cons_linear.c
Go to the documentation of this file.
18 * @brief Constraint handler for linear constraints in their most general form, \f$lhs <= a^T x <= rhs\f$.
48 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
93 #define CONSHDLR_ENFOPRIORITY -1000000 /**< priority of the constraint handler for constraint enforcing */
94 #define CONSHDLR_CHECKPRIORITY -1000000 /**< priority of the constraint handler for checking feasibility */
95 #define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
96 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
97 #define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
99 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
100 #define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
101 #define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
102 #define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
104 #define CONSHDLR_PRESOLTIMING (SCIP_PRESOLTIMING_FAST | SCIP_PRESOLTIMING_EXHAUSTIVE) /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
114 #define DEFAULT_TIGHTENBOUNDSFREQ 1 /**< multiplier on propagation frequency, how often the bounds are tightened */
115 #define DEFAULT_MAXROUNDS 5 /**< maximal number of separation rounds per node (-1: unlimited) */
116 #define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
118 #define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in root node */
119 #define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
120 #define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
121 #define DEFAULT_NMINCOMPARISONS 200000 /**< number for minimal pairwise presolving comparisons */
122 #define DEFAULT_MINGAINPERNMINCOMP 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
124 #define DEFAULT_SORTVARS TRUE /**< should variables be sorted after presolve w.r.t their coefficient absolute for faster
126 #define DEFAULT_CHECKRELMAXABS FALSE /**< should the violation for a constraint with side 0.0 be checked relative
128 #define DEFAULT_MAXAGGRNORMSCALE 0.0 /**< maximal allowed relative gain in maximum norm for constraint aggregation
130 #define DEFAULT_MAXEASYACTIVITYDELTA 1e6 /**< maximum activity delta to run easy propagation on linear constraint
132 #define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
134 #define DEFAULT_SEPARATEALL FALSE /**< should all constraints be subject to cardinality cut generation instead of only
136 #define DEFAULT_AGGREGATEVARIABLES TRUE /**< should presolving search for redundant variables in equations */
137 #define DEFAULT_SIMPLIFYINEQUALITIES TRUE /**< should presolving try to simplify inequalities */
139 #define DEFAULT_SINGLETONSTUFFING TRUE /**< should stuffing of singleton continuous variables be performed? */
140 #define DEFAULT_SINGLEVARSTUFFING FALSE /**< should single variable stuffing be performed, which tries to fulfill
142 #define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
145 #define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
148 #define DEFAULT_DETECTPARTIALOBJECTIVE TRUE/**< should presolving try to detect subsets of constraints parallel to the
151 #define DEFAULT_RANGEDROWARTCONS TRUE /**< should presolving and propagation extract sub-constraints from ranged rows and equations? */
155 #define DEFAULT_MULTAGGRREMOVE FALSE /**< should multi-aggregations only be performed if the constraint can be
157 #define DEFAULT_MAXMULTAGGRQUOT 1e+03 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
158 #define DEFAULT_MAXDUALMULTAGGRQUOT 1e+20 /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for multiaggregation */
163 #define MAXSCALEDCOEFINTEGER 0 /**< maximal coefficient value after scaling if all variables are of integral
167 #define MAXVALRECOMP 1e+06 /**< maximal abolsute value we trust without recomputing the activity */
168 #define MINVALRECOMP 1e-05 /**< minimal abolsute value we trust without recomputing the activity */
171 #define QUADCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of quadratic constraints */
172 #define NONLINCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of nonlinear constraints */
174 /* @todo add multi-aggregation of variables that are in exactly two equations (, if not numerically an issue),
186 SCIP_Real minactivity; /**< minimal value w.r.t. the variable's local bounds for the constraint's
188 SCIP_Real maxactivity; /**< maximal value w.r.t. the variable's local bounds for the constraint's
194 SCIP_Real glbminactivity; /**< minimal value w.r.t. the variable's global bounds for the constraint's
196 SCIP_Real glbmaxactivity; /**< maximal value w.r.t. the variable's global bounds for the constraint's
198 SCIP_Real lastglbminactivity; /**< last global minimal activity which was computed by complete summation
200 SCIP_Real lastglbmaxactivity; /**< last global maximal activity which was computed by complete summation
202 SCIP_Real maxactdelta; /**< maximal activity contribution of a single variable, or SCIP_INVALID if invalid */
203 SCIP_VAR* maxactdeltavar; /**< variable with maximal activity contribution, or NULL if invalid */
210 int minactivityneginf; /**< number of coefficients contributing with neg. infinite value to minactivity */
211 int minactivityposinf; /**< number of coefficients contributing with pos. infinite value to minactivity */
212 int maxactivityneginf; /**< number of coefficients contributing with neg. infinite value to maxactivity */
213 int maxactivityposinf; /**< number of coefficients contributing with pos. infinite value to maxactivity */
214 int minactivityneghuge; /**< number of coefficients contributing with huge neg. value to minactivity */
215 int minactivityposhuge; /**< number of coefficients contributing with huge pos. value to minactivity */
216 int maxactivityneghuge; /**< number of coefficients contributing with huge neg. value to maxactivity */
217 int maxactivityposhuge; /**< number of coefficients contributing with huge pos. value to maxactivity */
218 int glbminactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbminactivity */
219 int glbminactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbminactivity */
220 int glbmaxactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbmaxactivity */
221 int glbmaxactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbmaxactivity */
222 int glbminactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbminactivity */
223 int glbminactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbminactivity */
224 int glbmaxactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbmaxactivity */
225 int glbmaxactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbmaxactivity */
232 unsigned int rangedrowpropagated:2; /**< did we perform ranged row propagation on this constraint?
244 unsigned int changed:1; /**< was constraint changed since last aggregation round in preprocessing? */
247 unsigned int upgraded:1; /**< is the constraint upgraded and will it be removed after preprocessing? */
252 unsigned int coefsorted:1; /**< are variables sorted by type and their absolute activity delta? */
254 unsigned int hascontvar:1; /**< does the constraint contain at least one continuous variable? */
255 unsigned int hasnonbinvar:1; /**< does the constraint contain at least one non-binary variable? */
256 unsigned int hasnonbinvalid:1; /**< is the information stored in hasnonbinvar and hascontvar valid? */
257 unsigned int checkabsolute:1; /**< should the constraint be checked w.r.t. an absolute feasibilty tolerance? */
272 SCIP_LINCONSUPGRADE** linconsupgrades; /**< linear constraint upgrade methods for specializing linear constraints */
273 SCIP_Real maxaggrnormscale; /**< maximal allowed relative gain in maximum norm for constraint aggregation
275 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
277 SCIP_Real mingainpernmincomp; /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise comparison round */
278 SCIP_Real maxeasyactivitydelta;/**< maximum activity delta to run easy propagation on linear constraint
282 int tightenboundsfreq; /**< multiplier on propagation frequency, how often the bounds are tightened */
289 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
290 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
291 SCIP_Bool separateall; /**< should all constraints be subject to cardinality cut generation instead of only
293 SCIP_Bool aggregatevariables; /**< should presolving search for redundant variables in equations */
294 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
296 SCIP_Bool singletonstuffing; /**< should stuffing of singleton continuous variables be performed? */
297 SCIP_Bool singlevarstuffing; /**< should single variable stuffing be performed, which tries to fulfill
300 SCIP_Bool checkrelmaxabs; /**< should the violation for a constraint with side 0.0 be checked relative
302 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
305 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
308 SCIP_Bool detectpartialobjective;/**< should presolving try to detect subsets of constraints parallel to
310 SCIP_Bool rangedrowpropagation;/**< should presolving and propagation try to improve bounds, detect
313 SCIP_Bool rangedrowartcons; /**< should presolving and propagation extract sub-constraints from ranged rows and equations?*/
316 SCIP_Bool multaggrremove; /**< should multi-aggregations only be performed if the constraint can be
318 SCIP_Real maxmultaggrquot; /**< maximum coefficient dynamism (ie. maxabsval / minabsval) for primal multiaggregation */
319 SCIP_Real maxdualmultaggrquot;/**< maximum coefficient dynamism (ie. maxabsval / minabsval) for dual multiaggregation */
342 PROPRULE_1_RANGEDROW = 3, /**< fixed variables and gcd of all left variables tighten bounds of a
345 };
357 } asbits;
359 } val;
422 /** constructs an inference information out of a propagation rule and a position number, returns info as int */
454 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->linconsupgrades, conshdlrdata->linconsupgradessize, newsize) );
456 }
483 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
516 }
551 (*conshdlrdata)->eventhdlr = eventhdlr;
573 SCIPfreeBlockMemoryArrayNull(scip, &(*conshdlrdata)->linconsupgrades, (*conshdlrdata)->linconsupgradessize);
597 {
599 SCIPwarningMessage(scip, "Try to add already known upgrade message %p for constraint handler %s.\n", linconsupgd, conshdlrname);
622 SCIP_CALL( conshdlrdataEnsureLinconsupgradesSize(scip, conshdlrdata, conshdlrdata->nlinconsupgrades+1) );
627 conshdlrdata->linconsupgrades[i] = conshdlrdata->linconsupgrades[i-1];
640 /** installs rounding locks for the given variable associated to the given coefficient in the linear constraint */
673 /** removes rounding locks for the given variable associated to the given coefficient in the linear constraint */
915 if( SCIPisConsCompressionEnabled(scip) && SCIPisEQ(scip, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var)) )
957 /* due to compressed copying, we may have fixed variables contributing to the left and right hand side */
1028 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
1100 SCIP_CALL( SCIPwriteVarsLinearsum(scip, file, consdata->vars, consdata->vals, consdata->nvars, TRUE) );
1133 SCIPmessageFPrintInfo(SCIPgetMessagehdlr(scip), file, " [%s] <%s>: ", SCIPconshdlrGetName(SCIPconsGetHdlr(cons)), SCIPconsGetName(cons));
1253 {
1255 bound = (SCIPvarGetBestBoundType(consdata->vars[i]) == SCIP_BOUNDTYPE_LOWER) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1301 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1303 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1328 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbLocal(consdata->vars[i]) : SCIPvarGetLbLocal(consdata->vars[i]);
1330 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1355 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbGlobal(consdata->vars[i]) : SCIPvarGetUbGlobal(consdata->vars[i]);
1357 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1382 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbGlobal(consdata->vars[i]) : SCIPvarGetLbGlobal(consdata->vars[i]);
1384 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1448 /** checks the type of all variables of the constraint and sets hasnonbinvar and hascontvar flags accordingly */
1543 {
1597 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1649 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1651 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1705 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1707 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1775 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1803 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1828 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1834 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1837 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1843 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1846 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1861 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1867 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1870 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1876 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1879 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1931 /* update the activity, if the current value is valid and there was a change in the finite part */
1980 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1989 consdataUpdateActivities(scip, consdata, var, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, FALSE, checkreliability);
1991 assert(!SCIPisInfinity(scip, -consdata->minactivity) && !SCIPisInfinity(scip, consdata->minactivity));
1992 assert(!SCIPisInfinity(scip, -consdata->maxactivity) && !SCIPisInfinity(scip, consdata->maxactivity));
2005 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2014 consdataUpdateActivities(scip, consdata, var, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, FALSE, checkreliability);
2016 assert(!SCIPisInfinity(scip, -consdata->minactivity) && !SCIPisInfinity(scip, consdata->minactivity));
2017 assert(!SCIPisInfinity(scip, -consdata->maxactivity) && !SCIPisInfinity(scip, consdata->maxactivity));
2029 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2037 consdataUpdateActivities(scip, consdata, NULL, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, TRUE, checkreliability);
2039 assert(!SCIPisInfinity(scip, -consdata->glbminactivity) && !SCIPisInfinity(scip, consdata->glbminactivity));
2040 assert(!SCIPisInfinity(scip, -consdata->glbmaxactivity) && !SCIPisInfinity(scip, consdata->glbmaxactivity));
2052 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2060 consdataUpdateActivities(scip, consdata, NULL, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, TRUE, checkreliability);
2062 assert(!SCIPisInfinity(scip, -consdata->glbminactivity) && !SCIPisInfinity(scip, consdata->glbminactivity));
2063 assert(!SCIPisInfinity(scip, -consdata->glbmaxactivity) && !SCIPisInfinity(scip, consdata->glbmaxactivity));
2067 /** updates minimum and maximum activity and maximum absolute value for coefficient addition */
2074 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2110 consdataUpdateActivitiesLb(scip, consdata, var, 0.0, SCIPvarGetLbLocal(var), val, checkreliability);
2111 consdataUpdateActivitiesUb(scip, consdata, var, 0.0, SCIPvarGetUbLocal(var), val, checkreliability);
2112 consdataUpdateActivitiesGlbLb(scip, consdata, 0.0, SCIPvarGetLbGlobal(var), val, checkreliability);
2113 consdataUpdateActivitiesGlbUb(scip, consdata, 0.0, SCIPvarGetUbGlobal(var), val, checkreliability);
2117 /** updates minimum and maximum activity for coefficient deletion, invalidates maximum absolute value if necessary */
2124 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2167 consdataUpdateActivitiesLb(scip, consdata, var, SCIPvarGetLbLocal(var), 0.0, val, checkreliability);
2168 consdataUpdateActivitiesUb(scip, consdata, var, SCIPvarGetUbLocal(var), 0.0, val, checkreliability);
2169 consdataUpdateActivitiesGlbLb(scip, consdata, SCIPvarGetLbGlobal(var), 0.0, val, checkreliability);
2170 consdataUpdateActivitiesGlbUb(scip, consdata, SCIPvarGetUbGlobal(var), 0.0, val, checkreliability);
2174 /** updates minimum and maximum activity for coefficient change, invalidates maximum absolute value if necessary */
2182 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2262 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
2268 /* @todo do something more clever here, e.g. if oldval * newval >= 0, do the update directly */
2367 /** gets minimal activity for constraint and given values of counters for infinite and huge contributions
2368 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2381 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2385 SCIP_Bool* issettoinfinity /**< pointer to store whether minactivity was set to infinity or calculated */
2412 /* if we have neg. huge contributions, we only know that -infty is a relaxation of the minactivity */
2419 /* we do not need a good relaxation and we have positive huge contributions, so we just return -infty as activity */
2450 * times the minimum value counting as "huge" plus finite (and non-huge) part of minactivity - delta
2468 /** gets maximal activity for constraint and given values of counters for infinite and huge contributions
2469 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2482 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2486 SCIP_Bool* issettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2513 /* if we have pos. huge contributions, we only know that +infty is a relaxation of the maxactivity */
2520 /* we do not need a good relaxation and we have positve huge contributions, so we just return +infty as activity */
2551 * times the minimum value counting as "huge" plus the finite (and non-huge) part of maxactivity minus delta
2578 SCIP_Bool* minisrelax, /**< pointer to store whether the returned minactivity is just a relaxation,
2581 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned maxactivity is just a relaxation,
2584 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minactivity was set to infinity or calculated */
2585 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2588 {
2710 SCIP_Bool* minisrelax, /**< pointer to store whether the returned residual minactivity is just a
2713 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned residual maxactivity is just a
2716 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2717 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2718 )
2765 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2766 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2803 consdata->minactivityposhuge, consdata->minactivityneghuge, absval * minactbound, FALSE, goodrelax,
2807 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2808 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2845 consdata->maxactivityposhuge, consdata->maxactivityneghuge, absval * maxactbound, FALSE, goodrelax,
2857 SCIP_Real* glbminactivity, /**< pointer to store the minimal activity, or NULL, if not needed */
2858 SCIP_Real* glbmaxactivity, /**< pointer to store the maximal activity, or NULL, if not needed */
2859 SCIP_Bool* minisrelax, /**< pointer to store whether the returned minactivity is just a relaxation,
2862 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned maxactivity is just a relaxation,
2865 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2866 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2921 SCIP_Real* minresactivity, /**< pointer to store the minimal residual activity, or NULL, if not needed */
2922 SCIP_Real* maxresactivity, /**< pointer to store the maximal residual activity, or NULL, if not needed */
2923 SCIP_Bool* minisrelax, /**< pointer to store whether the returned residual minactivity is just a
2926 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned residual maxactivity is just a
2929 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2930 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2931 )
2972 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2973 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2979 getMinActivity(scip, consdata, consdata->glbminactivityposinf - 1, consdata->glbminactivityneginf,
2987 getMinActivity(scip, consdata, consdata->glbminactivityposinf, consdata->glbminactivityneginf - 1,
3020 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
3021 * and contribution of variable set to zero that has to be subtracted from finite part of activity
3027 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf, consdata->glbmaxactivityneginf - 1,
3035 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf - 1, consdata->glbmaxactivityneginf,
3102 else if( (SCIPisInfinity(scip, solval) && negsign) || (SCIPisInfinity(scip, -solval) && !negsign) )
3109 SCIPdebugMsg(scip, "activity of linear constraint: %.15g, %d positive infinity values, %d negative infinity values \n", activity, nposinf, nneginf);
3151 }
3198 /** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3217 }
3237 /** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3256 }
3293 SCIP_Real abscont1 = REALABS(consdata->vals[ind1] * (SCIPvarGetUbGlobal(var1) - SCIPvarGetLbGlobal(var1)));
3294 SCIP_Real abscont2 = REALABS(consdata->vals[ind2] * (SCIPvarGetUbGlobal(var2) - SCIPvarGetLbGlobal(var2)));
3378 * sorts variables of the remaining problem by binaries, integers, implicit integers, and continuous variables,
3402 {
3499 /* the left hand side switched from -infinity to a non-infinite value -> install rounding locks */
3524 /* the left hand side switched from a non-infinite value to -infinity -> remove rounding locks */
3545 /* check whether the left hand side is increased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3627 /* the right hand side switched from infinity to a non-infinite value -> install rounding locks */
3652 /* the right hand side switched from a non-infinite value to infinity -> remove rounding locks */
3673 /* check whether the right hand side is decreased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3721 assert(!SCIPvarIsRelaxationOnly(var) || (!SCIPconsIsChecked(cons) && !SCIPconsIsEnforced(cons)));
3836 consdata->indexsorted = consdata->indexsorted && (consdataCompVar((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3842 consdata->coefsorted = consdata->coefsorted && (consdataCompVarProp((void*)consdata, consdata->nvars-2, consdata->nvars-1) <= 0);
3888 var = consdata->vars[pos];
3933 /* if at most one variable is left, the activities should be recalculated (to correspond exactly to the bounds
3945 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4093 SCIPwarningMessage(scip, "skipped scaling for linear constraint <%s> to avoid numerical troubles (scalar: %.15g)\n",
4104 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4112 SCIPwarningMessage(scip, "coefficient %.15g of variable <%s> in linear constraint <%s> scaled to zero (scalar: %.15g)\n",
4134 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4146 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasCeil, we subtract 0.5 before ceiling up
4208 * Apply the following rules in the given order, until the sign of the factor is determined. Later rules only apply,
4213 * 4. the number of positive coefficients must not be smaller than the number of negative coefficients
4216 * Try to identify a rational representation of the fractional coefficients, and multiply all coefficients
4307 SCIPdebugMsg(scip, "divide linear constraint with %g, because all coefficients are in absolute value the same\n", maxabsval);
4349 epsilon = SCIPepsilon(scip) * 0.9; /* slightly decrease epsilon to be safe in rational conversion below */
4358 maxmult = MIN(maxmult, (SCIP_Longint) (MAXSCALEDCOEFINTEGER / MAX(maxabsval, 1.0))); /*lint !e835*/
4384 /* 3. the absolute value of the right hand side must be greater than that of the left hand side */
4393 /* 4. the number of positive coefficients must not be smaller than the number of negative coefficients */
4446 /* it might be that we have really big coefficients, but all are integral, in that case we want to divide them by
4466 SCIPdebugMsg(scip, "scale linear constraint with %" SCIP_LONGINT_FORMAT " to make coefficients integral\n", scm);
4515 /* since the lhs/rhs is not respected for gcd calculation it can happen that we detect infeasibility */
4518 if( SCIPisEQ(scip, consdata->lhs, consdata->rhs) && !SCIPisFeasIntegral(scip, consdata->rhs / gcd) )
4530 SCIPdebugMsg(scip, "divide linear constraint by greatest common divisor %" SCIP_LONGINT_FORMAT "\n", gcd);
4603 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4676 /* if an unmodifiable row has been added to the LP, then we cannot apply fixing anymore (cannot change a row)
4677 * this should not happen, as applyFixings is called in addRelaxation() before creating and adding a row
4679 assert(consdata->row == NULL || !SCIProwIsInLP(consdata->row) || SCIProwIsModifiable(consdata->row));
4832 if( SCIPisEQ(scip, lhssubtrahend, consdata->lhs) && SCIPisFeasGE(scip, REALABS(lhssubtrahend), 1.0) )
4848 if( SCIPisEQ(scip, rhssubtrahend, consdata->rhs ) && SCIPisFeasGE(scip, REALABS(rhssubtrahend), 1.0) )
4862 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have
4881 /** for each variable in the linear constraint, except the inferred variable, adds one bound to the conflict analysis'
4882 * candidate store (bound depends on sign of coefficient and whether the left or right hand side was the reason for the
4883 * inference variable's bound change); the conflict analysis can be initialized with the linear constraint being the
4891 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
4920 /* for each variable, add the bound to the conflict queue, that is responsible for the minimal or maximal
4921 * residual value, depending on whether the left or right hand side is responsible for the bound change:
4926 /* if the variable is integral we only need to add reason bounds until the propagation could be applied */
4939 /* calculate the minimal and maximal global activity of all other variables involved in the constraint */
4944 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, &minresactivity, NULL,
4947 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, NULL, &maxresactivity,
4961 if( (reasonisrhs && !isminsettoinfinity && !minisrelax) || (!reasonisrhs && !ismaxsettoinfinity && !maxisrelax) ) /*lint !e644*/
4968 /* calculate the residual capacity that would be left, if the variable would be set to one more / one less
5023 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound */
5025 rescap -= vals[i] * (SCIPgetVarLbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetLbGlobal(vars[i]));
5029 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound */
5031 rescap -= vals[i] * (SCIPgetVarUbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetUbGlobal(vars[i]));
5051 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound is responsible */
5056 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound is responsible */
5064 /** for each variable in the linear ranged row constraint, except the inferred variable, adds the bounds of all fixed
5065 * variables to the conflict analysis' candidate store; the conflict analysis can be initialized
5066 * with the linear constraint being the conflict detecting constraint by using NULL as inferred variable
5073 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5105 if( !SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetLbGlobal(vars[v])) )
5111 if( !SCIPisEQ(scip, SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetUbGlobal(vars[v])) )
5121 if( SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE)) )
5123 /* add all bounds of fixed variables which lead to the boundchange of the given inference variable */
5180 /** resolves a propagation on the given variable by supplying the variables needed for applying the corresponding
5191 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5192 SCIP_RESULT* result /**< pointer to store the result of the propagation conflict resolving call */
5233 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5234 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5243 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5244 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5253 /* the bound of the variable was tightened, because some variables were already fixed and the leftover only allow
5265 SCIPerrorMessage("invalid inference information %d in linear constraint <%s> at position %d for %s bound of variable <%s>\n",
5276 /** analyzes conflicting bounds on given constraint, and adds conflict constraint to problem */
5285 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5291 /* add the conflicting bound for each variable of infeasible constraint to conflict candidate queue */
5319 + consdata->maxactivityneghuge
5339 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5363 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
5364 SCIPconsGetName(cons), SCIPvarGetName(var), lb, oldub, consdata->vals[pos], consdata->minactivity, consdata->maxactivity, consdata->lhs, consdata->rhs, newub);
5369 SCIP_CALL( SCIPinferVarUbCons(scip, var, newub, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5408 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5432 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
5433 SCIPconsGetName(cons), SCIPvarGetName(var), oldlb, ub, consdata->vals[pos], consdata->minactivity, consdata->maxactivity, consdata->lhs, consdata->rhs, newlb);
5438 SCIP_CALL( SCIPinferVarLbCons(scip, var, newlb, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5474 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5534 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5537 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5549 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5594 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5605 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5641 /* min activity should be valid at this point (if this is not true, then some decisions might be wrong!) */
5644 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5656 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5699 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5711 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5743 /** analyzes conflicting bounds on given ranged row constraint, and adds conflict constraint to problem */
5766 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5772 /* add the conflicting fixed variables of this ranged row constraint to conflict candidate queue */
5786 * Check ranged rows for possible solutions, possibly detect infeasibility, fix variables due to having only one possible
5787 * solution, tighten bounds if having only two possible solutions or add constraints which propagate a subset of
5872 addartconss = conshdlrdata->rangedrowartcons && SCIPgetDepth(scip) < 1 && !SCIPinProbing(scip) && !SCIPinRepropagation(scip);
5877 /* we are not allowed to add artificial constraints during propagation; if nothing changed on this constraint since
5878 * the last rangedrowpropagation, we can stop; otherwise, we mark this constraint to be rangedrowpropagated without
5896 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5925 * coefficient so that all variables in this group will have a gcd greater than 1, this group will be implicitly
5928 * the second group will contain all left unfixed variables and will be saved as infcheckvars with corresponding
5929 * coefficients as infcheckvals, the order of these variables should be the same as in the consdata object
5932 /* find first integral variables with integral coefficient greater than 1, thereby collecting all other unfixed
5942 /* partition the variables, do not change the order of collection, because it might be used later on */
5946 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5974 while( v < consdata->nvars && SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) );
5988 assert(!SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])));
5989 assert(SCIPisIntegral(scip, consdata->vals[v]) && SCIPvarGetType(consdata->vars[v]) != SCIP_VARTYPE_CONTINUOUS && REALABS(consdata->vals[v]) > 1.5);
5996 /* go on to partition the variables, do not change the order of collection, because it might be used later on;
6000 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6013 if( !SCIPisIntegral(scip, consdata->vals[v]) || SCIPvarGetType(consdata->vars[v]) == SCIP_VARTYPE_CONTINUOUS ||
6052 /* it should not happen that all variables are of integral type and have a gcd >= 2, this should be done by
6111 SCIPdebugMsg(scip, "minactinfvarsinvalid = %u, minactinfvars = %g, maxactinfvarsinvalid = %u, maxactinfvars = %g, gcd = %lld, ninfcheckvars = %d, ncontvars = %d\n",
6112 minactinfvarsinvalid, minactinfvars, maxactinfvarsinvalid, maxactinfvars, gcd, ninfcheckvars, ncontvars);
6114 /* @todo maybe we took the wrong variables as infcheckvars we could try to exchange integer variables */
6115 /* @todo if minactinfvarsinvalid or maxactinfvarsinvalid are true, try to exchange both partitions to maybe get valid
6117 /* @todo calculate minactivity and maxactivity for all non-intcheckvars, and use this for better bounding,
6119 * that therefore the conflict variables in addConflictFixedVars() need to be extended by all variables which
6123 /* check if between left hand side and right hand side exist a feasible point, if not the constraint leads to
6128 SCIPdebugMsg(scip, "no feasible value exist, constraint <%s> lead to infeasibility", SCIPconsGetName(cons));
6133 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6150 gcdinfvars = SCIPcalcGreComDiv(gcdinfvars, (SCIP_Longint)(REALABS(infcheckvals[v]) + feastol));
6158 /* compute solutions for this ranged row, if all variables are of integral type with integral coefficients */
6227 SCIPdebugMsg(scip, "here nsols %s %d, minsolvalue = %g, maxsolvalue = %g, ninfcheckvars = %d, nunfixedvars = %d\n",
6235 SCIPdebugMsg(scip, "no solution found; constraint <%s> lead to infeasibility\n", SCIPconsGetName(cons));
6240 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6268 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6289 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6301 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6383 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6390 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6395 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals,
6447 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6468 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6490 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6502 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6609 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newlb) );
6630 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newub) );
6638 /* at least two solutions and more than one variable, so we add a new constraint which bounds the feasible
6641 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6663 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons1_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6668 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6677 /* @todo maybe add constraint for all variables which are not infcheckvars, lhs should be minvalue, rhs
6698 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6748 if( v == consdata->nvars && !SCIPisHugeValue(scip, -minact) && !SCIPisHugeValue(scip, maxact) )
6763 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons2_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6768 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6794 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
6837 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
6858 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6869 (!SCIPisUbBetter(scip, newub, lb, ub) && (!SCIPisFeasLT(scip, newub, ub) || !SCIPvarIsIntegral(var))
6876 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
6877 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6893 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6910 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6925 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6926 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6942 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6960 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6971 || (!SCIPisLbBetter(scip, newlb, lb, ub) && (!SCIPisFeasGT(scip, newlb, lb) || !SCIPvarIsIntegral(var))
6978 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6979 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6995 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
7011 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
7026 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g], newub=%.15g\n",
7027 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
7043 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
7063 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7152 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minisrelax, &maxisrelax,
7157 slack = (SCIPisInfinity(scip, consdata->rhs) || isminsettoinfinity) ? SCIPinfinity(scip) : (consdata->rhs - minactivity);
7158 surplus = (SCIPisInfinity(scip, -consdata->lhs) || ismaxsettoinfinity) ? SCIPinfinity(scip) : (maxactivity - consdata->lhs);
7168 /* as long as the bounds might be tightened again, try to tighten them; abort after a maximal number of rounds */
7176 for( nrounds = 0; (force || consdata->boundstightened < tightenmode) && nrounds < MAXTIGHTENROUNDS; ++nrounds ) /*lint !e574*/
7180 * note: it might happen that integer variables become binary during bound tightening at the root node
7191 /* try to tighten the bounds of each variable in the constraint. During solving process, the binary variable
7215 && !SCIPisFeasEQ(scip, SCIPvarGetUbLocal(consdata->vars[v]), SCIPvarGetLbLocal(consdata->vars[v])) )
7222 SCIPdebugMessage("linear constraint <%s> found %d bound changes in round %d\n", SCIPconsGetName(cons),
7230 assert(*cutoff || SCIPisFeasEQ(scip, SCIPvarGetLbLocal(consdata->vars[0]), SCIPvarGetUbLocal(consdata->vars[0])));
7242 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
7243 SCIP_Bool checkrelmaxabs, /**< Should the violation for a constraint with side 0.0 be checked relative
7279 SCIPdebugMsg(scip, " consdata activity=%.15g (lhs=%.15g, rhs=%.15g, row=%p, checklprows=%u, rowinlp=%u, sol=%p, hascurrentnodelp=%u)\n",
7301 /* the activity of pseudo solutions may be invalid if it comprises positive and negative infinity contributions; we
7317 else if( !consdata->checkabsolute && (SCIPisFeasLT(scip, activity, consdata->lhs) || SCIPisFeasGT(scip, activity, consdata->rhs)) )
7330 /* the (much) more complicated check: we try to disregard random noise and violations of a 0.0 side which are
7379 SCIPdebugMsg(scip, " lhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7433 SCIPdebugMsg(scip, " rhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7469 ((!SCIPisInfinity(scip, -consdata->lhs) && SCIPisGT(scip, consdata->lhs-activity, SCIPfeastol(scip))) ||
7470 (!SCIPisInfinity(scip, consdata->rhs) && SCIPisGT(scip, activity-consdata->rhs, SCIPfeastol(scip)))) )
7512 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, cons, SCIPconsGetName(cons), consdata->lhs, consdata->rhs,
7515 SCIP_CALL( SCIPaddVarsToRow(scip, consdata->row, consdata->nvars, consdata->vars, consdata->vals) );
7539 {
7540 /* replace all fixed variables by active counterparts, as we have no chance to do this anymore after the row has been added to the LP
7583 /** separates linear constraint: adds linear constraint as cut, if violated by given solution */
7591 SCIP_Bool separateall, /**< should all constraints be subject to cardinality cut generation instead of only
7613 SCIP_CALL( checkCons(scip, cons, sol, (sol != NULL), conshdlrdata->checkrelmaxabs, &violated) );
7626 /* we only want to call the knapsack cardinality cut separator for rows that have a non-zero dual solution */
7680 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7725 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7764 SCIPdebug( SCIPdebugMsg(scip, "linear constraint <%s> found %d bound changes and %d fixings\n", SCIPconsGetName(cons), *nchgbds - oldnchgbds, nfixedvars); )
7774 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
7779 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (rhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7790 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (lhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7799 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
7801 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7804 /* remove the constraint locally unless it has become empty, in which case it is removed globally */
7862 SCIPdebugMsg(scip, "converting variable <%s> with fixed bounds [%.15g,%.15g] into fixed variable fixed at %.15g\n",
7899 * a) if the constraint has a finite right hand side and the negative infinity counters for the minactivity are zero
7900 * then add the variables as a clique for which all successive pairs of coefficients fullfill the following
7905 * and also add the binary to binary implication also for non-successive variables for which the same argument
7910 * e.g. 5.3 x1 + 3.6 x2 + 3.3 x3 + 2.1 x4 <= 5.5 (all x are binary) would lead to the clique (x1, x2, x3) and the
7913 * b) if the constraint has a finite left hand side and the positive infinity counters for the maxactivity are zero
7914 * then add the variables as a clique for which all successive pairs of coefficients fullfill the follwoing
7919 * and also add the binary to binary implication also for non-successive variables for which the same argument
7926 * c) the constraint has a finite right hand side and a finite minactivity then add the variables as a negated
7927 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7932 * and also add the binary to binary implication also for non-successive variables for which the
7937 * e.g. -4 x1 -3 x2 - 2 x3 + 2 x4 <= -4 would lead to the (negated) clique (~x1, ~x2) and the binary to binary
7940 * d) the constraint has a finite left hand side and a finite maxactivity then add the variables as a negated
7941 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7946 * and also add the binary to binary implication also for non-successive variables for which the same argument
7953 * 2. if the linear constraint represents a set-packing or set-partitioning constraint, the whole constraint is added
7961 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
8005 * for now we only add binary to non-binary implications, and this is only done for the binary variable with the
8006 * maximal absolute contribution and also only if this variable would force all other variables to their bound
8014 /* @todo we might extract implications/cliques if SCIPvarIsBinary() variables exist and we have integer variables
8037 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8039 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8040 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8044 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8107 /* if the right hand side and the minimal activity are finite and changing the variable with the biggest
8108 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8111 if( finiterhs && finiteminact && SCIPisEQ(scip, consdata->glbminactivity, consdata->rhs - maxabscontrib) )
8123 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8130 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8142 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8148 /* if the left hand side and the maximal activity are finite and changing the variable with the biggest
8149 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8152 if( finitelhs && finitemaxact && SCIPisEQ(scip, consdata->glbmaxactivity, consdata->lhs - maxabscontrib) )
8164 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8171 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8183 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8192 SCIPdebugMsg(scip, "extracted %d implications from constraint %s which led to %d bound changes, %scutoff detetcted\n", nimpls, SCIPconsGetName(cons), *nchgbds - oldnchgbds, *cutoff ? "" : "no ");
8197 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8246 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8248 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8249 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8253 /* 1. we wheck whether some variables do not fit together into this constraint and add the corresponding clique
8256 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8293 /* setppc constraints will be handled later; we need at least two binary variables with same sign to extract
8328 #ifdef SCIP_DISABLED_CODE /* assertion should only hold when constraints were fully propagated and boundstightened */
8329 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8367 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8404 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8477 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8478 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8518 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8529 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), NULL, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8557 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8637 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8656 SCIP_CALL( SCIPaddClique(scip, &(binvars[j+1]), values, i - j, FALSE, &infeasible, &nbdchgs) );
8678 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8689 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), values, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8719 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8796 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8835 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8881 /* check if all variables are binary, if the coefficients are +1 or -1, and if the right hand side is equal
8882 * to 1 - number of negative coefficients, or if the left hand side is equal to number of positive coefficients - 1
8913 SCIP_CALL( SCIPaddClique(scip, vars, values, nvars, SCIPisEQ(scip, consdata->lhs, consdata->rhs), &infeasible, &nbdchgs) );
8981 SCIPdebugMsg(scip, "rounding sides=[%.15g,%.15g] of linear constraint <%s> with integral coefficients and variables only "
9015 /** tightens coefficients of binary, integer, and implicit integer variables due to activity bounds in presolving:
9022 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9031 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
9039 * A deviation of only one from their bound makes the lhs/rhs feasible (i.e., redundant), even if all other
9040 * variables are set to their "worst" bound. If all variables which are not surely non-redundant cannot make
9041 * the lhs/rhs redundant, even if they are set to their "best" bound, they can be removed from the constraint.
9042 * E.g., for binary variables and an inequality x_1 +x_2 +10y_1 +10y_2 >= 5, setting either of the y_i to one
9043 * suffices to fulfill the inequality, whereas the x_i do not contribute to feasibility and can be removed.
9045 * @todo use also some tightening procedures for (knapsack) constraints with non-integer coefficients, see
9058 SCIP_Real minactivity; /* minimal value w.r.t. the variable's local bounds for the constraint's
9060 SCIP_Real maxactivity; /* maximal value w.r.t. the variable's local bounds for the constraint's
9098 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9121 SCIPisGE(scip, minactivity + val, consdata->lhs) && SCIPisLE(scip, maxactivity - val, consdata->rhs) )
9141 lval -= otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9147 rval += otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9162 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9179 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9184 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9193 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9228 SCIPisGE(scip, minactivity - val, consdata->lhs) && SCIPisLE(scip, maxactivity + val, consdata->rhs) )
9248 lval += otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9254 rval -= otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9269 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9286 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9291 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9300 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9343 /* if the lhs is finite, we will check in the following whether the not non-redundant variables can make lhs feasible;
9344 * this is not valid, if the minactivity is -\infty (aggrlhs would be minus infinity in the following computation)
9345 * or if huge values contributed to the minactivity, because the minactivity is then just a relaxation
9346 * (<= the exact minactivity), and we might falsely claim variables to be redundant in the following
9349 if( !SCIPisInfinity(scip, -consdata->lhs) && (SCIPisInfinity(scip, -minactivity) || minactisrelax) )
9352 /* if the rhs is finite, we will check in the following whether the not non-redundant variables can make rhs feasible;
9353 * this is not valid, if the maxactivity is \infty (aggrrhs would be infinity in the following computation)
9354 * or if huge values contributed to the maxactivity, because the maxactivity is then just a relaxation
9355 * (>= the exact maxactivity), and we might falsely claim variables to be redundant in the following
9358 if( !SCIPisInfinity(scip, consdata->rhs) && (SCIPisInfinity(scip, maxactivity) || maxactisrelax) )
9362 * surely non-redundant variables are all those where a deviation from the bound makes the lhs/rhs redundant
9367 /* check if the constraint contains variables which are redundant. The reasoning is the following:
9368 * Each non-redundant variable can make the lhs/rhs feasible with a deviation of only one in the bound.
9400 SCIPisLT(scip, minactivity + val, consdata->lhs) || SCIPisGT(scip, maxactivity - val, consdata->rhs) )
9404 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9414 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9417 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9428 SCIPisLT(scip, minactivity - val, consdata->lhs) || SCIPisGT(scip, maxactivity + val, consdata->rhs) )
9430 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9440 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
9443 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9451 /* the following update step is needed in every iteration cause otherwise it is possible that the surely none-
9453 * e.g. y_1 + 16y_2 >= 25, y1 with bounds [9,12], y2 with bounds [0,2], minactivity would be 9, it follows that
9454 * y_2 is surely not redundant and y_1 is redundant so we would first delete y1 and without updating the sides
9462 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9469 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9481 /** processes equality with only one variable by fixing the variable and deleting the constraint */
9537 /** processes equality with exactly two variables by aggregating one of the variables and deleting the constraint */
9568 SCIP_CALL( SCIPaggregateVars(scip, consdata->vars[0], consdata->vars[1], consdata->vals[0], consdata->vals[1],
9595 /** calculates the new lhs and rhs of the constraint after the given variable is aggregated out */
9643 /** processes equality with more than two variables by multi-aggregating one of the variables and converting the equality
9644 * into an inequality; if multi-aggregation is not possible, tries to identify one continuous or integer variable that
9647 * @todo Check whether a more clever way of avoiding aggregation of variables containing implicitly integer variables
9703 SCIPdebugMsg(scip, "linear constraint <%s>: try to multi-aggregate equality\n", SCIPconsGetName(cons));
9707 * maxnlocksstay: maximal sum of lock numbers if the constraint does not become redundant after the aggregation
9708 * maxnlocksremove: maximal sum of lock numbers if the constraint can be deleted after the aggregation
9715 /* If the constraint becomes redundant, 3 non-zeros are removed, and we get 1 additional non-zero for each
9716 * constraint the variable appears in. Thus, the variable must appear in at most 3 other constraints.
9722 /* If the constraint becomes redundant, 4 non-zeros are removed, and we get 2 additional non-zeros for each
9723 * constraint the variable appears in. Thus, the variable must appear in at most 2 other constraints.
9729 /* If the constraint is redundant but has more than 4 variables, we can only accept one other constraint. */
9780 assert(!SCIPconsIsChecked(cons) || SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) >= 1); /* because variable is locked in this equality */
9825 /* check, if variable is used in too many other constraints, even if this constraint could be deleted */
9826 nlocks = SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL);
9874 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
9877 /* do not perform the multi-aggregation due to numerics, if we have huge contributions in the residual
9884 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9889 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
9892 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity)
9896 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9907 /* if the constraint does not become redundant, only accept the variable if it does not appear in
9926 /* if all coefficients and variables are integral, the right hand side must also be integral */
9939 /* check whether the the infimum and the supremum of the multi-aggregation can be get infinite */
9976 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
9977 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
9980 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
9984 /* if the slack variable is of integer type, and the constraint itself may take fractional values,
10028 SCIPdebugMsg(scip, "linear constraint <%s>: multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(slackvar));
10034 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g], nlocks=%d, maxnlocks=%d, removescons=%u\n",
10035 aggrconst, SCIPvarGetName(slackvar), SCIPvarGetLbGlobal(slackvar), SCIPvarGetUbGlobal(slackvar),
10049 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
10059 SCIPdebugMsg(scip, "linear constraint <%s>: redundant after multi-aggregation\n", SCIPconsGetName(cons));
10076 /* upgrade continuous variable to an implicit one, if the absolute value of the coefficient is one */
10080 SCIPdebugMsg(scip, "linear constraint <%s>: converting continuous variable <%s> to implicit integer variable\n",
10085 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10091 /* aggregate continuous variable to an implicit one, if the absolute value of the coefficient is unequal to one */
10092 /* @todo check if the aggregation coefficient should be in some range(, which is not too big) */
10106 SCIP_CALL( SCIPcreateVar(scip, &newvar, newvarname, -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
10107 SCIP_VARTYPE_IMPLINT, SCIPvarIsInitial(var), SCIPvarIsRemovable(var), NULL, NULL, NULL, NULL, NULL) );
10122 SCIPdebugMsg(scip, "linear constraint <%s>: aggregating continuous variable <%s> to newly created implicit integer variable <%s>, aggregation factor = %g\n",
10126 SCIP_CALL( SCIPaggregateVars(scip, var, newvar, absval, -1.0, 0.0, &infeasible, &redundant, &aggregated) );
10130 SCIPdebugMsg(scip, "infeasible aggregation of variable <%s> to implicit variable <%s>, domain is empty\n",
10149 /* we do not have any event on vartype changes, so we need to manually force this constraint to be presolved
10161 /* this seems to help for rococo instances, but does not for rout (where all coefficients are +/- 1.0)
10174 SCIPdebugMsg(scip, "linear constraint <%s>: converting integer variable <%s> to implicit integer variable\n",
10179 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10190 /** checks if the given variables and their coefficient are equal (w.r.t. scaling factor) to the objective function */
10209 nvars = consdata->nvars;
10228 /* if a variable has a zero objective coefficient the linear constraint is not a subset of the objective
10266 /** check if the linear equality constraint is equal to a subset of the objective function; if so we can remove the
10295 /* check if the linear equality constraints does not have more variables than the objective function */
10301 (nvars == nobjvars && (!conshdlrdata->detectcutoffbound || !conshdlrdata->detectlowerbound)) )
10307 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10319 SCIPdebugMsg(scip, "linear equality constraint <%s> == %g (offset %g) is a subset of the objective function\n",
10335 /** updates the cutoff if the given primal bound (which is implied by the given constraint) is better */
10345 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are still
10363 /* we cannot disable the enforcement and propagation on ranged rows, because the cutoffbound could only have
10368 /* in case the cutoff bound is worse then the currently known one, we additionally avoid enforcement and
10379 /** check if the linear constraint is parallel to objective function; if so update the cutoff bound and avoid that the
10410 /* check if the linear inequality constraints has the same number of variables as the objective function and if the
10419 /* There are no variables in the ojective function and in the constraint. Thus, the constraint is redundant or proves
10420 * infeasibility. Since we have a pure feasibility problem, we do not want to set a cutoff or lower bound.
10425 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10441 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10453 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10462 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10475 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10487 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10496 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10559 /** returns whether the linear sum of all variables/coefficients except the given one divided by the given value is always
10578 if( v != pos && (!SCIPvarIsIntegral(consdata->vars[v]) || !SCIPisIntegral(scip, consdata->vals[v]/val)) )
10580 }
10606 *minval = -maxresactivity;
10630 /** applies dual presolving for variables that are locked only once in a direction, and this locking is due to a
10663 * otherwise we would have to check for variables with nlocks == 0, and these are already processed by the
10675 /* search for a single-locked variable which can be multi-aggregated; if a valid continuous variable was found, we
10682 /* We only want to multi-aggregate variables, if they appear in maximal one additional constraint,
10684 * - If there are only two variables in the constraint from which the multi-aggregation arises, no fill-in will be
10686 * - If there are three variables in the constraint, multi-aggregation in three additional constraints will remove
10687 * six nonzeros (three from the constraint and the three entries of the multi-aggregated variable) and add
10689 * - If there at most four variables in the constraint, multi-aggregation in two additional constraints will remove
10690 * six nonzeros (four from the constraint and the two entries of the multi-aggregated variable) and add
10702 /* if this constraint has both sides, it also provides a lock for the other side and thus we can allow one more lock */
10734 isint = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
10740 /* better do not multi-aggregate binary variables, since most plugins rely on their binary variables to be either
10758 * - fix x_i to the smallest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10762 * - fix x_i to the largest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10766 * - fix x_i to the largest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10770 * - fix x_i to the smallest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10772 * but: all this is only applicable, if the aggregated value is inside x_i's bounds for all possible values
10777 && ((val > 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10779 || (val < 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10782 && ((val > 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10784 || (val < 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10798 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
10811 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10826 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10834 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10846 /* check again if lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10847 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10854 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10857 if( !isint || (SCIPisIntegral(scip, consdata->lhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10871 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10886 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10893 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10902 /* check again if rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10903 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10909 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10912 if( !isint || (SCIPisIntegral(scip, consdata->rhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10950 (SCIPvarGetType(bestvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(bestvar) == SCIP_VARTYPE_INTEGER));
10958 SCIPdebugMsg(scip, "linear constraint <%s> (dual): multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(bestvar));
11031 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g]\n", aggrconst, SCIPvarGetName(bestvar),
11048 /* @todo if multi-aggregate makes them numerical trouble, avoid them if the coefficients differ to much, see
11051 SCIP_CALL( SCIPmultiaggregateVar(scip, bestvar, naggrs, aggrvars, aggrcoefs, aggrconst, &infeasible, &aggregated) );
11055 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
11056 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
11057 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
11066 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
11112 }
11295 /** sorting method for constraint data, compares two variables on given indices, continuous variables will be sorted to
11296 * the end and for all other variables the sortation will be in non-increasing order of their absolute value of the
11329 /* for all non-continuous variables, the variables are sorted after decreasing absolute coefficients */
11333 /** tries to simplify coefficients and delete variables in ranged row of the form lhs <= a^Tx <= rhs, e.g. using the greatest
11336 * 1. lhs <= a^Tx <= rhs, forall a_i >= lhs, a_i <= rhs, and forall pairs a_i + a_j > rhs then we can change this
11414 if( SCIPisGE(scip, minval, lhs) && SCIPisLE(scip, maxval, rhs) && SCIPisGT(scip, minval + secondminval, rhs) )
11433 /** tries to simplify coefficients and delete variables in constraints of the form lhs <= a^Tx <= rhs
11438 * 1. We try to determine parts of the constraint which will not change anything on (in-)feasibility of the constraint
11444 * e.g. 5.2x1 + 5.1x2 + 3x3 <= 8.3 => will be changed to 5x1 + 5x2 + 3x3 <= 8 if all x are binary
11448 * e.g. 10x1 + 5y2 + 5x3 + 3x4 <= 15 => will be changed to 2x1 + y2 + x3 + x4 <= 3 if all xi are binary and y2 is
11528 /* @todo the following might be too hard, check which steps can be applied and what code must be corrected
11535 /* @todo: change the following: due to vartype changes, the status of the normalization can be wrong, need an event
11577 /* if we have a normalized inequality (not ranged) the one side should be positive, @see normalizeCons() */
11584 /* call sorting method, order continuous variables to the end and all other variables after non-increasing absolute
11598 assert(consdata->validmaxabsval ? (SCIPisFeasEQ(scip, consdata->maxabsval, REALABS(vals[0])) || SCIPvarGetType(vars[nvars - 1]) == SCIP_VARTYPE_CONTINUOUS) : TRUE);
11608 if( SCIPisEQ(scip, REALABS(vals[0]), 1.0) && ((hasrhs && SCIPisIntegral(scip, rhs)) || (haslhs && SCIPisIntegral(scip, lhs))) )
11634 /* we now determine coefficients as large as the side of the constraint to retrieve a better reduction where we
11638 * c1: +5x1 + 5x2 + 3x3 + 3x4 + x5 >= 5 (x5 is redundant and does not change (in-)feasibility of this constraint)
11639 * c2: +4x1 + 4x2 + 3x3 + 3x4 + x5 >= 4 (gcd (without the coefficient of x5) after the large coefficients is 3
11640 * c3: +30x1 + 29x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 30 (gcd (without the coefficient of x2) after the large coefficients is 7
11645 * c2: +6x1 + 6x2 + 3x3 + 3x4 + 3x5 >= 6 (will be changed to c2: +2x1 + 2x2 + x3 + x4 + x5 >= 2)
11646 * c3: +28x1 + 28x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 28 (will be changed to c3: +4x1 + 4x2 + 2x3 + 2z1 + x5 + x6 <= 4)
11649 /* if the minimal activity is negative and we found more than one variable with a coefficient bigger than the left
11652 * e.g. 7x1 + 7x2 - 4x3 - 4x4 >= 7 => xi = 1 for all i is not a solution, but if we would do a change on the
11653 * coefficients due to the gcd on the "small" coefficients we would get 8x1 + 8x2 - 4x3 - 4x4 >= 8 were xi = 1
11664 /* if we have integer variable with "side"-coefficients but also with a lower bound greater than 0 we stop this
11676 /* easy and quick fix: if all coefficients were equal to the side, we cannot apply further simplifications */
11677 /* todo find numerically stable normalization conditions to scale this cons to have coefficients almost equal to 1 */
11689 /* all but one variable are processed or the next variable is continuous we cannot perform the extra coefficient
11716 /* find and remove redundant variables which do not interact with the (in-)feasibility of this constraint
11805 if( (offsetv == -1 && hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd)) ||
11832 SCIPdebugMsg(scip, "stopped at pos %d (of %d), subactivities [%g, %g], redundant = %u, hasrhs = %u, siderest = %g, gcd = %" SCIP_LONGINT_FORMAT ", offset position for 'side' coefficients = %d\n",
11837 (offsetv == -1 && hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd)) ||
11886 assert((hasrhs && SCIPisFeasLE(scip, tmpmaxactsub, siderest) && tmpminactsub > siderest - gcd) ||
11890 SCIPdebugMsg(scip, "removing %d last variables from constraint <%s>, because they never change anything on the feasibility of this constraint\n",
11991 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12078 /* new coeffcient must not be zero if we would loose the implication that a variable needs to be 0 if
12104 if( (!notchangable && hasrhs && ((!SCIPisFeasIntegral(scip, rhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(rhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd))) ||
12105 ( haslhs && (!SCIPisFeasIntegral(scip, lhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(lhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd)) )
12158 /* @todo we still can remove continuous variables if they are redundant due to the non-integrality argument */
12174 /* check if the non-integrality part of all integral variables is smaller than the non-inegrality part of the right
12175 * hand side or bigger than the left hand side respectively, so we can make all of them integral
12179 if( (hasrhs && !SCIPisFeasIntegral(scip, rhs)) || (haslhs && !SCIPisFeasIntegral(scip, lhs)) )
12224 /* if we exceed the fractional part of the right hand side, we cannot tighten the coefficients
12317 /* the fractional part on each variable need to exceed the fractional part on the left hand side */
12418 /* maximal absolute value of coefficients in constraint is one, so we cannot tighten it further */
12435 if( SCIPisEQ(scip, REALABS(vals[nvars - 1]), 1.0) && SCIPisEQ(scip, REALABS(vals[nvars - 2]), 1.0) )
12440 /* calculate greatest common divisor over all integer variables; note that the onlybin flag needs to be recomputed
12462 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12463 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12484 /* we need at least one binary variable and a gcd greater than 1 to try to perform further coefficient changes */
12493 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
12501 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12502 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12519 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12530 /* if we have only binary variables and both first coefficients have a gcd of 1, both are candidates for
12564 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
12572 /* check again, if we have a normalized inequality (not ranged) the one side should be positive,
12628 assert(SCIPisZero(scip, newcoef) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(newcoef) + feastol)) == gcd);
12630 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restcoef = %" SCIP_LONGINT_FORMAT "; changing coef of variable <%s> to %g and %s by %" SCIP_LONGINT_FORMAT "\n", gcd, rest, restcoef, SCIPvarGetName(vars[candpos]), newcoef, hasrhs ? "reduced rhs" : "increased lhs", hasrhs ? rest : (rest > 0 ? gcd - rest : 0));
12661 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
12669 /** tries to aggregate an (in)equality and an equality in order to decrease the number of variables in the (in)equality:
12671 * where a = val1[v] and b = -val0[v] for common variable v which removes most variable weight;
12673 * the variable weight is a weighted sum over all included variables, where each binary variable weighs BINWEIGHT,
12674 * each integer or implicit integer variable weighs INTWEIGHT and each continuous variable weighs CONTWEIGHT
12683 int* diffidx0minus1, /**< array with indices of variables in cons0, that don't appear in cons1 */
12684 int* diffidx1minus0, /**< array with indices of variables in cons1, that don't appear in cons0 */
12687 int diffidx0minus1weight, /**< variable weight sum of variables in cons0, that don't appear in cons1 */
12688 int diffidx1minus0weight, /**< variable weight sum of variables in cons1, that don't appear in cons0 */
12689 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
12694 {
12703 SCIP_Bool commonvarlindependent; /* indicates whether coefficient vector of common variables in linearly dependent */
12729 SCIPdebugMsg(scip, "try aggregation of <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
12765 /* count the number of variables in the potential new constraint a * consdata0 + b * consdata1 */
12790 * v's common coefficient in cons1 / v's common coefficient in cons0 should be constant, i.e., equal 0's common coefficient in cons1 / 0's common coefficient in cons0
12858 /* setup best* variables that were not setup above because we are in the commonvarlindependent case */
12863 SCIPdebugMsg(scip, "aggregate linear constraints <%s> := %.15g*<%s> + %.15g*<%s> -> nvars: %d -> %d, weight: %d -> %d\n",
12894 /* if we recognized linear dependency of the common coefficients, then the aggregation coefficient should be 0.0 for every common variable */
12947 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, SCIPconsGetName(cons0), newnvars, newvars, newvals, newlhs, newrhs,
12968 if( consdataGetMaxAbsval(SCIPconsGetData(newcons)) <= maxaggrnormscale * consdataGetMaxAbsval(consdata0) )
13003 /** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
13085 assert(consdata->nvars > 0);
13100 /** returns the key for deciding which of two parallel constraints should be kept (smaller key should be kept);
13101 * prefers non-upgraded constraints and as second criterion the constraint with the smallest position
13115 return (((unsigned int)consdata->upgraded)<<31) + (unsigned int)SCIPconsGetPos(cons); /*lint !e571*/
13125 SCIP_CONS** querycons, /**< pointer to linear constraint used to look for duplicates in the hash table;
13138 while( (parallelcons = (SCIP_CONS*)SCIPhashtableRetrieve(hashtable, (void*)(*querycons))) != NULL )
13180 /** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
13237 /* get constraints from current hash table with same variables as cons0 and with coefficients equal
13238 * to the ones of cons0 when both are scaled such that maxabsval is 1.0 and the coefficient of the
13269 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
13300 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with equal coefficients into single ranged row\n",
13314 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with negated coefficients into single ranged row\n",
13326 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13338 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13343 /* ensure that lhs <= rhs holds without tolerances as we only allow such rows to enter the LP */
13383 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
13447 for( c = (cons0changed ? 0 : firstchange); c < chkind && !(*cutoff) && conss[chkind] != NULL; ++c )
13486 /* SCIPdebugMsg(scip, "preprocess linear constraint pair <%s>[chgd:%d, upgd:%d] and <%s>[chgd:%d, upgd:%d]\n",
13513 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13514 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13516 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13517 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13519 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13520 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13522 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13523 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13538 * - if lhs0 >= lhs1 and for each variable v and each solution value x_v val0[v]*x_v <= val1[v]*x_v,
13540 * - if rhs0 <= rhs1 and for each variable v and each solution value x_v val0[v]*x_v >= val1[v]*x_v,
13542 * - if val0[v] == -val1[v] for all variables v, the two inequalities can be replaced by a single
13544 * - if at least one constraint is an equality, count the weighted number of common variables W_c
13545 * and the weighted number of variable in the difference sets W_0 = w(V_0 \ V_1), W_1 = w(V_1 \ V_0),
13546 * where the weight of each variable depends on its type, such that aggregations in order to remove the
13548 * - if W_c > W_1, try to aggregate consdata0 := a * consdata0 + b * consdata1 in order to decrease the
13549 * variable weight in consdata0, where a = +/- val1[v] and b = -/+ val0[v] for common v which leads to
13550 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13552 * - if W_c > W_0, try to aggregate consdata1 := a * consdata1 + b * consdata0 in order to decrease the
13553 * variable weight in consdata1, where a = +/- val0[v] and b = -/+ val1[v] for common v which leads to
13554 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13688 /* the coefficients in both rows are either equal or negated: create a new constraint with same coefficients and
13691 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with %s coefficients into single ranged row\n",
13710 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13751 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13763 /* check for domination: remove dominated sides, but don't touch equalities as long as they are not totally
13766 if( cons1dominateslhs && (!cons0isequality || cons1dominatesrhs || SCIPisInfinity(scip, consdata0->rhs) ) )
13777 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13790 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13797 else if( cons0dominateslhs && (!cons1isequality || cons0dominatesrhs || SCIPisInfinity(scip, consdata1->rhs)) )
13808 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13820 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13827 if( cons1dominatesrhs && (!cons0isequality || cons1dominateslhs || SCIPisInfinity(scip, -consdata0->lhs)) )
13838 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13851 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13858 else if( cons0dominatesrhs && (!cons1isequality || cons0dominateslhs || SCIPisInfinity(scip, -consdata1->lhs)) )
13869 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13881 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13898 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13913 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13935 SCIP_CALL( aggregateConstraints(scip, cons0, cons1, commonidx0, commonidx1, diffidx0minus1, diffidx1minus0,
13950 if( !aggregated && cons0isequality && !consdata1->upgraded && commonidxweight > diffidx0minus1weight )
13953 SCIP_CALL( aggregateConstraints(scip, cons1, cons0, commonidx1, commonidx0, diffidx1minus0, diffidx0minus1,
13985 SCIP_Bool singletonstuffing, /**< should stuffing of singleton continuous variables be performed? */
13986 SCIP_Bool singlevarstuffing, /**< should single variable stuffing be performed, which tries to fulfill
14032 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
14043 /* we want to have a <= constraint, if the rhs is infinite, we implicitly multiply the constraint by -1,
14071 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14105 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14202 if( tryfixing && nsingletons > 0 && (SCIPisGT(scip, rhs, maxcondactivity) || SCIPisLE(scip, rhs, mincondactivity)) )
14264 /* @note: we could in theory tighten the bound of the first singleton variable which does not fall into the above case,
14265 * since it cannot be fully fixed. However, this is not needed and should be done by activity-based bound tightening
14266 * anyway after all other continuous singleton columns were fixed; doing it here may introduce numerical
14297 SCIPdebugMsg(scip, "### stuffing fixed %d variables and changed %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds);
14311 * setting all variables to their upper bound (giving us the maximal activity of the constraint) is worst w.r.t.
14312 * feasibility of the constraint. On the other hand, this gives the best objective function contribution of the
14313 * variables contained in the constraint. The maximal activity should be larger than the rhs, otherwise the constraint
14315 * Now we are searching for a variable x_k with maximal ratio c_k / a_k (note that all these ratios are negative), so
14316 * that by reducing the value of this variable we reduce the activity of the constraint while having the smallest
14317 * objective deterioration per activity unit. If x_k has no downlocks, is continuous, and can be reduced enough to
14318 * render the constraint feasible, and ALL other variables have only the one uplock installed by the current constraint,
14319 * we can reduce the upper bound of x_k such that the maxactivity equals the rhs and fix all other variables to their
14321 * Note that the others variables may have downlocks from other constraints, which we do not need to care
14322 * about since we are setting them to the highest possible value. Also, they may be integer or binary, because the
14323 * computed ratio is still a lower bound on the change in the objective caused by reducing those variable to reach
14324 * constraint feasibility. On the other hand, uplocks on x_k from other constraint do no interfer with the method.
14325 * With a slight adjustment, the procedure even works for integral x_k. If (maxactivity - rhs)/val is integral,
14326 * the variable gets an integral value in order to fulfill the constraint tightly, and we can just apply the procedure.
14327 * If (maxactivity - rhs)/val is fractional, we need to check, if overfulfilling the constraint by setting x_k to
14328 * ceil((maxactivity - rhs)/val) is still better than setting x_k to ceil((maxactivity - rhs)/val) - 1 and
14329 * filling the remaining gap in the constraint with the next-best variable. For this, we check that
14331 * c_k * floor((maxactivity - rhs)/val) + c_j * ((maxactivity - rhs) - (floor((maxactivity - rhs)/val) * val))/a_j.
14333 * If there are variables with a_i < 0 and c_i > 0, they are negated to obtain the above form, variables with same
14360 /* if both objective and constraint push the variable to the same direction, we can do nothing here */
14382 if( ratio > bestratio || ((ratio == bestratio) && downlocks == 0 && (bestdownlocks > 0 /*lint !e777*/
14447 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14448 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/-val) )
14475 SCIPdebugMsg(scip, "tighten the lower bound of <%s> from %g to %g (ub=%g)\n", SCIPvarGetName(var), lb, lb + bounddelta, ub);
14484 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14485 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/val))
14512 SCIPdebugMsg(scip, "tighten the upper bound of <%s> from %g to %g (lb=%g)\n", SCIPvarGetName(var), ub, ub - bounddelta, lb);
14527 SCIPdebugMsg(scip, "cons <%s>: %g <=\n", SCIPconsGetName(cons), factor > 0 ? consdata->lhs : -consdata->rhs);
14530 SCIPdebugMsg(scip, "%+g <%s>([%g,%g],%g,[%d,%d],%s)\n", factor * vals[v], SCIPvarGetName(vars[v]),
14563 SCIPdebug( SCIPdebugMsg(scip, "### new stuffing fixed %d vars, tightened %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds); )
14597 * redlb[v] == k : if x_v >= k, we can always round x_v down to x_v == k without violating any constraint
14598 * redub[v] == k : if x_v <= k, we can always round x_v up to x_v == k without violating any constraint
14611 * This is because then, the value of the variable is either determined by one of its bounds or
14633 /* copy the variable array since this array might change during the curse of this algorithm */
14655 /* Initialize isimplint array: variable may be implied integer if rounded to their best bound they are integral.
14671 isimplint[v] = (SCIPisInfinity(scip, -lb) || SCIPisIntegral(scip, lb)) && (SCIPisInfinity(scip, ub) || SCIPisIntegral(scip, ub));
14687 /* we only need to consider constraints that have been locked (i.e., checked constraints or constraints that are
14721 assert(0 <= contv && contv < ncontvars); /* variable should be active due to applyFixings() */
14773 consdataGetGlbActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
14783 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastglbminactivity) )
14787 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastglbmaxactivity) )
14793 assert(0 <= arrayindex && arrayindex < nvars); /* variable should be active due to applyFixings() */
14862 /* there is more than one continuous variable or the integer variables have fractional coefficients:
14880 /* there is exactly one continuous variable and the integer variables have integral coefficients:
14881 * this is the interesting case, and we have to check whether the coefficient is +/-1 and the corresponding
14934 * if largest bound to make constraints redundant is -infinity, we better do nothing for numerical reasons
14942 /* if x_v >= redlb[v], we can always round x_v down to x_v == redlb[v] without violating any constraint
14945 SCIPdebugMsg(scip, "variable <%s> only locked down in linear constraints: dual presolve <%s>[%.15g,%.15g] <= %.15g\n",
14961 * if smallest bound to make constraints redundant is +infinity, we better do nothing for numerical reasons
14969 /* if x_v <= redub[v], we can always round x_v up to x_v == redub[v] without violating any constraint
14972 SCIPdebugMsg(scip, "variable <%s> only locked up in linear constraints: dual presolve <%s>[%.15g,%.15g] >= %.15g\n",
15010 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
15016 SCIPdebugMsg(scip, "dual presolve: converting continuous variable <%s>[%g,%g] to implicit integer\n",
15062 SCIPdebugMsg(scip, "Enforcement method of linear constraints for %s solution\n", sol == NULL ? "LP" : "relaxation");
15101 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
15126 /** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
15145 }
15174 /** deinitialization method of constraint handler (called before transformed problem is freed) */
15217 return !(SCIPisEQ(scip, lhs, rhs) || SCIPisInfinity(scip, -lhs) || SCIPisInfinity(scip, rhs) );
15226 {
15234 * iterates through all linear constraints and stores relevant statistics in the linear constraint statistics \p linconsstats.
15236 * @note only constraints are iterated that belong to the linear constraint handler. If the problem has been presolved already,
15237 * constraints that were upgraded to more special types such as, e.g., varbound constraints, will not be shown correctly anymore.
15238 * Similarly, if specialized constraints were created through the API, these are currently not present.
15324 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_SINGLETON, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15344 /* precedence constraints have the same coefficient, but with opposite sign for the same variable type */
15363 /* is constraint of type SCIP_CONSTYPE_{SETPARTITION, SETPACKING, SETCOVERING, CARDINALITY, INVKNAPSACK}? */
15375 /* scan through variables and detect if all variables are binary and have a coefficient +/-1 */
15451 /* if both sides are infinite at this point, no further classification is necessary for this constraint */
15502 SCIPlinConsStatsIncTypeCount(linconsstats, matched ? SCIP_LINCONSTYPE_BINPACKING : SCIP_LINCONSTYPE_KNAPSACK, 1);
15505 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15537 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15562 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_MIXEDBINARY, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15571 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_GENERAL, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15578 /** presolving deinitialization method of constraint handler (called after presolving has been finished) */
15624 SCIPstatisticMessage("below threshold: %d / %d ratio= %g\n", ngoodconss, nallconss, (100.0 * ngoodconss / nallconss));
15640 /* this is no problem reduction, because the upgraded constraint was added to the problem before, and the
15641 * (redundant) linear constraint was only kept in order to support presolving the the linear constraint handler
15647 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
15656 /** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
15675 }
15691 "(restart) converted %d cuts from the global cut pool into linear constraints\n", ncutsadded);
15692 /* an extra blank line should be printed separately since the buffer message handler only handles up to one
15788 SCIP_CALL( consdataCreate(scip, &targetdata, sourcedata->nvars, sourcedata->vars, sourcedata->vals, sourcedata->lhs, sourcedata->rhs) );
15791 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
15801 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
15802 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
15805 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
15811 /** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
15864 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
15887 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, NULL, separatecards, conshdlrdata->separateall, &ncuts, &cutoff) );
15930 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
15945 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, sol, TRUE, conshdlrdata->separateall, &ncuts, &cutoff) );
16021 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
16073 SCIPinfoMessage(scip, NULL, "activity invalid due to positive and negative infinity contributions\n");
16075 SCIPinfoMessage(scip, NULL, "violation: left hand side is violated by %.15g\n", consdata->lhs - activity);
16077 SCIPinfoMessage(scip, NULL, "violation: right hand side is violated by %.15g\n", activity - consdata->rhs);
16108 /* check, if we want to tighten variable's bounds (in probing, we always want to tighten the bounds) */
16122 && ((tightenboundsfreq == 0 && depth == 0) || (tightenboundsfreq >= 1 && (depth % tightenboundsfreq == 0)));
16130 && ((rangedrowfreq == 0 && depth == 0) || (rangedrowfreq >= 1 && (depth % rangedrowfreq == 0)));
16258 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16271 /* apply presolving as long as possible on the single constraint (however, abort after a certain number of rounds
16314 SCIP_CALL( tightenBounds(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars, &cutoff, nchgbds) );
16324 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax,
16326 if( SCIPisFeasGT(scip, minactivity, consdata->rhs) || SCIPisFeasLT(scip, maxactivity, consdata->lhs) )
16328 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16333 else if( SCIPisFeasGE(scip, minactivity, consdata->lhs) && SCIPisFeasLE(scip, maxactivity, consdata->rhs) )
16335 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16344 else if( !SCIPisInfinity(scip, -consdata->lhs) && SCIPisFeasGE(scip, minactivity, consdata->lhs) )
16346 SCIPdebugMsg(scip, "linear constraint <%s> left hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16352 else if( !SCIPisInfinity(scip, consdata->rhs) && SCIPisFeasLE(scip, maxactivity, consdata->rhs) )
16354 SCIPdebugMsg(scip, "linear constraint <%s> right hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16384 /* reduce big-M coefficients, that make the constraint redundant if the variable is on a bound */
16427 SCIP_CALL( extractCliques(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars,
16455 SCIP_CALL( convertEquality(scip, cons, conshdlrdata, &cutoff, nfixedvars, naggrvars, ndelconss) );
16459 if( !cutoff && SCIPconsIsActive(cons) && conshdlrdata->dualpresolving && SCIPallowStrongDualReds(scip) )
16461 SCIP_CALL( dualPresolve(scip, conshdlrdata, cons, &cutoff, nfixedvars, naggrvars, ndelconss) );
16474 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16481 (conshdlrdata->singletonstuffing || conshdlrdata->singlevarstuffing) && SCIPallowStrongDualReds(scip) )
16513 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && (conshdlrdata->presolusehashing || conshdlrdata->presolpairwise) && !SCIPisStopped(scip) )
16519 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
16520 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &firstchange, &cutoff,
16563 npaircomparisons += (SCIPconsGetData(conss[c])->changed) ? c : (c - firstchange); /*lint !e776*/
16566 SCIP_CALL( preprocessConstraintPairs(scip, usefulconss, firstchange, c, conshdlrdata->maxaggrnormscale,
16572 if( ((*ndelconss - oldndelconss) + (*nchgsides - oldnchgsides)/2.0 + (*nchgcoefs - oldnchgcoefs)/10.0) / ((SCIP_Real) npaircomparisons) < conshdlrdata->mingainpernmincomp )
16585 /* before upgrading, check whether we can apply some additional dual presolving, because a variable only appears
16589 && *nfixedvars == oldnfixedvars && *naggrvars == oldnaggrvars && *nchgbds == oldnchgbds && *ndelconss == oldndelconss
16600 * only upgrade constraints, if no reductions were found in this round (otherwise, the linear constraint handler
16601 * may find additional reductions before giving control away to other (less intelligent?) constraint handlers)
16603 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) )
16616 /* only upgrade completely presolved constraints, that changed since the last upgrading call */
16643 * delete upgraded equalities, if we don't need it anymore for aggregation and redundancy checking
16659 else if( *nfixedvars > oldnfixedvars || *naggrvars > oldnaggrvars || *nchgbds > oldnchgbds || *ndelconss > oldndelconss
16677 SCIP_CALL( resolvePropagation(scip, cons, infervar, intToInferInfo(inferinfo), boundtype, bdchgidx, result) );
16702 {
16779 consname = name;
16783 SCIP_CALL( SCIPcopyConsLinear(scip, cons, sourcescip, consname, nvars, sourcevars, sourcecoefs,
16784 SCIPgetLhsLinear(sourcescip, sourcecons), SCIPgetRhsLinear(sourcescip, sourcecons), varmap, consmap,
16785 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
16795 * There should only be one operator, except for ranged rows for which exactly two operators '<=' must be present.
16852 /* assign the found operator to the first or second pointer and check for violations of the linear constraint grammar */
16934 /* find operators in the line first, all other remaining parsing depends on occurence of the operators '<=', '>=', '==',
16947 /* assign the strings for parsing the left hand side, right hand side, and the linear variable sum */
16988 SCIPerrorMessage("Parsing has wrong operator character '%c', should be one of <=>[", *firstop);
17024 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17033 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
17034 assert(!*success || requsize <= coefssize); /* if successful, then should have had enough space now */
17044 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17077 /** constraint method of constraint handler which returns the number of variables (if possible) */
17159 /* bound change can turn the constraint infeasible or redundant only if it was a tightening */
17164 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17177 if( (val > 0.0 ? !SCIPisInfinity(scip, consdata->rhs) : !SCIPisInfinity(scip, -consdata->lhs)) )
17181 if( (val > 0.0 ? !SCIPisInfinity(scip, -consdata->lhs) : !SCIPisInfinity(scip, consdata->rhs)) )
17220 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17229 /* there is only one lock left: we may multi-aggregate the variable as slack of an equation */
17260 /* if the variable is binary but not fixed it had to become binary due to this global change */
17261 if( SCIPvarIsBinary(var) && SCIPisGT(scip, SCIPvarGetUbGlobal(var), SCIPvarGetLbGlobal(var)) )
17273 /* for presolving it only matters if a variable type changed from continuous to some kind of integer */
17274 consdata->presolved = (consdata->presolved && SCIPeventGetOldtype(event) < SCIP_VARTYPE_CONTINUOUS);
17276 /* the ordering is preserved if the type changes from something different to binary to binary but SCIPvarIsBinary() is true */
17277 consdata->indexsorted = (consdata->indexsorted && SCIPeventGetNewtype(event) == SCIP_VARTYPE_BINARY && SCIPvarIsBinary(var));
17317 /* create array of variables and coefficients: sum_{i \in P} x_i - sum_{i \in N} x_i >= 1 - |N| */
17349 (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "cf%" SCIP_LONGINT_FORMAT, SCIPgetNConflictConssApplied(scip));
17350 SCIP_CALL( SCIPcreateConsLinear(scip, &cons, consname, nbdchginfos, vars, vals, lhs, SCIPinfinity(scip),
17353 /* try to automatically convert a linear constraint into a more specific and more specialized constraint */
17380 /** upgrades quadratic constraints with only and at least one linear variables into a linear constraint
17394 SCIPdebugMsg(scip, "upgradeConsQuadratic called for constraint <%s>\n", SCIPconsGetName(cons));
17423 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original quadratic constraint */
17460 SCIPgetNLinearVarsNonlinear(scip, cons), SCIPgetLinearVarsNonlinear(scip, cons), SCIPgetLinearCoefsNonlinear(scip, cons),
17470 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original nonlinear constraint */
17500 SCIP_CALL( SCIPincludeConflicthdlrBasic(scip, &conflicthdlr, CONFLICTHDLR_NAME, CONFLICTHDLR_DESC, CONFLICTHDLR_PRIORITY,
17528 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolLinear, CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
17530 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropLinear, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
17533 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpLinear, consSepasolLinear, CONSHDLR_SEPAFREQ,
17541 SCIP_CALL( SCIPincludeQuadconsUpgrade(scip, upgradeConsQuadratic, QUADCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17547 SCIP_CALL( SCIPincludeNonlinconsUpgrade(scip, upgradeConsNonlinear, NULL, NONLINCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17553 "multiplier on propagation frequency, how often the bounds are tightened (-1: never, 0: only at root)",
17554 &conshdlrdata->tightenboundsfreq, TRUE, DEFAULT_TIGHTENBOUNDSFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17589 "maximal allowed relative gain in maximum norm for constraint aggregation (0.0: disable constraint aggregation)",
17590 &conshdlrdata->maxaggrnormscale, TRUE, DEFAULT_MAXAGGRNORMSCALE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17593 "maximum activity delta to run easy propagation on linear constraint (faster, but numerically less stable)",
17594 &conshdlrdata->maxeasyactivitydelta, TRUE, DEFAULT_MAXEASYACTIVITYDELTA, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17597 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cardinality cuts",
17601 "should all constraints be subject to cardinality cut generation instead of only the ones with non-zero dual value?",
17621 "should single variable stuffing be performed, which tries to fulfill constraints using the cheapest variable?",
17624 "constraints/" CONSHDLR_NAME "/sortvars", "apply binaries sorting in decr. order of coeff abs value?",
17628 "should the violation for a constraint with side 0.0 be checked relative to 1.0 (FALSE) or to the maximum absolute value in the activity (TRUE)?",
17632 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
17636 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
17644 "should presolving and propagation try to improve bounds, detect infeasibility, and extract sub-constraints from ranged rows and equations?",
17657 &conshdlrdata->rangedrowfreq, TRUE, DEFAULT_RANGEDROWFREQ, 1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17665 &conshdlrdata->maxmultaggrquot, TRUE, DEFAULT_MAXMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17669 &conshdlrdata->maxdualmultaggrquot, TRUE, DEFAULT_MAXDUALMULTAGGRQUOT, 1.0, SCIP_REAL_MAX, NULL, NULL) );
17717 (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "constraints/linear/upgrade/%s", conshdlrname);
17718 (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "enable linear upgrading for constraint handler <%s>", conshdlrname);
17729 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17758 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
17760 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
17779 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
17795 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
17803 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
17817 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17827 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17843 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17853 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17896 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
17906 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
17913 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
17914 * method SCIPcreateConsLinear(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
17918 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17937 }
17947 SCIP_Real* sourcecoefs, /**< coefficient array of the linear constraint, or NULL if all coefficients are one */
17950 SCIP_HASHMAP* varmap, /**< a SCIP_HASHMAP mapping variables of the source SCIP to corresponding
17952 SCIP_HASHMAP* consmap, /**< a hashmap to store the mapping of source constraints to the corresponding
17962 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup? */
17963 SCIP_Bool stickingatnode, /**< should the constraint always be kept at the node where it was added, even
17988 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18009 /* transform source variable to active variables of the source SCIP since only these can be mapped to variables of
18014 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, nvars, &constant, &requiredsize, TRUE) );
18021 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, requiredsize, &constant, &requiredsize, TRUE) );
18042 /* if this is a checked or enforced constraints, then there must be no relaxation-only variables */
18045 SCIP_CALL( SCIPgetVarCopy(sourcescip, scip, var, &vars[v], varmap, consmap, global, &success) );
18059 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
18089 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
18111 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
18119 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
18140 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18150 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18166 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18176 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18226 /** changes coefficient of variable in linear constraint; deletes the variable if coefficient is zero; adds variable if
18229 * @note This method may only be called during problem creation stage for an original constraint and variable.
18231 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18250 {
18255 if( SCIPgetStage(scip) > SCIP_STAGE_PROBLEM || !SCIPconsIsOriginal(cons) || !SCIPvarIsOriginal(var) )
18257 SCIPerrorMessage("method may only be called during problem creation stage for original constraints and variables\n");
18275 /* decrease i by one since otherwise we would skip the coefficient which has been switched to position i */
18297 * @note This method may only be called during problem creation stage for an original constraint and variable.
18299 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18427 /** gets the array of variables in the linear constraint; the user must not modify this array! */
18451 /** gets the array of coefficient values in the linear constraint; the user must not modify this array! */
18477 * @note if the solution contains values at infinity, this method will return SCIP_INVALID in case the activity
18591 /** returns the linear relaxation of the given linear constraint; may return NULL if no LP row was yet created;
18617 /** tries to automatically convert a linear constraint into a more specific and more specialized constraint */
18660 /* we cannot upgrade a modifiable linear constraint, since we don't know what additional coefficients to expect */
18682 /* check, if the constraint was already upgraded and will be deleted anyway after preprocessing */
18691 SCIPerrorMessage("cannot upgrade linear constraint that is already stored as row in the LP\n");
18703 /* normalizeCons() can only detect infeasibility when scaling with the gcd. in that case, the scaling was
18708 * TODO: this needs to be fixed on master by changing the API and passing a pointer to whether the constraint is
18826 SCIPdebugMsg(scip, " +bin=%d -bin=%d +int=%d -int=%d +impl=%d -impl=%d +cont=%d -cont=%d +1=%d -1=%d +I=%d -I=%d +F=%d -F=%d possum=%.15g negsum=%.15g integral=%u\n",
18838 nposbin, nnegbin, nposint, nnegint, nposimpl, nnegimpl, nposimplbin, nnegimplbin, nposcont, nnegcont,
18849 SCIPdebugMsg(scip, " -> upgraded to constraint type <%s>\n", SCIPconshdlrGetName(SCIPconsGetHdlr(*upgdcons)));
18861 SCIP_Bool* infeasible /**< pointer to return whether the problem was detected to be infeasible */
18876 nconss = onlychecked ? SCIPconshdlrGetNCheckConss(conshdlr) : SCIPconshdlrGetNActiveConss(conshdlr);
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:438
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4197
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:86
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_linear.c:17748
int SCIPconshdlrGetNCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4602
Definition: type_result.h:33
SCIP_EXPORT SCIP_Bool SCIPvarIsTransformed(SCIP_VAR *var)
Definition: var.c:17159
Definition: type_result.h:37
Definition: struct_cons.h:280
static SCIP_RETCODE tightenVarBounds(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:6805
static void consdataCalcMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1438
SCIP_RETCODE SCIPhashtableSafeInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2519
SCIP_Bool SCIPconsIsLockedType(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8470
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:292
static SCIP_DECL_CONSDEACTIVE(consDeactiveLinear)
Definition: cons_linear.c:15722
Definition: type_cons.h:77
Definition: struct_var.h:99
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:586
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:862
static SCIP_RETCODE consCatchEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:726
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2487
static SCIP_RETCODE chgCoefPos(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Real newval)
Definition: cons_linear.c:4009
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:877
static SCIP_Real consdataGetFeasibility(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3151
public methods for SCIP parameter handling
SCIP_Real SCIPgetLhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18334
SCIP_EXPORT SCIP_Real SCIPvarGetAggrScalar(SCIP_VAR *var)
Definition: var.c:17413
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1996
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:221
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:453
Definition: type_var.h:40
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:490
Definition: struct_scip.h:59
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5184
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:934
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1136
static void calculateMinvalAndMaxval(SCIP *scip, SCIP_Real side, SCIP_Real val, SCIP_Real minresactivity, SCIP_Real maxresactivity, SCIP_Real *minval, SCIP_Real *maxval)
Definition: cons_linear.c:10606
static void consdataUpdateSignatures(SCIP_CONSDATA *consdata, int pos)
Definition: cons_linear.c:3172
static void consdataUpdateActivities(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_Real val, SCIP_BOUNDTYPE boundtype, SCIP_Bool global, SCIP_Bool checkreliability)
Definition: cons_linear.c:1605
SCIP_EXPORT int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3250
public methods for memory management
Definition: type_conflict.h:50
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:308
static void consdataRecomputeMaxActivityDelta(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1543
static SCIP_Bool checkEqualObjective(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real *scale, SCIP_Real *offset)
Definition: cons_linear.c:10209
static SCIP_RETCODE fixVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars)
Definition: cons_linear.c:7840
static SCIP_RETCODE convertUnaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *ndelconss)
Definition: cons_linear.c:9500
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1951
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:166
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4263
static SCIP_RETCODE tightenVarLb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5416
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1484
public methods for conflict handler plugins and conflict analysis
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:123
static SCIP_RETCODE consDropAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:831
Definition: type_result.h:49
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2548
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:816
Definition: type_cons.h:73
static void consdataUpdateActivitiesGlbUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2063
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1353
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5301
Definition: type_set.h:37
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2152
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18089
static SCIP_Real consdataGetMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2292
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9022
static SCIP_RETCODE linconsupgradeCreate(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority)
Definition: cons_linear.c:516
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:770
Definition: struct_var.h:198
static void consdataRecomputeMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1306
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:314
static SCIP_RETCODE normalizeCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4240
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:747
SCIP_RETCODE SCIPinferVarUbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5596
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:315
static void consdataGetGlbActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *glbminactivity, SCIP_Real *glbmaxactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2869
Definition: type_cons.h:79
Definition: type_message.h:45
static void permSortConsdata(SCIP_CONSDATA *consdata, int *perm, int nvars)
Definition: cons_linear.c:3326
Definition: cons_linear.c:361
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:216
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONS *cons, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1368
SCIP_Bool SCIPisSumRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1240
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5719
static SCIP_DECL_HASHGETKEY(hashGetKeyLinearcons)
Definition: cons_linear.c:13014
static void consdataInvalidateActivities(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1207
SCIP_Real SCIPgetLhsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:15125
static void consdataGetGlbActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2931
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:17937
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:862
static SCIP_Bool conshdlrdataHasUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_DECL_LINCONSUPGD((*linconsupgd)), const char *conshdlrname)
Definition: cons_linear.c:597
SCIP_RETCODE SCIPdelCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_linear.c:18318
Definition: type_var.h:53
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3468
SCIP_RETCODE SCIPchgLhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:18382
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_SOL *sol, SCIP_Bool separatecards, SCIP_Bool separateall, int *ncuts, SCIP_Bool *cutoff)
Definition: cons_linear.c:7602
static SCIP_Bool consdataIsResidualIntegral(SCIP *scip, SCIP_CONSDATA *consdata, int pos, SCIP_Real val)
Definition: cons_linear.c:10580
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, SCIP_Real maxaggrnormscale, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides, int *nchgcoefs)
Definition: cons_linear.c:13395
SCIP_RETCODE SCIPaddConflictLb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:343
SCIP_Real SCIPgetRhsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9897
Definition: cons_linear.c:359
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:277
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:563
Definition: type_cons.h:71
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:799
public methods for problem variables
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:4646
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:48
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3690
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2617
Definition: type_result.h:40
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1233
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:119
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:525
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, int *firstchange, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides)
Definition: cons_linear.c:13201
static SCIP_RETCODE aggregateConstraints(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1, int *commonidx0, int *commonidx1, int *diffidx0minus1, int *diffidx1minus0, int nvarscommon, int commonidxweight, int diffidx0minus1weight, int diffidx1minus0weight, SCIP_Real maxaggrnormscale, int *nchgcoefs, SCIP_Bool *aggregated, SCIP_Bool *infeasible)
Definition: cons_linear.c:12694
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:381
static SCIP_RETCODE rangedRowPropagation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds, int *naddconss)
Definition: cons_linear.c:5820
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1258
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:839
SCIP_Real * SCIPgetValsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18469
static SCIP_RETCODE consDropEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:765
public methods for SCIP variables
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:501
static SCIP_Real consdataGetMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2308
SCIP_Real SCIPgetRowSolFeasibility(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2107
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:874
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4354
static SCIP_RETCODE tightenSides(SCIP *scip, SCIP_CONS *cons, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:8944
int SCIPgetNQuadVarTermsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:15032
Definition: type_cons.h:76
static SCIP_RETCODE addConflictFixedVars(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos)
Definition: cons_linear.c:5086
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:357
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1461
SCIP_EXPORT void SCIPsortDownRealPtr(SCIP_Real *realarray, void **ptrarray, int len)
public methods for numerical tolerances
Definition: struct_conflict.h:40
static SCIP_RETCODE rangedRowSimplify(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:11357
SCIP_EXPORT SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:17459
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2236
public methods for querying solving statistics
Definition: struct_sol.h:64
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:464
Definition: type_cons.h:64
public methods for the branch-and-bound tree
SCIP_RETCODE SCIPgetVarCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR *sourcevar, SCIP_VAR **targetvar, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *success)
Definition: scip_copy.c:697
Definition: type_cons.h:66
static void linconsupgradeFree(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade)
Definition: cons_linear.c:537
static SCIP_RETCODE analyzeConflict(SCIP *scip, SCIP_CONS *cons, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:5295
SCIP_EXPORT SCIP_Bool SCIPvarIsRelaxationOnly(SCIP_VAR *var)
Definition: var.c:17304
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool checkrelmaxabs, SCIP_Bool *violated)
Definition: cons_linear.c:7255
SCIP_Real SCIPgetFeasibilityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18525
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10400
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:92
Definition: struct_misc.h:128
public methods for managing constraints
Constraint handler for knapsack constraints of the form , x binary and .
static SCIP_RETCODE updateCutoffbound(SCIP *scip, SCIP_CONS *cons, SCIP_Real primalbound)
Definition: cons_linear.c:10354
SCIP_RETCODE SCIPgetProbvarLinearSum(SCIP *scip, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize, SCIP_Bool mergemultiples)
Definition: scip_var.c:1742
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:405
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:11469
static SCIP_RETCODE tightenVarUb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newub, SCIP_Real oldub, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5347
static void getMaxActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *maxactivity, SCIP_Bool *isrelax, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2489
Definition: type_retcode.h:36
Definition: type_result.h:35
Definition: struct_cons.h:37
SCIP_EXPORT SCIP_VAR * SCIPvarGetNegatedVar(SCIP_VAR *var)
Definition: var.c:17483
static SCIP_DECL_QUADCONSUPGD(upgradeConsQuadratic)
Definition: cons_linear.c:17400
Definition: struct_cons.h:117
SCIP_Real SCIPgetDualfarkasLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18581
public methods for event handler plugins and event handlers
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:773
Definition: type_lp.h:47
SCIP_Bool SCIPisUpdateUnreliable(SCIP *scip, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: scip_numerics.c:1321
Definition: type_cons.h:72
SCIP_RETCODE SCIPaddConflict(SCIP *scip, SCIP_NODE *node, SCIP_CONS *cons, SCIP_NODE *validnode, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_prob.c:3222
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1214
static void consdataCalcMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1414
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1443
static SCIP_RETCODE chgRhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:3595
Definition: type_result.h:36
static SCIP_RETCODE conshdlrdataEnsureLinconsupgradesSize(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, int num)
Definition: cons_linear.c:456
static void consdataUpdateDelCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2136
SCIP_CONS ** SCIPconshdlrGetCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4559
static SCIP_RETCODE consdataSort(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3402
static void consdataUpdateAddCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2086
static int inferInfoGetProprule(INFERINFO inferinfo)
Definition: cons_linear.c:404
static SCIP_RETCODE consdataTightenCoefs(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:9066
SCIP_Real SCIPgetRhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18358
SCIP_RETCODE SCIPmultiaggregateVar(SCIP *scip, SCIP_VAR *var, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: scip_var.c:8516
static SCIP_RETCODE aggregateVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars)
Definition: cons_linear.c:11145
constraint handler for quadratic constraints
Definition: type_var.h:42
Definition: type_var.h:44
static SCIP_RETCODE addConflictReasonVars(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5151
SCIP_Bool SCIPdoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8566
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_linear.c:3888
static SCIP_RETCODE resolvePropagation(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, INFERINFO inferinfo, SCIP_BOUNDTYPE boundtype, SCIP_BDCHGIDX *bdchgidx, SCIP_RESULT *result)
Definition: cons_linear.c:5202
static SCIP_RETCODE checkPartialObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10287
static SCIP_RETCODE conshdlrdataIncludeUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_LINCONSUPGRADE *linconsupgrade)
Definition: cons_linear.c:627
Definition: type_set.h:43
Definition: type_retcode.h:33
public methods for problem copies
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:646
static void consdataGetActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Real *maxactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2588
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:632
static SCIP_RETCODE tightenVarBoundsEasy(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5485
static void getMinActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Bool *isrelax, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2388
Definition: type_result.h:42
SCIP_RETCODE SCIPincludeQuadconsUpgrade(SCIP *scip, SCIP_DECL_QUADCONSUPGD((*quadconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_quadratic.c:14321
Definition: type_cons.h:63
static SCIP_Bool isFiniteNonnegativeIntegral(SCIP *scip, SCIP_Real x)
Definition: cons_linear.c:15239
Definition: grphload.c:88
static SCIP_RETCODE scaleCons(SCIP *scip, SCIP_CONS *cons, SCIP_Real scalar)
Definition: cons_linear.c:4088
SCIP_VAR ** SCIPgetLinearVarsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:15003
SCIP_Bool SCIPisSumRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1266
SCIP_EXPORT SCIP_Real SCIPvarGetAggrConstant(SCIP_VAR *var)
Definition: var.c:17424
SCIP_EXPORT SCIP_Real SCIPvarGetNegationConstant(SCIP_VAR *var)
Definition: var.c:17504
static SCIP_DECL_HASHKEYVAL(hashKeyValLinearcons)
Definition: cons_linear.c:13085
public methods for constraint handler plugins and constraints
SCIP_RETCODE SCIPgetIntParam(SCIP *scip, const char *name, int *value)
Definition: scip_param.c:260
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool tightenbounds, SCIP_Bool rangedrowpropagation, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7692
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1749
static void consdataUpdateChgCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldval, SCIP_Real newval, SCIP_Bool checkreliability)
Definition: cons_linear.c:2193
static SCIP_RETCODE consdataPrint(SCIP *scip, SCIP_CONSDATA *consdata, FILE *file)
Definition: cons_linear.c:1096
int SCIPgetNLinearVarsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9790
static SCIP_RETCODE retrieveParallelConstraints(SCIP_HASHTABLE *hashtable, SCIP_CONS **querycons, SCIP_CONS **parallelconss, int *nparallelconss)
Definition: cons_linear.c:13140
SCIP_RETCODE SCIPaddConflictUb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:410
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:17957
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:220
public data structures and miscellaneous methods
static SCIP_RETCODE chgLhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:3469
SCIP_EXPORT SCIP_VAR * SCIPvarGetNegationVar(SCIP_VAR *var)
Definition: var.c:17493
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4439
SCIP_EXPORT void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:391
SCIP_RETCODE SCIPinferVarFixCons(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5413
SCIP_EXPORT SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:17471
Definition: type_var.h:55
SCIP_Bool SCIPisSumGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:711
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1208
void SCIPlinConsStatsReset(SCIP_LINCONSSTATS *linconsstats)
Definition: cons.c:7939
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_linear.c:4181
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:332
static void consdataRecomputeGlbMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1387
SCIP_RETCODE SCIPaddObjoffset(SCIP *scip, SCIP_Real addval)
Definition: scip_prob.c:1266
static SCIP_Real consdataGetActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3083
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2473
constraint handler for nonlinear constraints
SCIP_EXPORT SCIP_BOUNDTYPE SCIPvarGetBestBoundType(SCIP_VAR *var)
Definition: var.c:17779
static void conshdlrdataFree(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata)
Definition: cons_linear.c:575
Definition: type_var.h:54
Definition: type_var.h:46
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:9295
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4187
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:4573
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1121
Definition: struct_lp.h:192
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_linear.c:7539
SCIP_RETCODE SCIPcreateVar(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:105
int SCIPgetNVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18421
methods for debugging
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1308
public methods for LP management
void SCIPsort(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:5440
static SCIP_RETCODE presolStuffing(SCIP *scip, SCIP_CONS *cons, SCIP_Bool singletonstuffing, SCIP_Bool singlevarstuffing, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds)
Definition: cons_linear.c:13999
public methods for cuts and aggregation rows
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1593
static void consdataUpdateActivitiesGlbLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2040
Definition: type_cons.h:68
Definition: type_set.h:41
static SCIP_Real consdataComputePseudoActivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1253
Definition: type_cons.h:78
static void consdataCalcActivities(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2326
Definition: type_var.h:41
int SCIPconshdlrGetNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4616
Definition: type_var.h:45
SCIP_Real SCIPgetActivityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18497
SCIP_Real SCIPgetLhsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9884
SCIP_RETCODE SCIPparseVarsLinearsum(SCIP *scip, const char *str, SCIP_VAR **vars, SCIP_Real *vals, int *nvars, int varssize, int *requiredsize, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:700
const char * SCIPconflicthdlrGetName(SCIP_CONFLICTHDLR *conflicthdlr)
Definition: conflict.c:763
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8257
Constraint handler for linear constraints in their most general form, .
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:694
SCIP_Real * SCIPgetLinearCoefsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9816
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:825
Definition: type_set.h:42
static void findOperators(const char *str, char **firstoperator, char **secondoperator, SCIP_Bool *success)
Definition: cons_linear.c:16815
SCIP_RETCODE SCIPchgCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18250
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:95
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:130
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1979
public methods for the LP relaxation, rows and columns
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2132
SCIP_EXPORT int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3193
static void consdataGetReliableResidualActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *cancelvar, SCIP_Real *resactivity, SCIP_Bool isminresact, SCIP_Bool useglobalbounds)
Definition: cons_linear.c:2637
static void consdataRecomputeMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1333
static SCIP_DECL_CONSENFORELAX(consEnforelaxLinear)
Definition: cons_linear.c:15989
Definition: type_set.h:36
methods for sorting joint arrays of various types
static SCIP_RETCODE conshdlrdataCreate(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:551
public methods for branching rule plugins and branching
static void consdataCalcSignatures(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3197
Definition: type_cons.h:67
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:221
Definition: struct_misc.h:80
public methods for managing events
static SCIP_RETCODE analyzeConflictRangedRow(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5762
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:659
general public methods
SCIP_RETCODE SCIPinferVarLbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5482
Definition: type_cons.h:74
SCIP_EXPORT SCIP_VAR * SCIPbdchginfoGetVar(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:18269
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:812
Definition: type_cons.h:75
static void consdataGetActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2718
static SCIP_RETCODE fullDualPresolve(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:14590
SCIP_RETCODE SCIPincludeNonlinconsUpgrade(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nonlinconsupgd)), SCIP_DECL_EXPRGRAPHNODEREFORM((*nodereform)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_nonlinear.c:9376
public methods for solutions
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:4514
SCIP_RETCODE SCIPchgRowRhs(SCIP *scip, SCIP_ROW *row, SCIP_Real rhs)
Definition: scip_lp.c:1553
SCIP_RETCODE SCIPchgRowLhs(SCIP *scip, SCIP_ROW *row, SCIP_Real lhs)
Definition: scip_lp.c:1529
static void consdataCheckNonbinvar(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1467
static SCIP_RETCODE consCatchAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:799
SCIP_ROW * SCIPgetRowLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18611
Definition: type_lp.h:48
public methods for conflict analysis handlers
int SCIPgetNLinearVarsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14988
static SCIP_RETCODE extractCliques(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, int *nfixedvars, int *nchgbds, SCIP_Bool *cutoff)
Definition: cons_linear.c:7975
public methods for the probing mode
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:786
Definition: type_cons.h:69
SCIP_RETCODE SCIPsetConshdlrDeactive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDEACTIVE((*consdeactive)))
Definition: scip_cons.c:678
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1641
SCIP_EXPORT int SCIPvarGetMultaggrNVars(SCIP_VAR *var)
Definition: var.c:17435
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyLinear)
Definition: cons_linear.c:15129
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4539
public methods for message output
Definition: type_result.h:43
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6902
Definition: type_var.h:84
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:609
void SCIPhashtablePrintStatistics(SCIP_HASHTABLE *hashtable, SCIP_MESSAGEHDLR *messagehdlr)
Definition: misc.c:2744
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:74
static SCIP_RETCODE convertBinaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9556
SCIP_Real SCIPselectSimpleValue(SCIP_Real lb, SCIP_Real ub, SCIP_Longint maxdnom)
Definition: misc.c:9719
static SCIP_RETCODE tightenBounds(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7077
SCIP_RETCODE SCIPincludeConflicthdlrBasic(SCIP *scip, SCIP_CONFLICTHDLR **conflicthdlrptr, const char *name, const char *desc, int priority, SCIP_DECL_CONFLICTEXEC((*conflictexec)), SCIP_CONFLICTHDLRDATA *conflicthdlrdata)
Definition: scip_conflict.c:99
static void getNewSidesAfterAggregation(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *slackvar, SCIP_Real slackcoef, SCIP_Real *newlhs, SCIP_Real *newrhs)
Definition: cons_linear.c:9614
SCIP_Real SCIPgetDualsolLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18553
static SCIP_RETCODE convertEquality(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10525
SCIP_Real SCIPgetRhsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:15138
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4644
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:451
public methods for message handling
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:477
static SCIP_RETCODE consPrintConsSol(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, FILE *file)
Definition: cons_linear.c:1135
static unsigned int getParallelConsKey(SCIP_CONS *cons)
Definition: cons_linear.c:13121
SCIP_EXPORT SCIP_RETCODE SCIPvarGetOrigvarSum(SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:12545
SCIP_EXPRGRAPHNODE * SCIPgetExprgraphNodeNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9871
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:3723
static SCIP_DECL_CONFLICTEXEC(conflictExecLinear)
Definition: cons_linear.c:17312
Definition: type_retcode.h:45
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num)
Definition: cons_linear.c:481
SCIP_RETCODE SCIPwriteVarsLinearsum(SCIP *scip, FILE *file, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Bool type)
Definition: scip_var.c:334
Definition: type_set.h:44
Definition: cons_linear.c:341
SCIP_RETCODE SCIPgetProbvarSum(SCIP *scip, SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: scip_var.c:1798
static SCIP_DECL_NONLINCONSUPGD(upgradeConsNonlinear)
Definition: cons_linear.c:17451
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:345
Definition: cons_linear.c:355
static void consdataRecomputeGlbMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1360
SCIP_RETCODE SCIPcleanupConssLinear(SCIP *scip, SCIP_Bool onlychecked, SCIP_Bool *infeasible)
Definition: cons_linear.c:18875
SCIP_Real * SCIPgetCoefsLinearVarsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:15018
static SCIP_RETCODE convertLongEquality(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9668
SCIP_RETCODE SCIPupgradeConsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_CONS **upgdcons)
Definition: cons_linear.c:18635
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:98
Definition: type_cons.h:65
static SCIP_Bool isRangedRow(SCIP *scip, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:15226
void SCIPlinConsStatsIncTypeCount(SCIP_LINCONSSTATS *linconsstats, SCIP_LINCONSTYPE linconstype, int increment)
Definition: cons.c:7971
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:692
SCIP_RETCODE SCIPaddConsLocal(SCIP *scip, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition: scip_prob.c:3387
SCIP_Bool SCIPconsIsMarkedPropagate(SCIP_CONS *cons)
Definition: cons.c:8286
SCIP_RETCODE SCIPaddVarsToRow(SCIP *scip, SCIP_ROW *row, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_lp.c:1667
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:199
SCIP_RETCODE SCIPaddVarImplication(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6761
SCIP_RETCODE SCIPchgRhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:18403
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_linear.c:15053
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1697
Definition: type_retcode.h:43
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1110
static SCIP_DECL_CONSGETNVARS(consGetNVarsLinear)
Definition: cons_linear.c:17096
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17696
SCIP_RETCODE SCIPaggregateVars(SCIP *scip, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *redundant, SCIP_Bool *aggregated)
Definition: scip_var.c:8382
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8157
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:793
Definition: objbenders.h:33
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:266
SCIP_Longint SCIPcalcSmaComMul(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9274
public methods for global and local (sub)problems
Definition: type_var.h:43
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:4614
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:397
SCIP_VAR ** SCIPgetVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18445
SCIP_VAR ** SCIPgetLinearVarsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9803
SCIP_RETCODE SCIPconvertCutsToConss(SCIP *scip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, int *ncutsadded)
Definition: scip_copy.c:2011
SCIP_RETCODE SCIPincludeConshdlrLinear(SCIP *scip)
Definition: cons_linear.c:17501
static SCIP_RETCODE dualPresolve(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10651
static SCIP_RETCODE addConflictBounds(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:4904
SCIP_EXPORT SCIP_VAR ** SCIPvarGetMultaggrVars(SCIP_VAR *var)
Definition: var.c:17447
Definition: cons_linear.c:357
SCIP_EXPORT SCIP_Real SCIPbdchginfoGetNewbound(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:18259
SCIP_Longint SCIPgetNConflictConssApplied(SCIP *scip)
Definition: scip_solvingstats.c:1141
Definition: type_result.h:39
Definition: struct_event.h:195
static void consdataUpdateActivitiesLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:1990
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:609
SCIP_Bool SCIPisScalingIntegral(SCIP *scip, SCIP_Real val, SCIP_Real scalar)
Definition: scip_numerics.c:599
SCIP_RETCODE SCIPclassifyConstraintTypesLinear(SCIP *scip, SCIP_LINCONSSTATS *linconsstats)
Definition: cons_linear.c:15257
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:850
static void consdataUpdateActivitiesUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2015
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata)
Definition: cons_linear.c:1061
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2084
Definition: type_cons.h:70
memory allocation routines
Definition: type_var.h:58