
11530 if( set->disp_verblevel < SCIP_VERBLEVEL_FULL && verblevel <= SCIP_VERBLEVEL_HIGH && stat->nnumtroublelpmsgs > MAXNUMTROUBLELPMSGS )
11532 SCIPmessagePrintInfo(messagehdlr, " -- further messages will be suppressed (use display/verblevel=5 to see all)");
11556 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "ignoring instability of %s", lpalgoName(lpalgo));
11576 int itlim, /**< maximal number of LP iterations to perform in first LP calls (before solving from scratch), or -1 for no limit */
11577 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
11582 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
11583 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
11604 /**@todo implement solving the LP when loose variables with infinite best bound are present; for this, we need to
11605 * solve with deactivated objective limit in order to determine whether we are (a) infeasible or (b) feasible
11606 * and hence unbounded; to handle case (b) we need to store an array of loose variables with best bound in
11611 SCIPerrorMessage("cannot solve LP when loose variable with infinite best bound is present\n");
11622 if( lp->lpihaspolishing && (set->lp_solutionpolishing == 2 || (set->lp_solutionpolishing == 1 && stat->nnodes == 1 && !lp->probing)
11623 || (set->lp_solutionpolishing == 3 && ((lp->probing && !lp->strongbranchprobing) || lp->diving))) )
11641 SCIP_CALL( lpSetObjlim(lp, set, lp->cutoffbound - getFiniteLooseObjval(lp, set, prob), &success) );
11644 SCIP_CALL( lpSetFeastol(lp, tightprimfeastol ? FEASTOLTIGHTFAC * lp->feastol : lp->feastol, &success) );
11645 SCIP_CALL( lpSetDualfeastol(lp, tightdualfeastol ? FEASTOLTIGHTFAC * SCIPsetDualfeastol(set) : SCIPsetDualfeastol(set),
11647 SCIP_CALL( lpSetBarrierconvtol(lp, (tightprimfeastol || tightdualfeastol) ? FEASTOLTIGHTFAC * SCIPsetBarrierconvtol(set)
11660 SCIP_CALL( lpSetRandomseed(lp, (int) SCIPsetInitializeRandomSeed(set, (unsigned) set->random_randomseed), &success) );
11666 /* after the first solve, do not use starting basis, since otherwise the solver will probably think the basis is
11670 /* check for stability; iteration limit exceeded is also treated like instability if the iteration limit is soft */
11671 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11682 /* In the following, whenever the LP iteration limit is exceeded in an LP solving call, we leave out the
11683 * remaining resolving calls with changed settings and go directly to solving the LP from scratch.
11686 /* if FASTMIP is turned on, solve again without FASTMIP (starts from the solution of the last LP solving call);
11694 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s without FASTMIP", lpalgoName(lpalgo));
11698 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11711 /* if the iteration limit was exceeded in the last LP solving call, we leave out the remaining resolving calls with changed settings
11716 /* solve again with opposite scaling setting (starts from the solution of the last LP solving call) */
11720 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s %s scaling",
11725 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11742 /* if the iteration limit was exceeded in the last LP solving call, we leave out the remaining resolving calls with changed settings
11746 /* solve again with opposite presolving setting (starts from the solution of the last LP solving call) */
11750 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s %s presolving",
11755 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11772 /* solve again with a tighter feasibility tolerance (starts from the solution of the last LP solving call);
11775 if( ((simplex && (!tightprimfeastol || !tightdualfeastol)) || (!tightprimfeastol && !tightdualfeastol)) &&
11793 SCIP_CALL( lpSetBarrierconvtol(lp, FEASTOLTIGHTFAC * SCIPsetBarrierconvtol(set), &success3) );
11799 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again with %s with tighter primal and dual feasibility tolerance",
11804 if( *timelimit || (!(*lperror) && SCIPlpiIsStable(lp->lpi) && (itlimishard || !SCIPlpiIsIterlimExc(lp->lpi))) )
11831 /* all LPs solved after this point are solved from scratch, so set the LP iteration limit to the hard limit;
11841 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s", lpalgoName(lpalgo));
11861 lpalgo = (lpalgo == SCIP_LPALGO_PRIMALSIMPLEX ? SCIP_LPALGO_DUALSIMPLEX : SCIP_LPALGO_PRIMALSIMPLEX);
11862 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s", lpalgoName(lpalgo));
11881 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s %s scaling",
11906 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s %s presolving",
11945 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "solve again from scratch with %s with tighter feasibility tolerance",
11993 if( SCIPsetIsInfinity(set, lp->lpobjval) && lp->lpobjval != SCIPsetInfinity(set) ) /*lint !e777*/
12002 else if( SCIPsetIsInfinity(set, -lp->lpobjval) && lp->lpobjval != -SCIPsetInfinity(set) ) /*lint !e777*/
12022 int resolveitlim, /**< maximal number of LP iterations to perform in resolving calls, or -1 for no limit */
12023 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
12030 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
12031 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12057 SCIP_CALL( lpSolveStable(lp, set, messagehdlr, stat, prob, lpalgo, itlim, harditlim, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch,
12066 SCIPsetDebugMsg(set, "unresolved error while solving LP with %s\n", lpalgoName(lp->lastlpalgo));
12083 assert(!(SCIPlpiIsOptimal(lp->lpi) && SCIPlpiIsObjlimExc(lp->lpi) && SCIPlpiIsPrimalInfeasible(lp->lpi) &&
12084 SCIPlpiExistsPrimalRay(lp->lpi) && SCIPlpiIsIterlimExc(lp->lpi) && SCIPlpiIsTimelimExc(lp->lpi)));
12097 /* the solver may return the optimal value, even if this is greater or equal than the upper bound */
12098 SCIPsetDebugMsg(set, "optimal solution %.15g exceeds objective limit %.15g\n", lp->lpobjval, lp->lpiobjlim);
12102 /* if we did not disable the cutoff bound in the LP solver, the LP solution status should be objective limit
12105 assert(lpCutoffDisabled(set) || lp->lpsolstat == SCIP_LPSOLSTAT_OBJLIMIT || SCIPsetIsInfinity(set, lp->cutoffbound)
12123 /* because of numerical instability lpalgo != lp->lastlpalgo might happen - hence, we have to check both */
12124 if( needdualray && !SCIPlpiHasDualRay(lp->lpi) && !solveddual && lpalgo != SCIP_LPALGO_DUALSIMPLEX )
12135 /* because of numerical instability lpalgo != lp->lastlpalgo might happen - hence, we have to check both */
12136 if( needprimalray && !SCIPlpiIsPrimalUnbounded(lp->lpi) && !solvedprimal && lpalgo != SCIP_LPALGO_PRIMALSIMPLEX )
12150 /* The lpobjval might be infinite, e.g. if the LP solver was not able to produce a valid bound while reaching the
12151 iteration limit. In this case, we avoid the warning in adjustLPobjval() by setting the messagehdlr to NULL. */
12169 "(node %" SCIP_LONGINT_FORMAT ") solution status of LP %" SCIP_LONGINT_FORMAT " could not be proven (internal status:%d) -- solve again with %s\n",
12178 "(node %" SCIP_LONGINT_FORMAT ") solution status of LP %" SCIP_LONGINT_FORMAT " could not be proven (internal status:%d) -- solve again with %s\n",
12184 SCIPerrorMessage("(node %" SCIP_LONGINT_FORMAT ") error or unknown return status of %s in LP %" SCIP_LONGINT_FORMAT " (internal status: %d)\n",
12192 SCIPsetDebugMsg(set, "solving LP with %s returned solstat=%d (internal status: %d, primalfeasible=%u, dualfeasible=%u)\n",
12199 /** flushes the LP and solves it with the primal or dual simplex algorithm, depending on the current basis feasibility */
12209 int resolveitlim, /**< maximal number of LP iterations to perform in resolving calls, or -1 for no limit */
12210 int harditlim, /**< maximal number of LP iterations to perform (hard limit for all LP calls), or -1 for no limit */
12216 SCIP_Bool fromscratch, /**< should the LP be solved from scratch without using current basis? */
12217 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12230 fastmip = ((!lp->flushaddedcols && !lp->flushdeletedcols) ? fastmip : 0); /* turn off FASTMIP if columns were changed */
12243 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_DUALSIMPLEX, resolveitlim, harditlim, needprimalray,
12244 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12249 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_PRIMALSIMPLEX, resolveitlim, harditlim, needprimalray,
12250 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12256 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_PRIMALSIMPLEX, resolveitlim, harditlim, needprimalray,
12257 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12262 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_DUALSIMPLEX, resolveitlim, harditlim, needprimalray,
12263 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12268 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_BARRIER, resolveitlim, harditlim, needprimalray,
12269 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12274 SCIP_CALL( lpSolve(lp, set, messagehdlr, stat, prob, SCIP_LPALGO_BARRIERCROSSOVER, resolveitlim, harditlim, needprimalray,
12275 needdualray, resolve, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12305 assert(SCIPsetIsInfinity(set, -col->lazylb) || SCIPsetIsFeasGE(set, col->primsol, col->lazylb));
12306 assert(SCIPsetIsInfinity(set, col->lazyub) || SCIPsetIsFeasLE(set, col->primsol, col->lazyub));
12313 /** marks all lazy columns to be changed; this is needed for reloading/removing bounds of these columns before and after
12333 SCIPsetDebugMsg(set, "mark all lazy columns as changed in order to reload bounds (diving=%u, applied=%u)\n",
12343 assert((!(lp->divinglazyapplied)) || (col->flushedlb == col->lb) || col->lbchanged); /*lint !e777*/
12357 assert((!(lp->divinglazyapplied)) || (col->flushedub == col->ub) || col->ubchanged); /*lint !e777*/
12369 /* update lp->divinglazyapplied flag: if we are in diving mode, we just applied the lazy bounds,
12388 /* set itlim to INT_MAX if it is -1 to reduce the number of cases to be regarded in the following */
12391 /* return resolveiterfac * average iteration number per call after root, but at least resolveitermin and at most the hard iteration limit */
12393 (set->lp_resolveiterfac * (stat->nlpiterations - stat->nrootlpiterations) / (SCIP_Real)(stat->nlps - stat->nrootlps))));
12412 SCIP_Bool keepsol, /**< should the old LP solution be kept if no iterations were performed? */
12436 SCIPsetDebugMsg(set, "solving LP: %d rows, %d cols, primalfeasible=%u, dualfeasible=%u, solved=%u, diving=%u, probing=%u, cutoffbnd=%g\n",
12437 lp->nrows, lp->ncols, lp->primalfeasible, lp->dualfeasible, lp->solved, lp->diving, lp->probing, lp->cutoffbound);
12444 /* compute the limit for the number of LP resolving iterations, if needed (i.e. if limitresolveiters == TRUE) */
12449 /* if there are lazy bounds, check whether the bounds should explicitly be put into the LP (diving was started)
12454 /* @todo avoid loosing primal feasibility here after changing the objective already did destroy dual feasibility;
12465 /* if the time limit was reached in the last call and the LP did not change, lp->solved is set to TRUE, but we want
12468 if( !lp->solved || (lp->lpsolstat == SCIP_LPSOLSTAT_TIMELIMIT && stat->status != SCIP_STATUS_TIMELIMIT) )
12484 fastmip = ((lp->lpihasfastmip && !lp->flushaddedcols && !lp->flushdeletedcols && stat->nnodes > 1) ? set->lp_fastmip : 0);
12495 SCIP_CALL( lpFlushAndSolve(lp, blkmem, set, messagehdlr, stat, prob, eventqueue, resolveitlim, harditlim, needprimalray,
12497 SCIPsetDebugMsg(set, "lpFlushAndSolve() returned solstat %d (error=%u)\n", SCIPlpGetSolstat(lp), *lperror);
12554 SCIPsetDebugMsg(set, "removed obsoletes - resolve LP again: %d rows, %d cols\n", lp->nrows, lp->ncols);
12561 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12565 /* solution is infeasible (this can happen due to numerical problems): solve again without FASTMIP */
12567 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again without FASTMIP\n",
12574 /* solution is infeasible (this can happen due to numerical problems): solve again with tighter feasibility
12578 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again with tighter feasibility tolerance\n",
12586 /* solution is infeasible (this can happen due to numerical problems): solve again from scratch */
12588 "(node %" SCIP_LONGINT_FORMAT ") solution of LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, dfeas=%u) -- solving again from scratch\n",
12602 lp->lpobjval, getFiniteLooseObjval(lp, set, prob), lp->lpobjval + getFiniteLooseObjval(lp, set, prob),
12608 if( !SCIPprobAllColsInLP(prob, set, lp) || set->lp_checkfarkas || set->misc_exactsolve || set->lp_alwaysgetduals )
12614 /* it might happen that we have no infeasibility proof for the current LP (e.g. if the LP was always solved
12620 "(node %" SCIP_LONGINT_FORMAT ") infeasibility of LP %" SCIP_LONGINT_FORMAT " could not be proven by dual ray\n", stat->nnodes, stat->nlps);
12633 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12637 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12641 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again without FASTMIP\n",
12652 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again with tighter dual feasibility tolerance\n",
12659 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12663 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again from scratch\n",
12670 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems) and nothing
12673 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP infeasible");
12708 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12712 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again without FASTMIP */
12714 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again without FASTMIP\n",
12721 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again with tighter feasibility
12725 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again with tighter primal feasibility tolerance\n",
12732 /* unbounded solution is infeasible (this can happen due to numerical problems): solve again from scratch */
12734 "(node %" SCIP_LONGINT_FORMAT ") solution of unbounded LP %" SCIP_LONGINT_FORMAT " not optimal (pfeas=%u, rfeas=%u) -- solving again from scratch\n",
12741 /* unbounded solution is infeasible (this can happen due to numerical problems) and nothing helped:
12744 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP unbounded");
12755 /* Some LP solvers, e.g. CPLEX With FASTMIP setting, do not apply the final pivot to reach the dual solution
12756 * exceeding the objective limit. In some cases like branch-and-price, however, we must make sure that a dual
12757 * feasible solution exists that exceeds the objective limit. Therefore, we have to continue solving it without
12758 * objective limit for at least one iteration. We first try to continue with FASTMIP for one additional simplex
12759 * iteration using the steepest edge pricing rule. If this does not fix the problem, we temporarily disable
12769 /* actually, SCIPsetIsGE(set, lp->lpobjval, lp->lpiuobjlim) should hold, but we are a bit less strict in
12776 /* do one additional simplex step if the computed dual solution doesn't exceed the objective limit */
12783 SCIPsetDebugMsg(set, "objval = %f < %f = lp->lpiobjlim, but status objlimit\n", objval, lp->lpiobjlim);
12785 /* we want to resolve from the current basis (also if the LP had to be solved from scratch) */
12798 FALSE, FALSE, TRUE, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12816 /* disable fastmip for subsequent LP calls (if objective limit is not yet exceeded or LP solution is infeasible) */
12828 FALSE, FALSE, TRUE, fastmip, tightprimfeastol, tightdualfeastol, fromscratch, keepsol, lperror) );
12836 SCIPsetDebugMsg(set, " ---> new objval = %f (solstat: %d, without fastmip)\n", objval, solstat);
12842 SCIPsetDebugMsg(set, "unresolved error while resolving LP in order to exceed the objlimit\n");
12852 /* optimal solution / objlimit with fastmip turned off / itlimit or timelimit, but objlimit exceeded */
12885 /* in debug mode, check that lazy bounds (if present) are not violated by an optimal LP solution */
12901 /* LP solution is not feasible or objective limit was reached without the LP value really exceeding
12915 lp->lpobjval, getFiniteLooseObjval(lp, set, prob), lp->lpobjval + getFiniteLooseObjval(lp, set, prob),
12929 /* it might happen that we have no infeasibility proof for the current LP (e.g. if the LP was always solved
12935 "(node %" SCIP_LONGINT_FORMAT ") infeasibility of LP %" SCIP_LONGINT_FORMAT " could not be proven by dual ray\n", stat->nnodes, stat->nlps);
12947 SCIP_Bool simplex = (lp->lastlpalgo == SCIP_LPALGO_PRIMALSIMPLEX || lp->lastlpalgo == SCIP_LPALGO_DUALSIMPLEX);
12955 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again with tighter primal feasibility tolerance\n",
12962 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems): solve again
12966 "(node %" SCIP_LONGINT_FORMAT ") proof of infeasible LP %" SCIP_LONGINT_FORMAT " not valid -- solving again from scratch\n",
12973 /* the Farkas proof does not prove infeasibility (this can happen due to numerical problems) and nothing
12976 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, LP infeasible");
13016 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved, unbounded LP");
13046 SCIPmessagePrintWarning(messagehdlr, "LP solver reached time limit, but SCIP time limit is not exceeded yet; "
13067 /* if the LP had to be solved from scratch, we have to reset this flag since it is stored in the LPI; otherwise it
13073 SCIPsetDebugMsg(set, "resetting parameter SCIP_LPPARAM_FROMSCRATCH to FALSE %s\n", success ? "" : "failed");
13093 * @note This method returns the objective value of the current LP solution, which might be primal or dual infeasible
13094 * if a limit was hit during solving. It must not be used as a dual bound if the LP solution status is
13245 /** gets the global pseudo objective value; that is all variables set to their best (w.r.t. the objective function)
13266 /* if the global pseudo objective value is smaller than -infinity, we just return -infinity */
13277 /** gets the pseudo objective value for the current search node; that is all variables set to their best (w.r.t. the
13309 /** gets pseudo objective value, if a bound of the given variable would be modified in the given way */
13347 /** gets pseudo objective value, if a bound of the given variable would be modified in the given way;
13551 assert(SCIPsetIsPositive(set, obj)); /* we only need to update if the objective is positive */
13592 assert(SCIPsetIsNegative(set, obj)); /* we only need to update if the objective is negative */
13619 /** updates current pseudo and loose objective values for a change in a variable's objective value or bounds */
13654 /* after changing a local bound on a LOOSE variable, we have to update the loose objective value, too */
13699 /** updates current pseudo and loose objective values for a change in a variable's objective value or bounds;
13733 if( SCIPvarGetStatus(var) != SCIP_VARSTATUS_LOOSE && SCIPvarGetStatus(var) != SCIP_VARSTATUS_COLUMN )
13754 SCIPintervalSub(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval -= oldlb * oldobj; */
13766 SCIPintervalSub(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval -= oldub * oldobj; */
13780 SCIPintervalAdd(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval += newlb * newobj; */
13792 SCIPintervalAdd(SCIPsetInfinity(set), &deltaval, deltaval, prod); /* deltaval += newub * newobj; */
13815 /** updates current pseudo and loose objective value for a change in a variable's objective coefficient */
13831 SCIP_CALL( lpUpdateVarProved(lp, set, var, oldobj, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var),
13842 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
13845 /* the objective coefficient can only be changed during presolving, that implies that the global and local
13852 getObjvalDeltaObj(set, oldobj, newobj, SCIPvarGetLbLocal(var), SCIPvarGetUbLocal(var), &deltaval, &deltainf);
13858 getObjvalDeltaObj(set, oldobj, newobj, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var), &deltaval, &deltainf);
13869 /** updates current root pseudo objective value for a global change in a variable's lower bound */
13896 /** updates current pseudo and loose objective value for a change in a variable's lower bound */
13923 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
13937 /** updates current root pseudo objective value for a global change in a variable's upper bound */
13991 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14013 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14034 assert(SCIPvarGetStatus(var) == SCIP_VARSTATUS_LOOSE || SCIPvarGetStatus(var) == SCIP_VARSTATUS_COLUMN);
14132 SCIPintervalSub(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval -= lb * obj; */
14145 SCIPintervalSub(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval -= ub * obj; */
14150 /* get rid of numerical problems: set loose objective value explicitly to zero, if no loose variables remain */
14263 SCIPintervalAdd(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval += lb * obj; */
14276 SCIPintervalAdd(SCIPsetInfinity(set), &loose, loose, prod); /* lp->looseobjval += ub * obj; */
14317 /* get rid of numerical problems: set loose objective value explicitly to zero, if no loose variables remain */
14330 SCIP_Bool* primalfeasible, /**< pointer to store whether the solution is primal feasible, or NULL */
14331 SCIP_Bool* dualfeasible /**< pointer to store whether the solution is dual feasible, or NULL */
14359 /* initialize return and feasibility flags; if primal oder dual feasibility shall not be checked, we set the
14428 (SCIPsetIsInfinity(set, -lpicols[c]->lb) || SCIPlpIsFeasGE(set, lp, lpicols[c]->primsol, lpicols[c]->lb))
14429 && (SCIPsetIsInfinity(set, lpicols[c]->ub) || SCIPlpIsFeasLE(set, lp, lpicols[c]->primsol, lpicols[c]->ub));
14436 /* complementary slackness in barrier solutions is measured as product of primal slack and dual multiplier;
14437 * we use a slack of at most 1, because otherwise we multiply by something like SCIPinfinty() for unbounded
14451 SCIPsetDebugMsg(set, " col <%s> [%.9g,%.9g]: primsol=%.9f, redcost=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14452 SCIPvarGetName(lpicols[c]->var), lpicols[c]->lb, lpicols[c]->ub, lpicols[c]->primsol, lpicols[c]->redcost,
14456 !SCIPsetIsDualfeasPositive(set, MIN((lpicols[c]->primsol - lpicols[c]->lb), 1.0) * lpicols[c]->redcost),
14457 !SCIPsetIsDualfeasNegative(set, MIN((lpicols[c]->ub - lpicols[c]->primsol), 1.0) * lpicols[c]->redcost),
14468 /* complementary slackness means that if a variable is not at its lower or upper bound, its reduced costs
14469 * must be non-positive or non-negative, respectively; in particular, if a variable is strictly within its
14473 && (SCIPsetIsInfinity(set, -lpicols[c]->lb) || SCIPlpIsFeasGT(set, lp, lpicols[c]->primsol, lpicols[c]->lb)) )
14476 && (SCIPsetIsInfinity(set, lpicols[c]->ub) || SCIPlpIsFeasLT(set, lp, lpicols[c]->primsol, lpicols[c]->ub)) )
14479 SCIPsetDebugMsg(set, " col <%s> [%.9g,%.9g]: primsol=%.9f, redcost=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14480 SCIPvarGetName(lpicols[c]->var), lpicols[c]->lb, lpicols[c]->ub, lpicols[c]->primsol, lpicols[c]->redcost,
14484 !SCIPlpIsFeasGT(set, lp, lpicols[c]->primsol, lpicols[c]->lb) || !SCIPsetIsDualfeasPositive(set, lpicols[c]->redcost),
14485 !SCIPlpIsFeasLT(set, lp, lpicols[c]->primsol, lpicols[c]->ub) || !SCIPsetIsDualfeasNegative(set, lpicols[c]->redcost),
14489 /* we intentionally use an exact positive/negative check because ignoring small reduced cost values may lead to a
14490 * wrong bound value; if the corresponding bound is +/-infinity, we use zero reduced cost (if stilldualfeasible is
14519 (SCIPsetIsInfinity(set, -lpirows[r]->lhs) || SCIPlpIsFeasGE(set, lp, lpirows[r]->activity, lpirows[r]->lhs))
14520 && (SCIPsetIsInfinity(set, lpirows[r]->rhs) || SCIPlpIsFeasLE(set, lp, lpirows[r]->activity, lpirows[r]->rhs));
14526 /* complementary slackness in barrier solutions is measured as product of primal slack and dual multiplier;
14527 * we use a slack of at most 1, because otherwise we multiply by something like SCIPinfinity() for unbounded
14541 SCIPsetDebugMsg(set, " row <%s> [%.9g,%.9g]: activity=%.9f, dualsol=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14542 lpirows[r]->name, lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->activity, lpirows[r]->dualsol,
14546 !SCIPsetIsDualfeasPositive(set, MIN((lpirows[r]->activity - lpirows[r]->lhs), 1.0) * lpirows[r]->dualsol),
14547 !SCIPsetIsDualfeasNegative(set, MIN((lpirows[r]->rhs - lpirows[r]->activity), 1.0) * lpirows[r]->dualsol),
14552 /* complementary slackness means that if the activity of a row is not at its left-hand or right-hand side,
14553 * its dual multiplier must be non-positive or non-negative, respectively; in particular, if the activity is
14557 (SCIPsetIsInfinity(set, -lpirows[r]->lhs) || SCIPlpIsFeasGT(set, lp, lpirows[r]->activity, lpirows[r]->lhs)) )
14560 (SCIPsetIsInfinity(set,lpirows[r]->rhs) || SCIPlpIsFeasLT(set, lp, lpirows[r]->activity, lpirows[r]->rhs)) )
14563 SCIPsetDebugMsg(set, " row <%s> [%.9g,%.9g] + %.9g: activity=%.9f, dualsol=%.9f, pfeas=%u/%u(%u), dfeas=%d/%d(%u)\n",
14564 lpirows[r]->name, lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->constant, lpirows[r]->activity, lpirows[r]->dualsol,
14568 !SCIPlpIsFeasGT(set, lp, lpirows[r]->activity, lpirows[r]->lhs) || !SCIPsetIsDualfeasPositive(set, lpirows[r]->dualsol),
14569 !SCIPlpIsFeasLT(set, lp, lpirows[r]->activity, lpirows[r]->rhs) || !SCIPsetIsDualfeasNegative(set, lpirows[r]->dualsol),
14573 /* we intentionally use an exact positive/negative check because ignoring small dual multipliers may lead to a
14574 * wrong bound value; if the corresponding side is +/-infinity, we use a zero dual multiplier (if
14575 * stilldualfeasible is TRUE, we are in the case that the dual multiplier is tiny with wrong sign)
14586 /* if the objective value returned by the LP solver is smaller than the internally computed primal bound, then we
14587 * declare the solution primal infeasible; we assume primalbound and lp->lpobjval to be equal if they are both +/-
14590 /**@todo alternatively, if otherwise the LP solution is feasible, we could simply update the objective value */
14591 if( stillprimalfeasible && !(SCIPsetIsInfinity(set, primalbound) && SCIPsetIsInfinity(set, lp->lpobjval))
14595 SCIPsetDebugMsg(set, " primalbound=%.9f, lpbound=%.9g, pfeas=%u(%u)\n", primalbound, lp->lpobjval,
14596 SCIPsetIsFeasLE(set, primalbound, lp->lpobjval), primalfeasible != NULL ? stillprimalfeasible : TRUE);
14599 /* if the objective value returned by the LP solver is smaller than the internally computed dual bound, we declare
14600 * the solution dual infeasible; we assume dualbound and lp->lpobjval to be equal if they are both +/- infinity
14602 /**@todo alternatively, if otherwise the LP solution is feasible, we could simply update the objective value */
14603 if( stilldualfeasible && !(SCIPsetIsInfinity(set, dualbound) && SCIPsetIsInfinity(set, lp->lpobjval))
14607 SCIPsetDebugMsg(set, " dualbound=%.9f, lpbound=%.9g, dfeas=%u(%u)\n", dualbound, lp->lpobjval,
14608 SCIPsetIsFeasGE(set, dualbound, lp->lpobjval), dualfeasible != NULL ? stilldualfeasible : TRUE);
14634 SCIP_Bool* primalfeasible, /**< pointer to store whether the solution is primal feasible, or NULL */
14635 SCIP_Bool* rayfeasible /**< pointer to store whether the primal ray is a feasible unboundedness proof, or NULL */
14680 SCIPsetDebugMsg(set, "getting new unbounded LP solution %" SCIP_LONGINT_FORMAT "\n", stat->lpcount);
14696 /* calculate the objective value decrease of the ray and heuristically try to construct primal solution */
14705 /* there should only be a nonzero value in the ray if there is no finite bound in this direction */
14716 /* Many LP solvers cannot directly provide a feasible solution if they detected unboundedness. We therefore first
14733 assert( SCIPlpIsFeasGE(set, lp, primsol[c], col->lb) && SCIPlpIsFeasLE(set, lp, primsol[c], col->ub) );
14797 /* check primal feasibility of (finite) primal solution; note that we also ensure that the primal
14875 SCIPsetDebugMsg(set, "unbounded LP solution: rayobjval=%f, rayscale=%f\n", rayobjval, rayscale);
14886 lpicols[c]->primsol = MAX(-SCIPsetInfinity(set), MIN(SCIPsetInfinity(set), primsolval)); /*lint !e666*/
14911 && (SCIPsetIsInfinity(set, -lpirows[r]->lhs) || SCIPlpIsFeasGE(set, lp, lpirows[r]->activity, lpirows[r]->lhs))
14912 && (SCIPsetIsInfinity(set, lpirows[r]->rhs) || SCIPlpIsFeasLE(set, lp, lpirows[r]->activity, lpirows[r]->rhs));
14927 SCIP_Real* ray /**< array for storing primal ray values, they are stored w.r.t. the problem index of the variables,
14980 /** stores the dual Farkas multipliers for infeasibility proof in rows. besides, the proof is checked for validity if
15063 if( (SCIPsetIsDualfeasGT(set, dualfarkas[r], 0.0) && SCIPsetIsInfinity(set, -lpirows[r]->lhs))
15064 || (SCIPsetIsDualfeasLT(set, dualfarkas[r], 0.0) && SCIPsetIsInfinity(set, lpirows[r]->rhs)) )
15066 SCIPsetDebugMsg(set, "farkas proof is invalid: row <%s>[lhs=%g,rhs=%g,c=%g] has multiplier %g\n",
15067 SCIProwGetName(lpirows[r]), lpirows[r]->lhs, lpirows[r]->rhs, lpirows[r]->constant, dualfarkas[r]);
15075 /* dual multipliers, for which the corresponding row side in infinite, are treated as zero if they are zero
15138 * due to numerics, it might happen that the left-hand side of the aggregation is larger/smaller or equal than +/- infinity.
15141 if( checkfarkas && (SCIPsetIsInfinity(set, REALABS(farkaslhs)) || SCIPsetIsGE(set, maxactivity, farkaslhs)) )
15143 SCIPsetDebugMsg(set, "farkas proof is invalid: maxactivity=%.12f, lhs=%.12f\n", maxactivity, farkaslhs);
15172 /** increases age of columns with solution value 0.0 and basic rows with activity not at its bounds,
15227 /*debugMsg(scip, " -> row <%s>: activity=%f, age=%d\n", lpirows[r]->name, lpirows[r]->activity, lpirows[r]->age);*/
15269 /* mark column to be deleted from the LPI, update column arrays of all linked rows, and update the objective
15384 SCIP_CALL( SCIPeventqueueAdd(eventqueue, blkmem, set, NULL, NULL, NULL, eventfilter, &event) );
15477 && cols[c]->obsoletenode != stat->nnodes /* don't remove column a second time from same node (avoid cycling), or a first time if marked nonremovable locally */
15480 && SCIPsetIsZero(set, SCIPcolGetBestBound(cols[c])) ) /* bestbd != 0 -> column would be priced in next time */
15556 && rows[r]->obsoletenode != stat->nnodes /* don't remove row a second time from same node (avoid cycling), or a first time if marked nonremovable locally */
15583 /** removes all non-basic columns and basic rows in the part of the LP created at the current node, that are too old */
15599 SCIPsetDebugMsg(set, "removing obsolete columns starting with %d/%d, obsolete rows starting with %d/%d\n",
15608 SCIP_CALL( lpRemoveObsoleteRows(lp, blkmem, set, stat, eventqueue, eventfilter, lp->firstnewrow) );
15689 && SCIPsetIsZero(set, SCIPcolGetBestBound(cols[c])) ) /* bestbd != 0 -> column would be priced in next time */
15783 /** removes all non-basic columns at 0.0 and basic rows in the part of the LP created at the current node */
15807 SCIPsetDebugMsg(set, "removing unused columns starting with %d/%d (%u), unused rows starting with %d/%d (%u), LP algo: %d, basic sol: %u\n",
15808 lp->firstnewcol, lp->ncols, cleanupcols, lp->firstnewrow, lp->nrows, cleanuprows, lp->lastlpalgo, lp->solisbasic);
15846 SCIPsetDebugMsg(set, "removing all unused columns (%u) and rows (%u), LP algo: %d, basic sol: %u\n",
16021 SCIP_CALL( rowStoreSolVals(lp->rows[r], blkmem, lp->storedsolvals->lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE) );
16041 /** quits LP diving and resets bounds and objective values of columns to the current node's values */
16063 SCIPsetDebugMsg(set, "diving ended (LP flushed: %u, solstat: %d)\n", lp->flushed, SCIPlpGetSolstat(lp));
16106 /* reload LPI state saved at start of diving and free it afterwards; it may be NULL, in which case simply nothing
16110 lp->divelpwasprimfeas, lp->divelpwasprimchecked, lp->divelpwasdualfeas, lp->divelpwasdualchecked) );
16122 /* if the LP was solved before starting the dive, but not to optimality (or unboundedness), then we need to solve the
16123 * LP again to reset the solution (e.g. we do not save the Farkas proof for infeasible LPs, because we assume that we
16124 * are not called in this case, anyway); restoring by solving the LP again in either case can be forced by setting
16126 * restoring an unbounded ray after solve does not seem to work currently (bug 631), so we resolve also in this case
16130 && (set->lp_resolverestore || lp->storedsolvals->lpsolstat != SCIP_LPSOLSTAT_OPTIMAL || lp->divenolddomchgs < stat->domchgcount) )
16134 SCIP_CALL( SCIPlpSolveAndEval(lp, set, messagehdlr, blkmem, stat, eventqueue, eventfilter, prob, -1LL, FALSE, FALSE, FALSE, &lperror) );
16137 lpNumericalTroubleMessage(messagehdlr, set, stat, SCIP_VERBLEVEL_FULL, "unresolved when resolving LP after diving");
16150 /* otherwise, we can just reload the buffered LP solution values at start of diving; this has the advantage that we
16151 * are guaranteed to continue with the same LP status as before diving, while in numerically difficult cases, a
16162 /* @todo avoid loosing primal feasibility here after changing the objective already did destroy dual feasibility;
16172 /* increment lp counter to ensure that we do not use solution values from the last solved diving lp */
16189 SCIP_CALL( colRestoreSolVals(lp->cols[c], blkmem, stat->lpcount, set->lp_freesolvalbuffers) );
16193 SCIP_CALL( rowRestoreSolVals(lp->rows[r], blkmem, stat->lpcount, set->lp_freesolvalbuffers, lp->storedsolvals->lpsolstat == SCIP_LPSOLSTAT_INFEASIBLE) );
16305 * Calculating this value in interval arithmetics gives a proved lower LP bound for the following reason (assuming,
16317 SCIP_Bool usefarkas, /**< use y = dual Farkas and c = 0 instead of y = dual solution and c = obj? */
16452 SCIPsetDebugMsg(set, "proved Farkas value of LP: %g -> infeasibility %sproved\n", bound, *proved ? "" : "not ");
16480 SCIP_Bool genericnames, /**< should generic names like x_i and row_j be used in order to avoid
16510 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Original Variable and Constraint Names have been replaced by generic names.\n");
16513 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Warning: Variable and Constraint Names should not contain special characters like '+', '=' etc.\n");
16514 SCIPmessageFPrintInfo(messagehdlr, file, "\\ If this is the case, the model may be corrupted!\n");
16519 SCIPmessageFPrintInfo(messagehdlr, file, "\\ An artificial variable 'objoffset' has been added and fixed to 1.\n");
16520 SCIPmessageFPrintInfo(messagehdlr, file, "\\ Switching this variable to 0 will disable the offset in the objective.\n\n");
16556 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g objoffset", objoffset * (SCIP_Real) objsense * objscale);
16568 /* constraint types: 'l' means: only lhs exists, 'r' means: only rhs exists, 'e' means: both sides exist and are
16569 * equal, 'b' and 'B' mean: both sides exist, if the type is 'b', the lhs will be written, if the type is 'B',
16570 * the rhs will be written. Ergo: set type to b first, change it to 'B' afterwards and go back to WRITEROW.
16572 if( SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16574 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16576 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsEQ(set, lp->rows[i]->lhs, lp->rows[i]->rhs) )
16578 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16597 SCIPmessageFPrintInfo(messagehdlr, file, "\\\\ WARNING: The lhs and the rhs of the row with original name <%s>", lp->rows[i]->name);
16598 SCIPmessageFPrintInfo(messagehdlr, file, "are not in a valid range. The following two constraints may be corrupted!\n");
16599 SCIPmessagePrintWarning(messagehdlr, "The lhs and rhs of row <%s> are not in a valid range.\n", lp->rows[i]->name);
16615 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g x_%d", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->lppos);
16617 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g %s", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->var->name);
16627 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16631 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16635 SCIPmessageFPrintInfo(messagehdlr, file, " <= %.15g\n", lp->rows[i]->rhs - lp->rows[i]->constant);
16638 SCIPmessageFPrintInfo(messagehdlr, file, " = %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16659 /* constraint types: 'l' means: only lhs exists, 'r' means: only rhs exists, 'e' means: both sides exist and are
16660 * equal, 'b' and 'B' mean: both sides exist, if the type is 'b', the lhs will be written, if the type is 'B',
16661 * the rhs will be written. Ergo: set type to b first, change it to 'B' afterwards and go back to WRITEROW.
16663 if( SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16665 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16667 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && SCIPsetIsEQ(set, lp->rows[i]->lhs, lp->rows[i]->rhs) )
16669 else if( !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->lhs)) && !SCIPsetIsInfinity(set, REALABS(lp->rows[i]->rhs)) )
16688 SCIPmessageFPrintInfo(messagehdlr, file, "\\\\ WARNING: The lhs and the rhs of the row with original name <%s>", lp->rows[i]->name);
16689 SCIPmessageFPrintInfo(messagehdlr, file, "are not in a valid range. The following two constraints may be corrupted!\n");
16690 SCIPmessagePrintWarning(messagehdlr, "The lhs and rhs of row <%s> are not in a valid range.\n",lp->rows[i]->name);
16706 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g x_%d", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->lppos);
16708 SCIPmessageFPrintInfo(messagehdlr, file, " %+.15g %s", lp->rows[i]->vals[j], lp->rows[i]->cols[j]->var->name);
16718 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16722 SCIPmessageFPrintInfo(messagehdlr, file, " >= %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16726 SCIPmessageFPrintInfo(messagehdlr, file, " <= %.15g\n", lp->rows[i]->rhs - lp->rows[i]->constant);
16729 SCIPmessageFPrintInfo(messagehdlr, file, " = %.15g\n", lp->rows[i]->lhs - lp->rows[i]->constant);
16961 /** gets the basis status of a column in the LP solution; only valid for LPs with status SCIP_LPSOLSTAT_OPTIMAL
16962 * and with SCIPisLPSolBasic(scip) == TRUE; returns SCIP_BASESTAT_ZERO for columns not in the current SCIP_LP
17004 /** returns whether the associated variable is of integral type (binary, integer, implicit integer) */
17068 /** get number of nonzero entries in column vector, that correspond to rows currently in the SCIP_LP;
17070 * @warning This method is only applicable on columns, that are completely linked to their rows (e.g. a column
17071 * that is in the current LP and the LP was solved, or a column that was in a solved LP and didn't change afterwards
17103 /** gets node number of the last node in current branch and bound run, where strong branching was used on the
17125 /** gets the age of a column, i.e., the total number of successive times a column was in the LP and was 0.0 in the solution */
17155 /** get number of nonzero entries in row vector, that correspond to columns currently in the SCIP_LP;
17157 * @warning This method is only applicable on rows, that are completely linked to their columns (e.g. a row
17158 * that is in the current LP and the LP was solved, or a row that was in a solved LP and didn't change afterwards
17270 /** gets the basis status of a row in the LP solution; only valid for LPs with status SCIP_LPSOLSTAT_OPTIMAL
17271 * and with SCIPisLPSolBasic(scip) == TRUE; returns SCIP_BASESTAT_BASIC for rows not in the current SCIP_LP
17323 /** returns TRUE iff the activity of the row (without the row's constant) is always integral in a feasible solution */
17343 /** returns TRUE iff row is modifiable during node processing (subject to column generation) */
17608 /** recalculates Euclidean norm of objective function vector of column variables if it have gotten unreliable during calculation */
17630 /* due to numerical troubles it still can appear that lp->objsqrnorm is a little bit smaller than 0 */
17638 /** gets Euclidean norm of objective function vector of column variables, only use this method if
17639 * lp->objsqrnormunreliable == FALSE, so probably you have to call SCIPlpRecalculateObjSqrNorm before */
17651 /** sets whether the root lp is a relaxation of the problem and its optimal objective value is a global lower bound */
17662 /** returns whether the root lp is a relaxation of the problem and its optimal objective value is a global lower bound */
17672 /** gets the objective value of the root node LP; returns SCIP_INVALID if the root node LP was not (yet) solved */
17682 /** gets part of the objective value of the root node LP that results from COLUMN variables only;
17694 /** gets part of the objective value of the root node LP that results from LOOSE variables only;
17716 /** sets whether the current LP is a relaxation of the current problem and its optimal objective value is a local lower bound */
17727 /** returns whether the current LP is a relaxation of the problem for which it has been solved and its
17789 /** returns whether the LP is in diving mode and the objective value of at least one column was changed */
17821 /* returns TRUE if at least one left/right hand side of an LP row was changed during diving mode */
17845 SCIP_Bool* success /**< buffer to indicate whether interior point was successfully computed */
17878 SCIPmessagePrintWarning(messagehdlr, "Could not set feasibility tolerance of LP solver for relative interior point computation.\n");
17886 SCIPmessagePrintWarning(messagehdlr, "Could not set dual feasibility tolerance of LP solver for relative interior point computation.\n");
17899 /* note: if the variable is fixed we cannot simply fix the variables (because alpha scales the problem) */
18326 SCIP_CALL( SCIPlpiAddRows(lpi, ntotrows, matlhs, matrhs, NULL, matidx, matbeg, matinds, matvals) );
18353 SCIPmessagePrintWarning(messagehdlr, "Could not set time limit of LP solver for relative interior point computation.\n");
18362 SCIPmessagePrintWarning(messagehdlr, "Could not set iteration limit of LP solver for relative interior point computation.\n");
18372 SCIPmessagePrintWarning(messagehdlr, "Iteration limit exceeded in relative interior point computation.\n");
18374 SCIPmessagePrintWarning(messagehdlr, "Time limit exceeded in relative interior point computation.\n");
18479 assert( SCIPsetIsFeasZero(set, primal[lp->ncols+1+cnt]) || SCIPsetIsFeasGT(set, val, col->lb) );
18485 assert( SCIPsetIsFeasZero(set, primal[lp->ncols+1+cnt]) || SCIPsetIsFeasLT(set, val, col->ub) );
18505 * "Identifying the Set of Always-Active Constraints in a System of Linear Inequalities by a Single Linear Program"@par
18532 * If the original LP is feasible, this LP is feasible as well. Any optimal solution yields the relative interior point
18533 * \f$x^*_j/\alpha^*\f$. Note that this will just produce some relative interior point. It does not produce a
18534 * particular relative interior point, e.g., one that maximizes the distance to the boundary in some norm.
18546 SCIP_Bool* success /**< buffer to indicate whether interior point was successfully computed */
18570 if( inclobjcutoff && (SCIPsetIsInfinity(set, lp->cutoffbound) || lp->looseobjvalinf > 0 || lp->looseobjval == SCIP_INVALID) ) /*lint !e777 */
18589 retcode = computeRelIntPoint(lpi, set, messagehdlr, lp, prob, relaxrows, inclobjcutoff, timelimit, iterlimit, point, success);
18602 /** computes two measures for dual degeneracy (dual degeneracy rate and variable-constraint ratio)
18606 * and the variable-constraint ratio, i.e., the number of unfixed variables in relation to the basis size
18664 /* count number of rows that will be turned into equations when reducing the LP to the optimal face */
18704 assert(nfixedcols + nfixedrows <= ncols + nineq + nbasicequalities - nrows - nalreadyfixedcols - nimplicitfixedrows);
18707 lp->degeneracy = 1.0 - 1.0 * (nfixedcols + nfixedrows) / (ncols + nineq - nrows + nbasicequalities - nalreadyfixedcols);
18712 lp->varconsratio = 1.0 * (ncols + nineq + nbasicequalities - nfixedcols - nfixedrows - nalreadyfixedcols) / nrows;
static SCIP_RETCODE lpRestoreSolVals(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_Longint validlp)
Definition: lp.c:401
SCIP_Bool SCIPsetIsUpdateUnreliable(SCIP_SET *set, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: set.c:7317
Definition: type_lp.h:65
SCIP_RETCODE SCIPeventfilterCreate(SCIP_EVENTFILTER **eventfilter, BMS_BLKMEM *blkmem)
Definition: event.c:1812
SCIP_Longint ndualresolvelpiterations
Definition: struct_stat.h:61
static SCIP_RETCODE computeRelIntPoint(SCIP_LPI *lpi, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_LP *lp, SCIP_PROB *prob, SCIP_Bool relaxrows, SCIP_Bool inclobjcutoff, SCIP_Real timelimit, int iterlimit, SCIP_Real *point, SCIP_Bool *success)
Definition: lp.c:17834
void SCIPcolMarkNotRemovableLocal(SCIP_COL *col, SCIP_STAT *stat)
Definition: lp.c:4745
SCIP_RETCODE SCIPlpGetProvedLowerbound(SCIP_LP *lp, SCIP_SET *set, SCIP_Real *bound)
Definition: lp.c:16424
SCIP_Real SCIProwGetSolFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6501
void SCIPcolGetStrongbranchLast(SCIP_COL *col, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Real *solval, SCIP_Real *lpobjval)
Definition: lp.c:4701
SCIP_RETCODE SCIPlpiGetBInvCol(SCIP_LPI *lpi, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3262
SCIP_Bool SCIPsolveIsStopped(SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool checknodelimits)
Definition: solve.c:93
static SCIP_RETCODE lpStoreSolVals(SCIP_LP *lp, SCIP_STAT *stat, BMS_BLKMEM *blkmem)
Definition: lp.c:367
SCIP_Bool SCIPsetIsSumGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6503
static SCIP_RETCODE lpSetBoolpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Bool value, SCIP_Bool *success)
Definition: lp.c:2536
static SCIP_RETCODE lpSetFastmip(SCIP_LP *lp, int fastmip, SCIP_Bool *success)
Definition: lp.c:2854
SCIP_RETCODE SCIPcolGetStrongbranch(SCIP_COL *col, SCIP_Bool integral, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp, int itlim, SCIP_Bool updatecol, SCIP_Bool updatestat, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *lperror)
Definition: lp.c:4293
#define BMSfreeBlockMemoryArrayNull(mem, ptr, num)
Definition: memory.h:461
static SCIP_RETCODE lpSetDualfeastol(SCIP_LP *lp, SCIP_Real dualfeastol, SCIP_Bool *success)
Definition: lp.c:2742
static SCIP_RETCODE lpUpdateVarProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldobj, SCIP_Real oldlb, SCIP_Real oldub, SCIP_Real newobj, SCIP_Real newlb, SCIP_Real newub)
Definition: lp.c:13703
SCIP_RETCODE SCIPeventCreateRowAddedLP(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row)
Definition: event.c:885
internal methods for managing events
SCIP_RETCODE SCIPlpFreeNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lp.c:10167
static SCIP_RETCODE lpSetFromscratch(SCIP_LP *lp, SCIP_Bool fromscratch, SCIP_Bool *success)
Definition: lp.c:2829
static int SCIProwGetDiscreteScalarProduct(SCIP_ROW *row1, SCIP_ROW *row2)
Definition: lp.c:7358
SCIP_Bool SCIPsetIsLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6258
internal methods for storing primal CIP solutions
static SCIP_RETCODE lpSetRowrepswitch(SCIP_LP *lp, SCIP_Real rowrepswitch, SCIP_Bool *success)
Definition: lp.c:2960
SCIP_Real SCIProwGetScalarProduct(SCIP_ROW *row1, SCIP_ROW *row2)
Definition: lp.c:7001
Definition: type_lpi.h:58
static SCIP_RETCODE rowScale(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real scaleval, SCIP_Bool integralcontvars, SCIP_Real minrounddelta, SCIP_Real maxrounddelta)
Definition: lp.c:4934
SCIP_RETCODE SCIPlpUpdateAddVar(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14006
Definition: intervalarith.h:44
SCIP_RETCODE SCIPlpiSetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, const SCIP_LPISTATE *lpistate)
Definition: lpi_clp.cpp:3415
static SCIP_RETCODE colChgCoefPos(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, int pos, SCIP_Real val)
Definition: lp.c:1855
SCIP_RETCODE SCIPlpShrinkRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int newnrows)
Definition: lp.c:9696
Definition: type_lp.h:39
static SCIP_RETCODE colUnlink(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2388
static SCIP_Bool isNewValueUnreliable(SCIP_SET *set, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: lp.c:3638
Definition: type_lpi.h:60
SCIP_RETCODE SCIPlpiSetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, const SCIP_LPINORMS *lpinorms)
Definition: lpi_clp.cpp:3596
unsigned int SCIPsetInitializeRandomSeed(SCIP_SET *set, unsigned int initialseedvalue)
Definition: set.c:7394
static SCIP_RETCODE lpCleanupCols(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, int firstcol)
Definition: lp.c:15646
SCIP_RETCODE SCIPlpComputeRelIntPoint(SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_LP *lp, SCIP_PROB *prob, SCIP_Bool relaxrows, SCIP_Bool inclobjcutoff, SCIP_Real timelimit, int iterlimit, SCIP_Real *point, SCIP_Bool *success)
Definition: lp.c:18536
static SCIP_Real getFiniteLooseObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:896
static SCIP_RETCODE lpSetConditionLimit(SCIP_LP *lp, SCIP_Real condlimit, SCIP_Bool *success)
Definition: lp.c:3109
SCIP_RETCODE SCIPeventCreateRowDeletedLP(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row)
Definition: event.c:904
SCIP_RETCODE SCIPlpiGetDualfarkas(SCIP_LPI *lpi, SCIP_Real *dualfarkas)
Definition: lpi_clp.cpp:2843
static SCIP_RETCODE ensureLpirowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:228
SCIP_RETCODE SCIPlpFlush(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8664
SCIP_RETCODE SCIPlpGetBInvCol(SCIP_LP *lp, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9863
SCIP_Real SCIProwGetRelaxFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6267
SCIP_RETCODE SCIPcolChgCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val)
Definition: lp.c:3507
SCIP_Bool SCIPsetIsFeasEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6598
SCIP_RETCODE SCIPlpiStartStrongbranch(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:1992
SCIP_RETCODE SCIPlpiGetSol(SCIP_LPI *lpi, SCIP_Real *objval, SCIP_Real *primsol, SCIP_Real *dualsol, SCIP_Real *activity, SCIP_Real *redcost)
Definition: lpi_clp.cpp:2774
static SCIP_RETCODE rowStoreSolVals(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_Bool infeasible)
Definition: lp.c:535
SCIP_RETCODE SCIPlpRemoveAllObsoletes(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15615
SCIP_Real SCIProwGetPseudoActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6415
void SCIPlpSetRootLPIsRelax(SCIP_LP *lp, SCIP_Bool isrelax)
Definition: lp.c:17652
SCIP_RETCODE SCIPeventqueueAdd(SCIP_EVENTQUEUE *eventqueue, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_PRIMAL *primal, SCIP_LP *lp, SCIP_BRANCHCAND *branchcand, SCIP_EVENTFILTER *eventfilter, SCIP_EVENT **event)
Definition: event.c:2231
SCIP_Bool SCIProwIsRedundant(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6633
SCIP_RETCODE SCIPlpiSetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int ival)
Definition: lpi_clp.cpp:3678
static SCIP_RETCODE lpFlushAddCols(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:7998
void SCIProwRecalcLPActivity(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:6165
void SCIPlpRecalculateObjSqrNorm(SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:17609
internal methods for clocks and timing issues
static void getObjvalDeltaUb(SCIP_SET *set, SCIP_Real obj, SCIP_Real oldub, SCIP_Real newub, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13580
SCIP_Longint SCIPcolGetStrongbranchNode(SCIP_COL *col)
Definition: lp.c:17106
SCIP_RETCODE SCIPlpiGetBase(SCIP_LPI *lpi, int *cstat, int *rstat)
Definition: lpi_clp.cpp:2953
SCIP_RETCODE SCIPeventfilterDel(SCIP_EVENTFILTER *eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: event.c:1970
Definition: type_lpi.h:41
SCIP_RETCODE SCIProwChgConstant(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real constant)
Definition: lp.c:5578
static SCIP_RETCODE lpDelColset(SCIP_LP *lp, SCIP_SET *set, int *coldstat)
Definition: lp.c:15235
SCIP_RETCODE SCIPlpGetIterations(SCIP_LP *lp, int *iterations)
Definition: lp.c:15160
SCIP_RETCODE SCIPlpiChgSides(SCIP_LPI *lpi, int nrows, const int *ind, const SCIP_Real *lhs, const SCIP_Real *rhs)
Definition: lpi_clp.cpp:1158
static void adjustLPobjval(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr)
Definition: lp.c:11984
Definition: struct_var.h:198
SCIP_RETCODE SCIPlpiGetIntpar(SCIP_LPI *lpi, SCIP_LPPARAM type, int *ival)
Definition: lpi_clp.cpp:3634
interface methods for specific LP solvers
void SCIPintervalSub(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:785
SCIP_RETCODE SCIPlpiGetIterations(SCIP_LPI *lpi, int *iterations)
Definition: lpi_clp.cpp:2907
SCIP_RETCODE SCIPcolChgObj(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newobj)
Definition: lp.c:3692
SCIP_Real SCIPlpGetGlobalPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13248
SCIP_RETCODE SCIPlpGetDualfarkas(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *valid)
Definition: lp.c:14985
SCIP_RETCODE SCIPlpUpdateVarLb(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb)
Definition: lp.c:13897
static SCIP_RETCODE lpUpdateVarLoose(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14185
SCIP_RETCODE SCIProwEnsureSize(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, int num)
Definition: lp.c:620
static void lpNumericalTroubleMessage(SCIP_MESSAGEHDLR *messagehdlr, SCIP_SET *set, SCIP_STAT *stat, SCIP_VERBLEVEL verblevel, const char *formatstr,...)
Definition: lp.c:11487
SCIP_RETCODE SCIPlpFreeState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lp.c:10090
Definition: type_lpi.h:51
SCIP_RETCODE SCIPcolCreate(SCIP_COL **col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var, int len, SCIP_ROW **rows, SCIP_Real *vals, SCIP_Bool removable)
Definition: lp.c:3273
Definition: type_message.h:45
Definition: type_lp.h:64
Definition: type_message.h:41
SCIP_RETCODE SCIPlpUpdateVarLbGlobal(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb)
Definition: lp.c:13870
Definition: type_lpi.h:75
void SCIPsortIntPtrIntReal(int *intarray1, void **ptrarray, int *intarray2, SCIP_Real *realarray, int len)
static SCIP_RETCODE ensureLazycolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:294
SCIP_RETCODE SCIPlpUpdateVarUbGlobal(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub)
Definition: lp.c:13938
datastructures for managing events
SCIP_Bool SCIPsetIsFeasIntegral(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6741
static void recomputeLooseObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:770
static SCIP_RETCODE insertColChgcols(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:3613
static SCIP_RETCODE colAddCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val, int linkpos)
Definition: lp.c:1689
Definition: struct_event.h:179
Definition: type_lp.h:74
Definition: struct_message.h:36
SCIP_RETCODE SCIPlpIsInfeasibilityProved(SCIP_LP *lp, SCIP_SET *set, SCIP_Bool *proved)
Definition: lp.c:16438
static SCIP_RETCODE lpFlushAddRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue)
Definition: lp.c:8221
static SCIP_RETCODE lpSetBarrierconvtol(SCIP_LP *lp, SCIP_Real barrierconvtol, SCIP_Bool *success)
Definition: lp.c:2785
SCIP_Real SCIProwGetLPEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6801
SCIP_RETCODE SCIPlpGetState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lp.c:10024
SCIP_RETCODE SCIPlpiSetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real dval)
Definition: lpi_clp.cpp:3819
void SCIPlpStartStrongbranchProbing(SCIP_LP *lp)
Definition: lp.c:16278
static SCIP_RETCODE lpCheckIntpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, int value)
Definition: lp.c:2576
SCIP_RETCODE SCIProwChgCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val)
Definition: lp.c:5469
Definition: type_lpi.h:62
SCIP_RETCODE SCIPlpiGetNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lpi_clp.cpp:3578
SCIP_Bool SCIPlpIsFeasLE(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18773
SCIP_RETCODE SCIPlpRemoveNewObsoletes(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15584
Definition: struct_prob.h:39
public methods for problem variables
SCIP_Real SCIProwGetNLPEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6957
static void rowAddNorms(SCIP_ROW *row, SCIP_SET *set, SCIP_COL *col, SCIP_Real val, SCIP_Bool updateidxvals)
Definition: lp.c:1899
SCIP_RETCODE SCIPlpEndDive(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_PROB *prob, SCIP_VAR **vars, int nvars)
Definition: lp.c:16042
SCIP_RETCODE SCIProwMakeIntegral(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Bool usecontvars, SCIP_Bool *success)
Definition: lp.c:5974
static SCIP_RETCODE lpSetPresolving(SCIP_LP *lp, SCIP_Bool presolving, SCIP_Bool *success)
Definition: lp.c:2935
void SCIPintervalSet(SCIP_INTERVAL *resultant, SCIP_Real value)
Definition: intervalarith.c:409
Definition: type_lpi.h:50
SCIP_RETCODE SCIPlpSolveAndEval(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, BMS_BLKMEM *blkmem, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_PROB *prob, SCIP_Longint itlim, SCIP_Bool limitresolveiters, SCIP_Bool aging, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12399
Definition: struct_lp.h:107
static SCIP_RETCODE updateLazyBounds(SCIP_LP *lp, SCIP_SET *set)
Definition: lp.c:12317
Definition: type_lp.h:55
static void lpUpdateObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real deltaval, int deltainf, SCIP_Bool local, SCIP_Bool loose, SCIP_Bool global)
Definition: lp.c:13621
SCIP_Real SCIPlpGetPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13280
SCIP_Real SCIProwGetLPSolCutoffDistance(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol, SCIP_LP *lp)
Definition: lp.c:6744
SCIP_RETCODE SCIPlpiGetBounds(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *lbs, SCIP_Real *ubs)
Definition: lpi_clp.cpp:1700
SCIP_RETCODE SCIPcolIncCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real incval)
Definition: lp.c:3558
SCIP_RETCODE SCIPlpCleanupAll(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_Bool root)
Definition: lp.c:15823
SCIP_RETCODE SCIPcolDelCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row)
Definition: lp.c:3462
void SCIPintervalAdd(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:678
static SCIP_RETCODE colStoreSolVals(SCIP_COL *col, BMS_BLKMEM *blkmem)
Definition: lp.c:461
SCIP_RETCODE SCIPlpSetNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS *lpinorms)
Definition: lp.c:10147
Definition: struct_sepa.h:37
static SCIP_RETCODE lpSetPricing(SCIP_LP *lp, SCIP_PRICING pricing)
Definition: lp.c:3021
static SCIP_RETCODE ensureChgcolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:159
Definition: type_message.h:46
SCIP_RETCODE SCIPlpiSetIntegralityInformation(SCIP_LPI *lpi, int ncols, int *intInfo)
Definition: lpi_clp.cpp:471
static SCIP_RETCODE lpSetRealpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Real value, SCIP_Bool *success)
Definition: lp.c:2548
static SCIP_RETCODE reallocDiveChgSideArrays(SCIP_LP *lp, int minsize, SCIP_Real growfact)
Definition: lp.c:9024
Definition: type_lp.h:37
SCIP_RETCODE SCIProwIncCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real incval)
Definition: lp.c:5521
Definition: type_lp.h:66
static SCIP_RETCODE ensureSoldirectionSize(SCIP_LP *lp, int num)
Definition: lp.c:274
SCIP_Longint SCIPcolGetStrongbranchLPAge(SCIP_COL *col, SCIP_STAT *stat)
Definition: lp.c:4733
internal methods for LP management
SCIP_RETCODE SCIPlpiCreate(SCIP_LPI **lpi, SCIP_MESSAGEHDLR *messagehdlr, const char *name, SCIP_OBJSEN objsen)
Definition: lpi_clp.cpp:522
static SCIP_RETCODE lpUpdateVarColumnProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14098
Definition: heur_padm.c:123
static void recomputeGlbPseudoObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:854
SCIP_RETCODE SCIPlpiGetBInvARow(SCIP_LPI *lpi, int r, const SCIP_Real *binvrow, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3300
SCIP_RETCODE SCIPlpRecordOldRowSideDive(SCIP_LP *lp, SCIP_ROW *row, SCIP_SIDETYPE sidetype)
Definition: lp.c:16224
SCIP_RETCODE SCIPlpiAddCols(SCIP_LPI *lpi, int ncols, const SCIP_Real *obj, const SCIP_Real *lb, const SCIP_Real *ub, char **colnames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_clp.cpp:749
SCIP_Real SCIPsolGetVal(SCIP_SOL *sol, SCIP_SET *set, SCIP_STAT *stat, SCIP_VAR *var)
Definition: sol.c:1338
SCIP_Bool SCIPlpiIsPrimalUnbounded(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2474
Definition: struct_lp.h:126
Definition: lpi_cpx.c:188
static SCIP_RETCODE lpSolveStable(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LPALGO lpalgo, int itlim, int harditlim, SCIP_Bool resolve, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, SCIP_Bool keepsol, SCIP_Bool *timelimit, SCIP_Bool *lperror)
Definition: lp.c:11569
SCIP_Bool SCIPsetIsGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6294
Definition: struct_sol.h:64
Definition: struct_set.h:63
Definition: type_lpi.h:52
SCIP_Bool SCIPsetIsEfficacious(SCIP_SET *set, SCIP_Bool root, SCIP_Real efficacy)
Definition: set.c:7062
Definition: type_lpi.h:73
static SCIP_RETCODE colLink(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2344
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:9295
SCIP_RETCODE SCIPrealarrayIncVal(SCIP_REALARRAY *realarray, int arraygrowinit, SCIP_Real arraygrowfac, int idx, SCIP_Real incval)
Definition: misc.c:4304
Definition: type_lp.h:75
static void rowDelNorms(SCIP_ROW *row, SCIP_SET *set, SCIP_COL *col, SCIP_Real val, SCIP_Bool forcenormupdate, SCIP_Bool updateindex, SCIP_Bool updateval)
Definition: lp.c:1976
SCIP_Bool SCIPlpIsFeasEQ(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18733
SCIP_Real SCIPcolCalcRedcost(SCIP_COL *col, SCIP_Real *dualsol)
Definition: lp.c:3841
SCIP_Bool SCIPsetIsLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6240
SCIP_RETCODE SCIPlpCleanupNew(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_Bool root)
Definition: lp.c:15784
SCIP_Bool SCIPsetIsSumLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6467
SCIP_RETCODE SCIPlpiAddRows(SCIP_LPI *lpi, int nrows, const SCIP_Real *lhs, const SCIP_Real *rhs, char **rownames, int nnonz, const int *beg, const int *ind, const SCIP_Real *val)
Definition: lpi_clp.cpp:905
SCIP_RETCODE SCIPlpSetState(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LPISTATE *lpistate, SCIP_Bool wasprimfeas, SCIP_Bool wasprimchecked, SCIP_Bool wasdualfeas, SCIP_Bool wasdualchecked)
Definition: lp.c:10048
Definition: struct_lp.h:96
SCIP_RETCODE SCIProwCatchEvent(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: lp.c:7826
Definition: type_lp.h:40
SCIP_RETCODE SCIPlpiWriteLP(SCIP_LPI *lpi, const char *fname)
Definition: lpi_clp.cpp:3987
SCIP_RETCODE SCIPcolAddCoef(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_ROW *row, SCIP_Real val)
Definition: lp.c:3441
SCIP_RETCODE SCIPlpUpdateVarUb(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub)
Definition: lp.c:13965
#define BMSduplicateBlockMemoryArray(mem, ptr, source, num)
Definition: memory.h:455
static SCIP_RETCODE rowUnlink(SCIP_ROW *row, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:2470
static SCIP_RETCODE lpUpdateVarLooseProved(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14230
static SCIP_RETCODE colRestoreSolVals(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_Longint validlp, SCIP_Bool freebuffer)
Definition: lp.c:488
Definition: struct_misc.h:148
SCIP_RETCODE SCIPlpStartDive(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:15936
SCIP_RETCODE SCIProwChgLhs(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real lhs)
Definition: lp.c:5659
static SCIP_RETCODE lpFlushDelRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: lp.c:8172
SCIP_RETCODE SCIPeventfilterAdd(SCIP_EVENTFILTER *eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: event.c:1877
SCIP_RETCODE SCIPlpWriteMip(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, const char *fname, SCIP_Bool genericnames, SCIP_Bool origobj, SCIP_OBJSENSE objsense, SCIP_Real objscale, SCIP_Real objoffset, SCIP_Bool lazyconss)
Definition: lp.c:16475
SCIP_BOUNDTYPE SCIPboundtypeOpposite(SCIP_BOUNDTYPE boundtype)
Definition: lp.c:17136
internal methods for storing and manipulating the main problem
static SCIP_Bool isIntegralScalar(SCIP_Real val, SCIP_Real scalar, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Real *intval)
Definition: lp.c:4894
Definition: struct_cons.h:37
void SCIPmessagePrintVerbInfo(SCIP_MESSAGEHDLR *messagehdlr, SCIP_VERBLEVEL verblevel, SCIP_VERBLEVEL msgverblevel, const char *formatstr,...)
Definition: message.c:669
static SCIP_RETCODE lpSetSolutionPolishing(SCIP_LP *lp, SCIP_Bool polishing, SCIP_Bool *success)
Definition: lp.c:3223
interval arithmetics for provable bounds
void SCIPsortPtrRealInt(void **ptrarray, SCIP_Real *realarray, int *intarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
SCIP_RETCODE SCIPlpiGetBasisInd(SCIP_LPI *lpi, int *bind)
Definition: lpi_clp.cpp:3175
SCIP_RETCODE SCIPlpiStrongbranchesFrac(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2290
Definition: struct_cons.h:117
SCIP_RETCODE SCIPlpAddCol(SCIP_LP *lp, SCIP_SET *set, SCIP_COL *col, int depth)
Definition: lp.c:9441
SCIP_RETCODE SCIPlpShrinkCols(SCIP_LP *lp, SCIP_SET *set, int newncols)
Definition: lp.c:9624
Definition: type_retcode.h:48
Definition: type_lp.h:77
Definition: type_lp.h:47
static SCIP_Real colCalcInternalFarkasCoef(SCIP_COL *col)
Definition: lp.c:4076
Definition: type_lpi.h:34
SCIP_RETCODE SCIPlpiFreeState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lpi_clp.cpp:3489
static SCIP_RETCODE lpCleanupRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int firstrow)
Definition: lp.c:15713
static SCIP_RETCODE lpCopyIntegrality(SCIP_LP *lp, SCIP_SET *set)
Definition: lp.c:8616
static SCIP_RETCODE pricing(SCIP *scip, SCIP_PRICER *pricer, SCIP_Real *lowerbound, SCIP_Bool farkas)
Definition: pricer_stp.c:176
SCIP_RETCODE SCIPlpSumRows(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real *weights, SCIP_REALARRAY *sumcoef, SCIP_Real *sumlhs, SCIP_Real *sumrhs)
Definition: lp.c:9938
SCIP_Bool SCIPlpiIsPrimalInfeasible(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2488
Definition: type_lpi.h:44
static SCIP_RETCODE rowAddCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val, int linkpos)
Definition: lp.c:2034
Definition: type_var.h:42
SCIP_RETCODE SCIPlpiStrongbranchFrac(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2269
void SCIPmessagePrintWarning(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...)
Definition: message.c:418
SCIP_Real SCIProwGetNLPFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6329
SCIP_RETCODE SCIPlpGetUnboundedSol(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *primalfeasible, SCIP_Bool *rayfeasible)
Definition: lp.c:14630
SCIP_Real SCIPintervalGetInf(SCIP_INTERVAL interval)
Definition: intervalarith.c:393
SCIP_Real SCIProwGetPseudoFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6443
SCIP_RETCODE SCIPlpAddRow(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, SCIP_ROW *row, int depth)
Definition: lp.c:9500
internal miscellaneous methods
SCIP_Longint nprimalresolvelpiterations
Definition: struct_stat.h:60
SCIP_Bool SCIPsetIsDualfeasGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6875
SCIP_RETCODE SCIPlpiStrongbranchesInt(SCIP_LPI *lpi, int *cols, int ncols, SCIP_Real *psols, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2336
Definition: type_retcode.h:33
Definition: type_lpi.h:33
static SCIP_RETCODE lpSetFeastol(SCIP_LP *lp, SCIP_Real feastol, SCIP_Bool *success)
Definition: lp.c:2699
Definition: struct_event.h:152
internal methods for global SCIP settings
Definition: type_lpi.h:45
void SCIPlpSetFeastol(SCIP_LP *lp, SCIP_SET *set, SCIP_Real newfeastol)
Definition: lp.c:10246
SCIP_Bool SCIPsetIsFeasGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6686
static void rowCalcActivityBounds(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6519
SCIP_RETCODE SCIPlpiGetSolFeasibility(SCIP_LPI *lpi, SCIP_Bool *primalfeasible, SCIP_Bool *dualfeasible)
Definition: lpi_clp.cpp:2391
Definition: type_retcode.h:46
void SCIPmessagePrintInfo(SCIP_MESSAGEHDLR *messagehdlr, const char *formatstr,...)
Definition: message.c:585
Definition: type_lpi.h:53
SCIP_RETCODE SCIPlpiFreeNorms(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lpi_clp.cpp:3609
SCIP_RETCODE SCIPlpiDelRows(SCIP_LPI *lpi, int firstrow, int lastrow)
Definition: lpi_clp.cpp:977
SCIP_Bool SCIPsetIsEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6222
Definition: type_clock.h:35
static SCIP_RETCODE lpSetObjlim(SCIP_LP *lp, SCIP_SET *set, SCIP_Real objlim, SCIP_Bool *success)
Definition: lp.c:2648
SCIP_Real SCIPlpGetObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13097
SCIP_Bool SCIPlpIsFeasNegative(SCIP_LP *lp, SCIP_Real val)
Definition: lp.c:18855
void SCIProwPrint(SCIP_ROW *row, SCIP_MESSAGEHDLR *messagehdlr, FILE *file)
Definition: lp.c:5292
static SCIP_RETCODE rowLink(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:2427
static SCIP_RETCODE colDelCoefPos(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, int pos)
Definition: lp.c:1810
SCIP_Bool SCIPsetIsFeasLE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6642
SCIP_Bool SCIProwIsSolEfficacious(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol, SCIP_Bool root)
Definition: lp.c:6901
Definition: type_lpi.h:71
Definition: type_lp.h:34
static SCIP_RETCODE rowSideChanged(SCIP_ROW *row, SCIP_SET *set, SCIP_LP *lp, SCIP_SIDETYPE sidetype)
Definition: lp.c:2291
static SCIP_RETCODE rowEventSideChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_SIDETYPE side, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1515
static SCIP_RETCODE allocDiveChgSideArrays(SCIP_LP *lp, int initsize)
Definition: lp.c:9002
Definition: type_retcode.h:34
SCIP_RETCODE SCIProwRelease(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:5345
static SCIP_RETCODE lpSolve(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LPALGO lpalgo, int resolveitlim, int harditlim, SCIP_Bool needprimalray, SCIP_Bool needdualray, SCIP_Bool resolve, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12015
SCIP_RETCODE SCIPlpGetDualDegeneracy(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Real *degeneracy, SCIP_Real *varconsratio)
Definition: lp.c:18608
SCIP_Real SCIProwGetSolActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6459
internal methods for problem variables
static void computeLPBounds(SCIP_LP *lp, SCIP_SET *set, SCIP_COL *col, SCIP_Real lpiinf, SCIP_Real *lb, SCIP_Real *ub)
Definition: lp.c:7963
SCIP_RETCODE SCIPlpiGetObjval(SCIP_LPI *lpi, SCIP_Real *objval)
Definition: lpi_clp.cpp:2752
SCIP_RETCODE SCIPlpiDelRowset(SCIP_LPI *lpi, int *dstat)
Definition: lpi_clp.cpp:1009
public data structures and miscellaneous methods
SCIP_Bool SCIPlpIsFeasGT(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18793
SCIP_RETCODE SCIPlpClear(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9762
SCIP_Bool SCIPlpIsFeasGE(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18813
void SCIPlpRecomputeLocalAndGlobalPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13180
SCIP_Bool SCIPlpiHasStateBasis(SCIP_LPI *lpi, SCIP_LPISTATE *lpistate)
Definition: lpi_clp.cpp:3508
SCIP_RETCODE SCIPlpiDelCols(SCIP_LPI *lpi, int firstcol, int lastcol)
Definition: lpi_clp.cpp:828
Definition: type_lpi.h:74
static void recomputePseudoObjectiveValue(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:812
static SCIP_RETCODE lpDelRowset(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int *rowdstat)
Definition: lp.c:15334
SCIP_RETCODE SCIPlpFree(SCIP_LP **lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9362
SCIP_RETCODE SCIPeventCreateRowSideChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_SIDETYPE side, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:971
SCIP_RETCODE SCIPlpiGetState(SCIP_LPI *lpi, BMS_BLKMEM *blkmem, SCIP_LPISTATE **lpistate)
Definition: lpi_clp.cpp:3375
SCIP_RETCODE SCIPconsRelease(SCIP_CONS **cons, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: cons.c:6203
static SCIP_RETCODE ensureRowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:317
SCIP_RETCODE SCIPlpGetBInvRow(SCIP_LP *lp, int r, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9841
Definition: type_lpi.h:70
SCIP_RETCODE SCIPcolChgLb(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newlb)
Definition: lp.c:3751
Definition: struct_lp.h:192
static int colSearchCoefPart(SCIP_COL *col, const SCIP_ROW *row, int minpos, int maxpos)
Definition: lp.c:1092
static SCIP_RETCODE lpSetMarkowitz(SCIP_LP *lp, SCIP_Real threshhold, SCIP_Bool *success)
Definition: lp.c:3134
public methods for LP management
void SCIPcolSetStrongbranchData(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Real lpobjval, SCIP_Real primsol, SCIP_Real sbdown, SCIP_Real sbup, SCIP_Bool sbdownvalid, SCIP_Bool sbupvalid, SCIP_Longint iter, int itlim)
Definition: lp.c:4204
Definition: type_lpi.h:57
static SCIP_RETCODE rowDelCoefPos(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, int pos)
Definition: lp.c:2175
SCIP_Bool SCIPprobAllColsInLP(SCIP_PROB *prob, SCIP_SET *set, SCIP_LP *lp)
Definition: prob.c:2300
Definition: type_lpi.h:61
Definition: type_lpi.h:43
Definition: type_lpi.h:42
Definition: type_var.h:41
SCIP_RETCODE SCIProwDelCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col)
Definition: lp.c:5423
SCIP_RETCODE SCIPlpCreate(SCIP_LP **lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, const char *name)
Definition: lp.c:9070
SCIP_RETCODE SCIPsetSetCharParam(SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, const char *name, char value)
Definition: set.c:3454
datastructures for problem statistics
SCIP_Real SCIProwGetSolEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_SOL *sol)
Definition: lp.c:6858
SCIP_Real SCIProwGetRelaxEfficacy(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6917
static SCIP_RETCODE ensureColsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:251
SCIP_RETCODE SCIPlpRemoveRedundantRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:15862
SCIP_Bool SCIPsetIsFeasLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6620
SCIP_Bool SCIPsetIsSumEQ(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6431
SCIP_RETCODE SCIPcolChgUb(SCIP_COL *col, SCIP_SET *set, SCIP_LP *lp, SCIP_Real newub)
Definition: lp.c:3796
SCIP_RETCODE SCIPlpGetNorms(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_LPINORMS **lpinorms)
Definition: lp.c:10123
SCIP_RETCODE SCIPsetGetCharParam(SCIP_SET *set, const char *name, char *value)
Definition: set.c:3209
SCIP_RETCODE SCIProwDropEvent(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: lp.c:7850
SCIP_RETCODE SCIPcolFree(SCIP_COL **col, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp)
Definition: lp.c:3371
void SCIPcolPrint(SCIP_COL *col, SCIP_MESSAGEHDLR *messagehdlr, FILE *file)
Definition: lp.c:3401
static int lpGetResolveItlim(SCIP_SET *set, SCIP_STAT *stat, int itlim)
Definition: lp.c:12379
static int rowSearchCoefPart(SCIP_ROW *row, const SCIP_COL *col, int minpos, int maxpos)
Definition: lp.c:1167
SCIP_RETCODE SCIPeventCreateRowCoefChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_COL *col, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:923
SCIP_CONSHDLR * SCIProwGetOriginConshdlr(SCIP_ROW *row)
Definition: lp.c:17389
static void getObjvalDeltaObj(SCIP_SET *set, SCIP_Real oldobj, SCIP_Real newobj, SCIP_Real lb, SCIP_Real ub, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13408
Definition: type_retcode.h:39
SCIP_RETCODE SCIPlpiChgBounds(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *lb, const SCIP_Real *ub)
Definition: lpi_clp.cpp:1075
SCIP_RETCODE SCIPlpReset(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter)
Definition: lp.c:9407
SCIP_RETCODE SCIPcolGetStrongbranches(SCIP_COL **cols, int ncols, SCIP_Bool integral, SCIP_SET *set, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_LP *lp, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, SCIP_Bool *lperror)
Definition: lp.c:4478
SCIP_Bool SCIPsetIsDualfeasPositive(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6930
SCIP_Real SCIProwGetMaxActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6612
static void getObjvalDeltaLb(SCIP_SET *set, SCIP_Real obj, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real *deltaval, int *deltainf)
Definition: lp.c:13539
static SCIP_RETCODE lpBarrier(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool crossover, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:11258
SCIP_Real SCIProwGetParallelism(SCIP_ROW *row1, SCIP_ROW *row2, char orthofunc)
Definition: lp.c:7717
SCIP_Real SCIPlpGetLooseObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13136
static SCIP_RETCODE provedBound(SCIP_LP *lp, SCIP_SET *set, SCIP_Bool usefarkas, SCIP_Real *bound)
Definition: lp.c:16314
datastructures for storing and manipulating the main problem
SCIP_Real SCIPlpGetModifiedPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_BOUNDTYPE boundtype)
Definition: lp.c:13310
static SCIP_RETCODE rowRestoreSolVals(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_Longint validlp, SCIP_Bool freebuffer, SCIP_Bool infeasible)
Definition: lp.c:572
static SCIP_RETCODE lpCheckRealpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Real value)
Definition: lp.c:2612
Definition: type_lp.h:36
methods for sorting joint arrays of various types
static SCIP_RETCODE rowEventCoefChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_COL *col, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1457
SCIP_RETCODE SCIPlpiStrongbranchInt(SCIP_LPI *lpi, int col, SCIP_Real psol, int itlim, SCIP_Real *down, SCIP_Real *up, SCIP_Bool *downvalid, SCIP_Bool *upvalid, int *iter)
Definition: lpi_clp.cpp:2315
Definition: type_lpi.h:47
static SCIP_RETCODE lpRemoveObsoleteCols(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, int firstcol)
Definition: lp.c:15432
void SCIPlpStoreRootObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:13156
SCIP_RETCODE SCIPlpiSolveBarrier(SCIP_LPI *lpi, SCIP_Bool crossover)
Definition: lpi_clp.cpp:1948
SCIP_Bool SCIProwIsLPEfficacious(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp, SCIP_Bool root)
Definition: lp.c:6842
SCIP_Real SCIProwGetMinActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat)
Definition: lp.c:6591
SCIP_RETCODE SCIPlpiGetPrimalRay(SCIP_LPI *lpi, SCIP_Real *ray)
Definition: lpi_clp.cpp:2818
SCIP_RETCODE SCIPlpiEndStrongbranch(SCIP_LPI *lpi)
Definition: lpi_clp.cpp:2004
SCIP_RETCODE SCIPlpSetCutoffbound(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob, SCIP_Real cutoffbound)
Definition: lp.c:10191
void SCIPintervalMul(SCIP_Real infinity, SCIP_INTERVAL *resultant, SCIP_INTERVAL operand1, SCIP_INTERVAL operand2)
Definition: intervalarith.c:964
internal methods for main solving loop and node processing
Definition: type_retcode.h:40
void SCIPmessageVFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr, va_list ap)
Definition: message.c:624
Definition: lpi_clp.cpp:123
Definition: struct_lp.h:259
SCIP_RETCODE SCIPlpiGetSides(SCIP_LPI *lpi, int firstrow, int lastrow, SCIP_Real *lhss, SCIP_Real *rhss)
Definition: lpi_clp.cpp:1731
SCIP_RETCODE SCIPeventfilterFree(SCIP_EVENTFILTER **eventfilter, BMS_BLKMEM *blkmem, SCIP_SET *set)
Definition: event.c:1837
Definition: type_lp.h:48
SCIP_Bool SCIPlpIsFeasPositive(SCIP_LP *lp, SCIP_Real val)
Definition: lp.c:18844
SCIP_RETCODE SCIPlpUpdateVarObj(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldobj, SCIP_Real newobj)
Definition: lp.c:13816
static SCIP_RETCODE lpRemoveObsoleteRows(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_EVENTFILTER *eventfilter, int firstrow)
Definition: lp.c:15508
static SCIP_RETCODE lpUpdateVarColumn(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14051
static SCIP_RETCODE ensureChgrowsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:182
public methods for message output
SCIP_RETCODE SCIPlpiGetBInvACol(SCIP_LPI *lpi, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3335
data structures for LP management
Definition: type_lpi.h:82
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:609
SCIP_Real SCIProwGetLPFeasibility(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6247
SCIP_Bool SCIPsetIsGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6276
datastructures for problem variables
SCIP_RETCODE SCIPlpiGetObj(SCIP_LPI *lpi, int firstcol, int lastcol, SCIP_Real *vals)
Definition: lpi_clp.cpp:1677
Definition: type_lpi.h:72
void SCIPintervalSetBounds(SCIP_INTERVAL *resultant, SCIP_Real inf, SCIP_Real sup)
Definition: intervalarith.c:421
static SCIP_RETCODE lpPrimalSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *lperror)
Definition: lp.c:10311
internal methods for problem statistics
Definition: lpi_clp.cpp:95
SCIP_Real SCIProwGetObjParallelism(SCIP_ROW *row, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:7793
SCIP_Bool SCIPsetIsFeasPositive(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6719
SCIP_RETCODE SCIPrealarrayExtend(SCIP_REALARRAY *realarray, int arraygrowinit, SCIP_Real arraygrowfac, int minidx, int maxidx)
Definition: misc.c:4028
Definition: type_lp.h:56
SCIP_RETCODE SCIProwCreate(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, const char *name, int len, SCIP_COL **cols, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_ROWORIGINTYPE origintype, void *origin, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: lp.c:5104
SCIP_Real SCIPcolGetFarkasValue(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4155
Definition: type_lpi.h:49
SCIP_RETCODE SCIPlpUpdateVarLoose(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14287
internal methods for constraints and constraint handlers
SCIP_RETCODE SCIProwChgRhs(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real rhs)
Definition: lp.c:5691
SCIP_Bool SCIPsetIsDualfeasZero(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6919
static SCIP_RETCODE lpSetPricingChar(SCIP_LP *lp, char pricingchar)
Definition: lp.c:3044
SCIP_RETCODE SCIPlpGetPrimalRay(SCIP_LP *lp, SCIP_SET *set, SCIP_Real *ray)
Definition: lp.c:14924
static SCIP_RETCODE lpSetIterationLimit(SCIP_LP *lp, int itlim)
Definition: lp.c:2985
SCIP_RETCODE SCIProwCalcIntegralScalar(SCIP_ROW *row, SCIP_SET *set, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Bool usecontvars, SCIP_Real *intscalar, SCIP_Bool *success)
Definition: lp.c:5740
SCIP_Bool SCIPsetIsFeasGT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6664
Definition: type_lp.h:35
SCIP_RETCODE SCIPlpGetBInvARow(SCIP_LP *lp, int r, SCIP_Real *binvrow, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9889
void SCIProwMarkNotRemovableLocal(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:7871
SCIP_RETCODE SCIPlpiChgObj(SCIP_LPI *lpi, int ncols, const int *ind, const SCIP_Real *obj)
Definition: lpi_clp.cpp:1231
Definition: type_lp.h:76
static SCIP_RETCODE colEnsureSize(SCIP_COL *col, BMS_BLKMEM *blkmem, SCIP_SET *set, int num)
Definition: lp.c:340
SCIP_Real SCIPcolGetFarkasCoef(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4129
SCIP_Real SCIProwGetLPActivity(SCIP_ROW *row, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:6217
static SCIP_RETCODE ignoreInstability(SCIP_LP *lp, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_LPALGO lpalgo, SCIP_Bool *success)
Definition: lp.c:11540
static SCIP_RETCODE lpSetScaling(SCIP_LP *lp, int scaling, SCIP_Bool *success)
Definition: lp.c:2885
Definition: type_lpi.h:69
Definition: type_lp.h:33
Definition: type_lp.h:38
Definition: struct_stat.h:50
SCIP_RETCODE SCIPlpiInterrupt(SCIP_LPI *lpi, SCIP_Bool interrupt)
Definition: lpi_clp.cpp:3881
Definition: type_lpi.h:46
Definition: type_lpi.h:83
SCIP_Bool SCIPsetIsDualfeasNegative(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6941
SCIP_Real SCIPcolGetFeasibility(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:3970
SCIP_RETCODE SCIPlpGetBInvACol(SCIP_LP *lp, int c, SCIP_Real *coef, int *inds, int *ninds)
Definition: lp.c:9914
SCIP_RETCODE SCIPlpUpdateVarColumn(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14163
SCIP_Real SCIPlpGetModifiedProvedPseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_BOUNDTYPE boundtype)
Definition: lp.c:13350
Definition: struct_event.h:214
static SCIP_Real getFinitePseudoObjval(SCIP_LP *lp, SCIP_SET *set, SCIP_PROB *prob)
Definition: lp.c:918
Definition: type_prob.h:39
void SCIPcolInvalidateStrongbranchData(SCIP_COL *col, SCIP_SET *set, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:4258
SCIP_RETCODE SCIPlpUpdateDelVar(SCIP_LP *lp, SCIP_SET *set, SCIP_VAR *var)
Definition: lp.c:14027
SCIP_Bool SCIPlpIsFeasLT(SCIP_SET *set, SCIP_LP *lp, SCIP_Real val1, SCIP_Real val2)
Definition: lp.c:18753
Definition: type_retcode.h:43
static SCIP_RETCODE rowEventConstantChanged(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_Real oldval, SCIP_Real newval)
Definition: lp.c:1487
static SCIP_RETCODE lpSetRandomseed(SCIP_LP *lp, int randomseed, SCIP_Bool *success)
Definition: lp.c:3193
SCIP_RETCODE SCIProwAddCoef(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_COL *col, SCIP_Real val)
Definition: lp.c:5402
SCIP_Real SCIPcolGetRedcost(SCIP_COL *col, SCIP_STAT *stat, SCIP_LP *lp)
Definition: lp.c:3946
SCIP_RETCODE SCIPlpiGetBInvRow(SCIP_LPI *lpi, int r, SCIP_Real *coef, int *inds, int *ninds)
Definition: lpi_clp.cpp:3227
SCIP_RETCODE SCIPlpGetSol(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool *primalfeasible, SCIP_Bool *dualfeasible)
Definition: lp.c:14326
void SCIProwRecalcPseudoActivity(SCIP_ROW *row, SCIP_STAT *stat)
Definition: lp.c:6388
static SCIP_RETCODE lpSetThreads(SCIP_LP *lp, int threads, SCIP_Bool *success)
Definition: lp.c:2910
SCIP_Bool SCIPsetIsRelGE(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:7165
static SCIP_RETCODE ensureLpicolsSize(SCIP_LP *lp, SCIP_SET *set, int num)
Definition: lp.c:205
static SCIP_RETCODE rowChgCoefPos(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, int pos, SCIP_Real val)
Definition: lp.c:2235
SCIP_Bool SCIPsetIsDualfeasLT(SCIP_SET *set, SCIP_Real val1, SCIP_Real val2)
Definition: set.c:6831
static SCIP_RETCODE lpSetIntpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, int value, SCIP_Bool *success)
Definition: lp.c:2509
static SCIP_RETCODE lpLexDualSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:10660
SCIP_Longint SCIProwGetNLPsAfterCreation(SCIP_ROW *row)
Definition: lp.c:17488
static SCIP_RETCODE lpDualSimplex(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *lperror)
Definition: lp.c:10469
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9022
Definition: type_lpi.h:54
static SCIP_RETCODE lpCheckBoolpar(SCIP_LP *lp, SCIP_LPPARAM lpparam, SCIP_Bool value)
Definition: lp.c:2601
datastructures for global SCIP settings
Definition: type_lpi.h:85
#define BMSreallocBlockMemoryArray(mem, ptr, oldnum, newnum)
Definition: memory.h:451
Definition: type_lpi.h:48
Definition: struct_lp.h:84
static void lpUpdateObjNorms(SCIP_LP *lp, SCIP_SET *set, SCIP_Real oldobj, SCIP_Real newobj)
Definition: lp.c:3656
Definition: type_lpi.h:84
SCIP_RETCODE SCIPlpiIgnoreInstability(SCIP_LPI *lpi, SCIP_Bool *success)
Definition: lpi_clp.cpp:1638
SCIP_RETCODE SCIPlpiGetRealpar(SCIP_LPI *lpi, SCIP_LPPARAM type, SCIP_Real *dval)
Definition: lpi_clp.cpp:3782
SCIP_RETCODE SCIProwFree(SCIP_ROW **row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_LP *lp)
Definition: lp.c:5252
Definition: struct_event.h:195
SCIP_Real SCIProwGetOrthogonality(SCIP_ROW *row1, SCIP_ROW *row2, char orthofunc)
Definition: lp.c:7781
SCIP_Bool SCIPsetIsFeasNegative(SCIP_SET *set, SCIP_Real val)
Definition: set.c:6730
Definition: type_stat.h:42
static SCIP_RETCODE lpSetRefactorInterval(SCIP_LP *lp, int refactor, SCIP_Bool *success)
Definition: lp.c:3246
static SCIP_RETCODE lpFlushAndSolve(SCIP_LP *lp, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_MESSAGEHDLR *messagehdlr, SCIP_STAT *stat, SCIP_PROB *prob, SCIP_EVENTQUEUE *eventqueue, int resolveitlim, int harditlim, SCIP_Bool needprimalray, SCIP_Bool needdualray, int fastmip, SCIP_Bool tightprimfeastol, SCIP_Bool tightdualfeastol, SCIP_Bool fromscratch, SCIP_Bool keepsol, SCIP_Bool *lperror)
Definition: lp.c:12201
static SCIP_RETCODE lpAlgorithm(SCIP_LP *lp, SCIP_SET *set, SCIP_STAT *stat, SCIP_LPALGO lpalgo, SCIP_Bool resolve, SCIP_Bool keepsol, SCIP_Bool instable, SCIP_Bool *timelimit, SCIP_Bool *lperror)
Definition: lp.c:11395
SCIP_RETCODE SCIProwAddConstant(SCIP_ROW *row, BMS_BLKMEM *blkmem, SCIP_SET *set, SCIP_STAT *stat, SCIP_EVENTQUEUE *eventqueue, SCIP_LP *lp, SCIP_Real addval)
Definition: lp.c:5633
SCIP_RETCODE SCIPeventCreateRowConstChanged(SCIP_EVENT **event, BMS_BLKMEM *blkmem, SCIP_ROW *row, SCIP_Real oldval, SCIP_Real newval)
Definition: event.c:948
SCIP_Real SCIPcolCalcFarkasCoef(SCIP_COL *col, SCIP_Real *dualfarkas)
Definition: lp.c:4024
static SCIP_RETCODE lpSetTiming(SCIP_LP *lp, SCIP_CLOCKTYPE timing, SCIP_Bool enabled, SCIP_Bool *success)
Definition: lp.c:3159
Definition: type_clock.h:36
Definition: type_lpi.h:59