cons_knapsack.c
Go to the documentation of this file.
18 * @brief Constraint handler for knapsack constraints of the form \f$a^T x \le b\f$, x binary and \f$a \ge 0\f$.
26 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
72 #define CONSHDLR_ENFOPRIORITY -600000 /**< priority of the constraint handler for constraint enforcing */
73 #define CONSHDLR_CHECKPRIORITY -600000 /**< priority of the constraint handler for checking feasibility */
74 #define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
75 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
76 #define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
78 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
79 #define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
80 #define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
81 #define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
94 #define LINCONSUPGD_PRIORITY +100000 /**< priority of the constraint handler for upgrading of linear constraints */
96 #define MAX_USECLIQUES_SIZE 1000 /**< maximal number of items in knapsack where clique information is used */
97 #define MAX_ZEROITEMS_SIZE 10000 /**< maximal number of items to store in the zero list in preprocessing */
99 #define KNAPSACKRELAX_MAXDELTA 0.1 /**< maximal allowed rounding distance for scaling in knapsack relaxation */
100 #define KNAPSACKRELAX_MAXDNOM 1000LL /**< maximal allowed denominator in knapsack rational relaxation */
101 #define KNAPSACKRELAX_MAXSCALE 1000.0 /**< maximal allowed scaling factor in knapsack rational relaxation */
103 #define DEFAULT_SEPACARDFREQ 1 /**< multiplier on separation frequency, how often knapsack cuts are separated */
104 #define DEFAULT_MAXROUNDS 5 /**< maximal number of separation rounds per node (-1: unlimited) */
105 #define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
107 #define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in the root node */
108 #define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
110 #define DEFAULT_DISAGGREGATION TRUE /**< should disaggregation of knapsack constraints be allowed in preprocessing? */
112 #define DEFAULT_NEGATEDCLIQUE TRUE /**< should negated clique information be used in solving process */
114 #define MAXABSVBCOEF 1e+5 /**< maximal absolute coefficient in variable bounds used for knapsack relaxation */
115 #define USESUPADDLIFT FALSE /**< should lifted minimal cover inequalities using superadditive up-lifting be separated in addition */
117 #define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
118 #define HASHSIZE_KNAPSACKCONS 500 /**< minimal size of hash table in linear constraint tables */
120 #define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
122 #define MINGAINPERNMINCOMPARISONS 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
125 #define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
128 #define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
131 #define DEFAULT_CLIQUEEXTRACTFACTOR 0.5 /**< lower clique size limit for greedy clique extraction algorithm (relative to largest clique) */
132 #define MAXCOVERSIZEITERLEWI 1000 /**< maximal size for which LEWI are iteratively separated by reducing the feasible set */
136 #define GUBSPLITGNC1GUBS FALSE /**< should GNC1 GUB conss without F vars be split into GOC1 and GR GUB conss? */
137 #define DEFAULT_CLQPARTUPDATEFAC 1.5 /**< factor on the growth of global cliques to decide when to update a previous
139 #define DEFAULT_UPDATECLIQUEPARTITIONS FALSE /**< should clique partition information be updated when old partition seems outdated? */
140 #define MAXNCLIQUEVARSCOMP 1000000 /**< limit on number of pairwise comparisons in clique partitioning algorithm */
142 #define DEFAULT_UPGDCARDINALITY FALSE /**< if TRUE then try to update knapsack constraints to cardinality constraints */
145 /* @todo maybe use event SCIP_EVENTTYPE_VARUNLOCKED to decide for another dual-presolving run on a constraint */
158 SCIP_Longint* longints1; /**< cleared memory array, all entries are set to zero in initpre, if you use this
160 SCIP_Longint* longints2; /**< cleared memory array, all entries are set to zero in initpre, if you use this
162 SCIP_Bool* bools1; /**< cleared memory array, all entries are set to zero in initpre, if you use this
164 SCIP_Bool* bools2; /**< cleared memory array, all entries are set to zero in initpre, if you use this
166 SCIP_Bool* bools3; /**< cleared memory array, all entries are set to zero in initpre, if you use this
168 SCIP_Bool* bools4; /**< cleared memory array, all entries are set to zero in initpre, if you use this
170 SCIP_Real* reals1; /**< cleared memory array, all entries are set to zero in consinit, if you use this
182 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
184 int sepacardfreq; /**< multiplier on separation frequency, how often knapsack cuts are separated */
188 int maxsepacutsroot; /**< maximal number of cuts separated per separation round in the root node */
189 SCIP_Bool disaggregation; /**< should disaggregation of knapsack constraints be allowed in preprocessing? */
190 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
192 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
193 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
196 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
199 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
202 SCIP_Bool updatecliquepartitions; /**< should clique partition information be updated when old partition seems outdated? */
203 SCIP_Real cliqueextractfactor;/**< lower clique size limit for greedy clique extraction algorithm (relative to largest clique) */
204 SCIP_Real clqpartupdatefac; /**< factor on the growth of global cliques to decide when to update a previous
207 SCIP_Bool upgdcardinality; /**< if TRUE then try to update knapsack constraints to cardinality constraints */
208 SCIP_Bool upgradedcard; /**< whether we have already upgraded knapsack constraints to cardinality constraints */
226 int ncliqueslastnegpart;/**< number of global cliques the last time a negated clique partition was computed */
227 int ncliqueslastpart; /**< number of global cliques the last time a clique partition was computed */
231 unsigned int presolvedtiming:5; /**< max level in which the knapsack constraint is already presolved */
236 unsigned int cliquesadded:1; /**< were the cliques of the knapsack already added to clique table? */
267 };
272 {
275 GUBCONSSTATUS_BELONGSTOSET_GF = 1, /** all GUB variables are in noncovervars F (and noncovervars R) */
277 GUBCONSSTATUS_BELONGSTOSET_GNC1 = 3, /** some GUB variables are in covervars C1, others in noncovervars R or F */
279 };
284 {
294 {
301 };
369 assert(consdata->nvars == 0 || (consdata->cliquepartition != NULL && consdata->negcliquepartition != NULL));
388 /* sort all items with same weight according to their variable index, used for hash value for fast pairwise comparison of all constraints */
398 /* sort all corresponding parts of arrays for which the weights are equal by using the variable index */
410 /* we need to make sure that our clique numbers of our normal clique will be in increasing order without gaps */
417 /* if the clique number in the normal clique at position pos is greater than the last found clique number the
428 /* we need to make sure that our clique numbers of our negated clique will be in increasing order without gaps */
435 /* if the clique number in the negated clique at position pos is greater than the last found clique number the
472 assert(consdata->nvars == 0 || (consdata->cliquepartition != NULL && consdata->negcliquepartition != NULL));
476 && SCIPgetNCliques(scip) >= (int)(conshdlrdata->clqpartupdatefac * consdata->ncliqueslastpart));
480 SCIP_CALL( SCIPcalcCliquePartition(scip, consdata->vars, consdata->nvars, consdata->cliquepartition, &consdata->ncliques) );
485 /* rerun eventually if number of global cliques increased considerably since last negated partition */
487 && SCIPgetNCliques(scip) >= (int)(conshdlrdata->clqpartupdatefac * consdata->ncliqueslastnegpart));
491 SCIP_CALL( SCIPcalcNegatedCliquePartition(scip, consdata->vars, consdata->nvars, consdata->negcliquepartition, &consdata->nnegcliques) );
589 assert(consdata->nvars <= consdata->varssize);
597 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->weights, consdata->varssize, newsize) );
600 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
601 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->cliquepartition, consdata->varssize, newsize) );
602 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->negcliquepartition, consdata->varssize, newsize) );
647 {
680 if( SCIPisConsCompressionEnabled(scip) && SCIPvarGetLbGlobal(vars[v]) > SCIPvarGetUbGlobal(vars[v]) - 0.5 )
738 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
744 (*consdata)->existmultaggr = (*consdata)->existmultaggr || (SCIPvarGetStatus(var) == SCIP_VARSTATUS_MULTAGGR);
749 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(*consdata)->cliquepartition, (*consdata)->nvars) );
750 SCIP_CALL( SCIPallocBlockMemoryArray(scip, &(*consdata)->negcliquepartition, (*consdata)->nvars) );
874 SCIP_CALL( SCIPaddVarToRow(scip, consdata->row, consdata->vars[i], (SCIP_Real)consdata->weights[i]) );
906 SCIPdebugMsg(scip, "adding relaxation of knapsack constraint <%s> (capacity %" SCIP_LONGINT_FORMAT "): ",
915 /** checks knapsack constraint for feasibility of given solution: returns TRUE iff constraint is feasible */
921 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
925 {
933 SCIPdebugMsg(scip, "checking knapsack constraint <%s> for feasibility of solution %p (lprows=%u)\n",
947 /* increase age of constraint; age is reset to zero, if a violation was found only in case we are in
1019 * @note in case you provide the solitems or nonsolitems array you also have to provide the counter part, as well
1026 * @todo If only the objective is relevant, it is easy to change the code to use only one slice with O(capacity) space.
1027 * There are recursive methods (see the book by Kellerer et al.) that require O(capacity) space, but it remains
1029 * Dembo and Hammer (see Kellerer et al. Section 5.1.3, page 126) found a method that relies on a fast probing method.
1334 /* If the greedy solution is optimal by comparing to the LP solution, we take this solution. This happens if:
1336 * - the greedy solution has an objective that is at least the LP value rounded down in case that all profits are integer, too. */
1337 greedyupperbound = greedysolvalue + myprofits[j] * (SCIP_Real) (capacity - greedysolweight)/((SCIP_Real) myweights[j]);
1383 /* this condition checks whether we will try to allocate a correct number of bytes and do not have an overflow, while
1386 if( intcap < 0 || (intcap > 0 && (((size_t)nmyitems) > (SIZE_MAX / (size_t)intcap / sizeof(*optvalues)) || ((size_t)nmyitems) * ((size_t)intcap) * sizeof(*optvalues) > ((size_t)INT_MAX) )) ) /*lint !e571*/
1388 SCIPdebugMsg(scip, "Too much memory (%lu) would be consumed.\n", (unsigned long) (((size_t)nmyitems) * ((size_t)intcap) * sizeof(*optvalues))); /*lint !e571*/
1410 /* we memorize at each step the current minimal weight to later on know which value in our optvalues matrix is valid;
1411 * each value entries of the j-th row of optvalues is valid if the index is >= allcurrminweight[j], otherwise it is
1412 * invalid; a second possibility would be to clear the whole optvalues, which should be more expensive than storing
1440 /* if index d < current minweight then optvalues[IDX(j-1,d)] is not initialized, i.e. should be 0 */
1481 /* collect solution items; the first condition means that no further item can fit anymore, but this does */
1529 /** solves knapsack problem in maximization form approximately by solving the LP-relaxation of the problem using Dantzig's
1530 * method and rounding down the solution; if needed, one can provide arrays to store all selected items and all not
1576 /* partially sort indices such that all elements that are larger than the break item appear first */
1577 SCIPselectWeightedDownRealLongRealInt(tempsort, weights, profits, items, realweights, (SCIP_Real)capacity, nitems, &criticalindex);
1759 /* delete variable from GUB by swapping it replacing in by the last variable in the GUB constraint */
1764 /* decrease space allocated for the GUB constraint, if the last GUBCONSGROWVALUE+1 array entries are now empty */
1780 /** moves variable from current GUB constraint to a different existing (nonempty) GUB constraint */
1790 {
1805 SCIPdebugMsg(scip, " moving variable<%s> from GUB<%d> to GUB<%d>\n", SCIPvarGetName(vars[var]), oldgubcons, newgubcons);
1809 /* delete variable from old GUB constraint by replacing it by the last variable of the GUB constraint */
1812 /* in GUB set, update stored index of variable in old GUB constraint for the variable used for replacement;
1821 assert(gubset->gubconss[newgubcons]->gubvars[gubset->gubconss[newgubcons]->ngubvars-1] == var);
1823 /* in GUB set, update stored index of GUB of moved variable and stored index of variable in this GUB constraint */
1838 /* if empty GUB was not the last one in GUB set data structure, replace it by last GUB constraint */
1844 /* in GUB set, update stored index of GUB constraint for all variable of the GUB constraint used for replacement;
1857 /* variable should be at given new position, unless new GUB constraint replaced empty old GUB constraint
1911 /** initializes partition of knapsack variables into nonoverlapping trivial GUB constraints (GUB with one variable) */
1952 /* already updated status of variable in GUB constraint if it exceeds the capacity of the knapsack */
1954 (*gubset)->gubconss[(*gubset)->gubconssidx[i]]->gubvarsstatus[(*gubset)->gubvarsidx[i]] = GUBVARSTATUS_CAPACITYEXCEEDED;
2013 /* checks for all knapsack vars consistency of stored index of associated gubcons and corresponding index in gubvars */
2021 SCIPdebugMsg(scip, " var<%d> should be in GUB<%d> at position<%d>, but stored is var<%d> instead\n", i,
2058 /* @todo: in case we used also negated cliques for the GUB partition, this assert has to be changed */
2070 * afterwards the output array contains one value for each variable, such that two variables got the same value iff they
2072 * the first variable is always assigned to clique 0, and a variable can only be assigned to clique i if at least one of
2074 * note: in contrast to SCIPcalcCliquePartition(), variables with LP value 1 are put into trivial cliques (with one
2075 * variable) and for the remaining variables, a partition with a small number of cliques is constructed
2081 SCIP_VAR**const vars, /**< binary variables in the clique from which at most one can be set to 1 */
2084 int*const ncliques, /**< pointer to store number of cliques actually contained in the partition */
2087 {
2130 /* ignore variables with LP value 1 (will be assigned to trivial GUBs at the end) and sort remaining variables
2145 /* remaining variables are put to the front of varseq array and will be sorted by their number of cliques */
2153 /* sort variables with LP value less than 1 by nondecreasing order of the number of cliques they are in */
2214 /* if we had too many variables fill up the cliquepartition and put each variable in a separate clique */
2235 /** constructs sophisticated partition of knapsack variables into non-overlapping GUBs; current partition uses trivial GUBs */
2264 SCIP_CALL( GUBsetCalcCliquePartition(scip, vars, nvars, cliquepartition, &ncliques, solvals) );
2287 /* corresponding GUB constraint in GUB set data structure was already constructed (as initial trivial GUB);
2288 * note: no assert for gubconssidx, because it can changed due to deleting empty GUBs in GUBsetMoveVar()
2301 /* move variable to GUB constraint defined by clique partition; index of this GUB constraint is given by the
2305 assert(newgubconsidx != currentgubconsidx); /* because initially every variable is in a different GUB */
2329 /** gets a most violated cover C (\f$\sum_{j \in C} a_j > a_0\f$) for a given knapsack constraint \f$\sum_{j \in N} a_j x_j \leq a_0\f$
2330 * taking into consideration the following fixing: \f$j \in C\f$, if \f$j \in N_1 = \{j \in N : x^*_j = 1\}\f$ and
2347 SCIP_Bool modtransused, /**< should modified transformed separation problem be used to find cover */
2349 SCIP_Bool* fractional /**< pointer to store whether the LP sol for knapsack vars is fractional */
2445 /* sets whether the LP solution x* for the knapsack variables is fractional; if it is not fractional we stop
2514 /* solves (modified) transformed knapsack problem approximately by solving the LP-relaxation of the (modified)
2520 SCIP_CALL( SCIPsolveKnapsackApproximately(scip, nitems, transweights, transprofits, transcapacity, items,
2522 /*assert(checkSolveKnapsack(scip, nitems, transweights, transprofits, items, weights, solvals, modtransused));*/
2573 )
2592 /* checks if all variables before index j cannot be removed, i.e. i cannot be the next minweightidx */
2604 /** gets partition \f$(C_1,C_2)\f$ of minimal cover \f$C\f$, i.e. \f$C_1 \cup C_2 = C\f$ and \f$C_1 \cap C_2 = \emptyset\f$,
2605 * with \f$C_1\f$ not empty; chooses partition as follows \f$C_2 = \{ j \in C : x^*_j = 1 \}\f$ and \f$C_1 = C \setminus C_2\f$
2653 /** changes given partition (C_1,C_2) of minimal cover C, if |C1| = 1, by moving one and two (if possible) variables from
2665 {
2695 /** changes given partition (C_1,C_2) of feasible set C, if |C1| = 1, by moving one variable from C2 to C1 */
2705 {
2733 /** gets partition \f$(F,R)\f$ of \f$N \setminus C\f$ where \f$C\f$ is a minimal cover, i.e. \f$F \cup R = N \setminus C\f$
2734 * and \f$F \cap R = \emptyset\f$; chooses partition as follows \f$R = \{ j \in N \setminus C : x^*_j = 0 \}\f$ and
2782 /** sorts variables in F, C_2, and R according to the second level lifting sequence that will be used in the sequential
2821 * sequence 1: non-increasing absolute difference between x*_j and the value the variable is fixed to, i.e.
2868 /** categorizes GUBs of knapsack GUB partion into GOC1, GNC1, GF, GC2, and GR and computes a lifting sequence of the GUBs
2893 int* ngubconscapexceed, /**< pointer to store number of GUBs with only capacity exceeding variables */
2953 * afterwards all GUBs (except GOC1 GUBs, which we do not need to lift) are sorted by a two level lifting sequence.
2956 * GFC1: non-increasing number of variables in F and non-increasing max{x*_k : k in GFC1_j} in case of equality
2975 * furthermore, sort C1 variables as needed for initializing the minweight table (non-increasing a_j).
3076 /* stores GUBs of group GC1 (GOC1+GNC1) and part of the GUBs of group GFC1 (GNC1 GUBs) and sorts variables in these GUBs
3095 /* current C1 variable is put to the front of its GUB where C1 part is stored by non-decreasing weigth;
3102 /* the GUB was already handled (status set and stored in its group) by another variable of the GUB */
3110 /* determine the status of the current GUB constraint, GOC1 or GNC1; GUBs involving R variables are split into
3134 if( solvals[gubset->gubconss[gubconsidx]->gubvars[j]] > sortkeypairsGFC1[*ngubconsGFC1]->key2 )
3180 assert(movevarstatus == GUBVARSTATUS_BELONGSTOSET_R || movevarstatus == GUBVARSTATUS_CAPACITYEXCEEDED);
3212 /* stores GUBs of group GC2 (only trivial GUBs); sorting is not required because the C2 variables (which we loop over)
3241 /* stores remaining part of the GUBs of group GFC1 (GF GUBs) and gets GUB sorting keys corresp. to following ordering
3256 /* the GUB was already handled (status set and stored in its group) by another variable of the GUB */
3278 if( solvals[gubset->gubconss[gubconsidx]->gubvars[j]] > sortkeypairsGFC1[*ngubconsGFC1]->key2 )
3292 /* stores GUBs of group GR; sorting is not required because the R variables (which we loop over) are already sorted
3306 /* the GUB was already handled (status set and stored in its group) by another variable of the GUB */
3328 /* update number of GUBs with only capacity exceeding variables (will not be used for lifting) */
3329 (*ngubconscapexceed) = ngubconss - (ngubconsGOC1 + (*ngubconsGC2) + (*ngubconsGFC1) + (*ngubconsGR));
3407 * sum_{j in M_1} x_j + sum_{j in F} alpha_j x_j + sum_{j in M_2} alpha_j x_j + sum_{j in R} alpha_j x_j
3411 * uses sequential up-lifting for the variables in F, sequential down-lifting for the variable in M_2, and
3412 * sequential up-lifting for the variables in R; procedure can be used to strengthen minimal cover inequalities and
3475 /* sets lifting coefficient of variables in M1, sorts variables in M1 such that a_1 <= a_2 <= ... <= a_|M1|
3530 * sets z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i} } = liftrhs,
3538 * uses binary search to find z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i} }
3546 assert((*liftrhs) + 1 >= minweightslen || minweights[(*liftrhs) + 1] > capacity - fixedonesweight - weight);
3573 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
3586 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + liftcoef) );
3628 * z = max { w : 0 <= w <= |M_1| + sum_{k=1}^{i-1} alpha_{j_k}, minweights_[w] <= a_0 - fixedonesweight + a_{j_i}}
3662 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
3675 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + liftcoef) );
3723 /* uses binary search to find z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - a_{j_i} }
3757 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
3856 * sum_{j in C_1} x_j + sum_{j in F} alpha_j x_j + sum_{j in C_2} alpha_j x_j + sum_{j in R} alpha_j x_j
3859 * S = { x in {0,1}^|N| : sum_{j in N} a_j x_j <= a_0; sum_{j in Q_i} x_j <= 1, forall i in I };
3964 /* gets GOC1 and GNC1 GUBs, sets lifting coefficient of variables in C1 and calculates activity of the current
3994 assert(ngubconsGOC1 + ngubconsGFC1 + ngubconsGC2 + ngubconsGR == ngubconss - ngubconscapexceed);
3997 /* initialize the minweight tables, defined as: for i = 1,...,m with m = |I| and w = 0,...,|gubconsGC1|;
4011 /* initialize finished table; note that variables in GOC1 GUBs (includes C1 and capacity exceeding variables)
4013 * GUBs in the group GCI are sorted by non-decreasing min{ a_k : k in GC1_j } where min{ a_k : k in GC1_j } always
4049 * GUBs in the group GCI are sorted by non-decreasing min{ a_k : k in GC1_j } where min{ a_k : k in GC1_j } always
4085 * we can directly initialize minweights instead of computing it from finished and unfinished (which would be more time
4119 /* gets sum of weights of variables fixed to one, i.e. sum of weights of C2 variables GC2 GUBs */
4142 /* GNC1 GUB: update unfinished table (remove current GUB, i.e., remove min weight of C1 vars in GUB) and
4152 /* get number of C1 variables of current GNC1 GUB and put them into array of variables in GUB that
4160 /* update unfinished table by removing current GNC1 GUB, i.e, remove C1 variable with minimal weight
4161 * unfinished[w] = MAX{unfinished[w], unfinished[w+1] - weight}, "weight" is the minimal weight of current GUB
4183 /* GF GUB: no update of unfinished table (and minweight table) required because GF GUBs have no C1 variables and
4195 /* compute lifting coefficient of F and R variables in GNC1 and GF GUBs (C1 vars have already liftcoef 1) */
4221 * sets z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i} } = liftrhs,
4229 * binary search to find z = max {w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - fixedonesweight - a_{j_i}}
4233 assert((*liftrhs) + 1 >= minweightslen || minweights[(*liftrhs) + 1] > capacity - fixedonesweight - weight);
4273 * and finished and minweight table can be updated easily as only C1 variables need to be considered;
4282 * finished[w] = MIN{finished[w], finished[w-1] + weight}, "weight" is the minimal weight of current GUB
4283 * minweights[w] = MIN{minweights[w], minweights[w-1] + weight}, "weight" is the minimal weight of current GUB
4306 * w = |gubconsGC1| + sum_{k=1,2,..,i-1}sum_{j in Q_k} alpha_j+1,..,|C1| + sum_{k=1,2,..,i}sum_{j in Q_k} alpha_j
4314 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + sumliftcoef) );
4317 * note that instead of computing minweight table from updated finished and updated unfinished table again
4318 * (for the lifting coefficient, we had to update unfinished table and compute minweight table), we here
4319 * only need to update the minweight table and the updated finished in the same way (i.e., computing for minweight
4320 * not needed because only finished table changed at this point and the change was "adding" one weight)
4365 /* note: now the unfinished table no longer exists, i.e., it is "0, MAX, MAX, ..." and minweight equals to finished;
4379 liftvar = gubset->gubconss[liftgubconsidx]->gubvars[0]; /* C2 GUBs contain only one variable */
4387 * z = max { w : 0 <= w <= |C_1| + sum_{k=1}^{i-1} alpha_{j_k}, minweights_[w] <= a_0 - fixedonesweight + a_{j_i}}
4403 assert(left == minweightslen - 1 || minweights[left + 1] > capacity - fixedonesweight + weight);
4421 /* minweight table and activity of current valid inequality will not change, if alpha_{j_i} = 0 */
4432 * w = |C1| + sum_{k=1,2,...,i-1}sum_{j in Q_k} alpha_j + 1 , ... , |C1| + sum_{k=1,2,...,i}sum_{j in Q_k} alpha_j
4434 SCIP_CALL( enlargeMinweights(scip, &minweights, &minweightslen, &minweightssize, minweightslen + liftcoef) );
4496 /* uses binary search to find z = max { w : 0 <= w <= liftrhs, minweights_i[w] <= a_0 - a_{j_i} }
4536 /* minweight table and activity of current valid inequality will not change if (sum of alpha_{j_i} in GUB) = 0 */
4613 SCIP_Real* liftcoefs, /**< pointer to store lifting coefficient of vars in knapsack constraint */
4649 /* sets lifting coefficient of variables in C, sorts variables in C such that a_1 >= a_2 >= ... >= a_|C|
4727 /** separates lifted minimal cover inequalities using sequential up- and down-lifting and GUB information, if wanted, for
4773 /* gets partition (C_1,C_2) of C, i.e. C_1 & C_2 = C and C_1 cap C_2 = emptyset, with C_1 not empty; chooses partition
4778 getPartitionCovervars(scip, solvals, mincovervars, nmincovervars, varsC1, varsC2, &nvarsC1, &nvarsC2);
4781 assert(nvarsC1 >= 0); /* nvarsC1 > 0 does not always hold, because relaxed knapsack conss may already be violated */
4783 /* changes partition (C_1,C_2) of minimal cover C, if |C1| = 1, by moving one variable from C2 to C1 */
4791 /* gets partition (F,R) of N\C, i.e. F & R = N\C and F cap R = emptyset; chooses partition as follows
4795 getPartitionNoncovervars(scip, solvals, nonmincovervars, nnonmincovervars, varsF, varsR, &nvarsF, &nvarsR);
4802 /* sorts variables in F, C_2, R according to the second level lifting sequence that will be used in the sequential
4805 SCIP_CALL( getLiftingSequence(scip, solvals, weights, varsF, varsC2, varsR, nvarsF, nvarsC2, nvarsR) );
4811 * to a valid inequality sum_{j in C_1} x_j + sum_{j in N\C_1} alpha_j x_j <= |C_1| - 1 + sum_{j in C_2} alpha_j for
4815 * uses sequential up-lifting for the variables in F, sequential down-lifting for the variable in C_2 and sequential
4818 SCIP_CALL( sequentialUpAndDownLifting(scip, vars, nvars, ntightened, weights, capacity, solvals, varsC1, varsC2,
4852 /* categorizies GUBs of knapsack GUB partion into GOC1, GNC1, GF, GC2, and GR and computes a lifting sequence of
4855 SCIP_CALL( getLiftingSequenceGUB(scip, gubset, solvals, weights, varsC1, varsC2, varsF, varsR, nvarsC1,
4856 nvarsC2, nvarsF, nvarsR, gubconsGC1, gubconsGC2, gubconsGFC1, gubconsGR, &ngubconsGC1, &ngubconsGC2,
4864 * to a valid inequality sum_{j in C_1} x_j + sum_{j in N\C_1} alpha_j x_j <= |C_1| - 1 + sum_{j in C_2} alpha_j for
4866 * S = { x in {0,1}^|N| : sum_{j in N} a_j x_j <= a_0, sum_{j in Q_i} x_j <= 1, forall i in I },
4872 SCIP_CALL( sequentialUpAndDownLiftingGUB(scip, gubset, vars, nconstightened, weights, capacity, solvals, gubconsGC1,
4894 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcseq%" SCIP_LONGINT_FORMAT "", SCIPconsGetName(cons), SCIPconshdlrGetNCutsFound(SCIPconsGetHdlr(cons)));
4895 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &row, cons, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs,
4901 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcseq_%" SCIP_LONGINT_FORMAT "", SCIPsepaGetName(sepa), SCIPsepaGetNCutsFound(sepa));
4902 SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &row, sepa, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
4907 SCIP_CALL( SCIPcreateEmptyRowUnspec(scip, &row, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
4910 /* adds all variables in the knapsack constraint with calculated lifting coefficient to the cut */
4963 /** separates lifted extended weight inequalities using sequential up- and down-lifting for given knapsack problem */
5007 /* gets partition (T_1,T_2) of T, i.e. T_1 & T_2 = T and T_1 cap T_2 = emptyset, with T_1 not empty; chooses partition
5012 getPartitionCovervars(scip, solvals, feassetvars, nfeassetvars, varsT1, varsT2, &nvarsT1, &nvarsT2);
5015 /* changes partition (T_1,T_2) of feasible set T, if |T1| = 0, by moving one variable from T2 to T1 */
5018 SCIP_CALL( changePartitionFeasiblesetvars(scip, weights, varsT1, varsT2, &nvarsT1, &nvarsT2) );
5023 /* gets partition (F,R) of N\T, i.e. F & R = N\T and F cap R = emptyset; chooses partition as follows
5027 getPartitionNoncovervars(scip, solvals, nonfeassetvars, nnonfeassetvars, varsF, varsR, &nvarsF, &nvarsR);
5031 /* sorts variables in F, T_2, and R according to the second level lifting sequence that will be used in the sequential
5032 * lifting procedure (the variable removed last from the initial cover does not have to be lifted first, therefore it
5035 SCIP_CALL( getLiftingSequence(scip, solvals, weights, varsF, varsT2, varsR, nvarsF, nvarsT2, nvarsR) );
5041 * to a valid inequality sum_{j in T_1} x_j + sum_{j in N\T_1} alpha_j x_j <= |T_1| + sum_{j in T_2} alpha_j for
5045 * uses sequential up-lifting for the variables in F, sequential down-lifting for the variable in T_2 and sequential
5048 SCIP_CALL( sequentialUpAndDownLifting(scip, vars, nvars, ntightened, weights, capacity, solvals, varsT1, varsT2, varsF, varsR,
5061 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_ewseq%" SCIP_LONGINT_FORMAT "", SCIPconsGetName(cons), SCIPconshdlrGetNCutsFound(SCIPconsGetHdlr(cons)));
5062 SCIP_CALL( SCIPcreateEmptyRowConshdlr(scip, &row, SCIPconsGetHdlr(cons), name, -SCIPinfinity(scip), (SCIP_Real)liftrhs,
5068 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_ewseq_%" SCIP_LONGINT_FORMAT "", SCIPsepaGetName(sepa), SCIPsepaGetNCutsFound(sepa));
5069 SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &row, sepa, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5074 SCIP_CALL( SCIPcreateEmptyRowUnspec(scip, &row, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5077 /* adds all variables in the knapsack constraint with calculated lifting coefficient to the cut */
5130 /** separates lifted minimal cover inequalities using superadditive up-lifting for given knapsack problem */
5173 SCIP_CALL( superadditiveUpLifting(scip, vars, nvars, ntightened, weights, capacity, solvals, mincovervars,
5188 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcsup%" SCIP_LONGINT_FORMAT "", SCIPconsGetName(cons), SCIPconshdlrGetNCutsFound(SCIPconsGetHdlr(cons)));
5189 SCIP_CALL( SCIPcreateEmptyRowConshdlr(scip, &row, SCIPconsGetHdlr(cons), name, -SCIPinfinity(scip), (SCIP_Real)liftrhs,
5195 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_mcsup%" SCIP_LONGINT_FORMAT "", SCIPsepaGetName(sepa), SCIPsepaGetNCutsFound(sepa));
5196 SCIP_CALL( SCIPcreateEmptyRowSepa(scip, &row, sepa, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5201 SCIP_CALL( SCIPcreateEmptyRowUnspec(scip, &row, name, -SCIPinfinity(scip), (SCIP_Real)liftrhs, FALSE, FALSE, TRUE) );
5204 /* adds all variables in the knapsack constraint with calculated lifting coefficient to the cut */
5216 SCIP_CALL( SCIPaddVarToRow(scip, row, vars[nonmincovervars[j]], realliftcoefs[nonmincovervars[j]]) );
5240 /** converts given cover C to a minimal cover by removing variables in the reverse order in which the variables were chosen
5241 * to be in C, i.e. in the order of non-increasing (1 - x*_j)/a_j, if the transformed separation problem was used to find
5242 * C and in the order of non-increasing (1 - x*_j), if the modified transformed separation problem was used to find C;
5278 /* allocates temporary memory; we need two arrays for the keypairs in order to be able to free them in the correct
5285 * such that (1 - x*_1)/a_1 >= ... >= (1 - x*_|C|)/a_|C|, if trans separation problem was used to find C
5286 * such that (1 - x*_1) >= ... >= (1 - x*_|C|), if modified trans separation problem was used to find C
5287 * note that all variables with x*_j = 1 are in the end of the sorted C, so they will be removed last from C
5333 assert(checkMinweightidx(weights, capacity, covervars, *ncovervars, *coverweight, minweightidx, j));
5387 /** converts given initial cover C_init to a feasible set by removing variables in the reverse order in which
5390 * non-increasing (1 - x*_j), if modified transformed separation problem was used to find C_init.
5391 * separates lifted extended weight inequalities using sequential up- and down-lifting for this feasible set
5439 * such that (1 - x*_1)/a_1 >= ... >= (1 - x*_|C|)/a_|C|, if trans separation problem was used to find C
5440 * such that (1 - x*_1) >= ... >= (1 - x*_|C|), if modified trans separation problem was used to find C
5441 * note that all variables with x*_j = 1 are in the end of the sorted C, so they will be removed last from C
5461 /* removes variables from C_init and separates lifted extended weight inequalities using sequential up- and down-lifting;
5478 SCIP_CALL( separateSequLiftedExtendedWeightInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity, solvals,
5555 SCIPdebugMsgPrint(scip, "%+" SCIP_LONGINT_FORMAT "<%s>(%g)", weights[i], SCIPvarGetName(vars[i]), solvals[i]);
5561 /* LMCI1 (lifted minimal cover inequalities using sequential up- and down-lifting) using GUB information
5583 SCIP_CALL( getCover(scip, vars, nvars, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5602 /* converts initial cover C_init to a minimal cover C by removing variables in the reverse order in which the
5603 * variables were chosen to be in C_init; note that variables with x*_j = 1 will be removed last
5605 SCIP_CALL( makeCoverMinimal(scip, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5608 /* only separate with GUB information if we have at least one nontrivial GUB (with more than one variable) */
5611 /* separates lifted minimal cover inequalities using sequential up- and down-lifting and GUB information */
5612 SCIP_CALL( separateSequLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5617 /* separates lifted minimal cover inequalities using sequential up- and down-lifting, but do not use trivial
5620 SCIP_CALL( separateSequLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5642 SCIP_CALL( getCover(scip, vars, nvars, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5653 /* converts initial cover C_init to a minimal cover C by removing variables in the reverse order in which the
5654 * variables were chosen to be in C_init; note that variables with x*_j = 1 will be removed last
5656 SCIP_CALL( makeCoverMinimal(scip, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5660 SCIP_CALL( separateSequLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5667 SCIP_CALL( separateSupLiftedMinimalCoverInequality(scip, cons, sepa, vars, nvars, ntightened, weights, capacity,
5668 solvals, covervars, noncovervars, ncovervars, nnoncovervars, coverweight, sol, cutoff, ncuts) );
5684 SCIP_CALL( getCover(scip, vars, nvars, weights, capacity, solvals, covervars, noncovervars, &ncovervars,
5692 /* converts initial cover C_init to a feasible set by removing variables in the reverse order in which
5693 * they were chosen to be in C_init and separates lifted extended weight inequalities using sequential
5696 SCIP_CALL( getFeasibleSet(scip, cons, sepa, vars, nvars, ntightened, weights, capacity, solvals, covervars, noncovervars,
5710 /* relaxes given general linear constraint into a knapsack constraint and separates lifted knapsack cover inequalities */
5717 SCIP_Real* knapvals, /**< coefficients of the variables in the continuous knapsack constraint */
5718 SCIP_Real valscale, /**< -1.0 if lhs of row is used as rhs of c. k. constraint, +1.0 otherwise */
5750 SCIPdebugMsg(scip, "separate linear constraint <%s> relaxed to knapsack\n", cons != NULL ? SCIPconsGetName(cons) : "-");
5755 /* all variables which are of integral type can be potentially of binary type; this can be checked via the method SCIPvarIsBinary(var) */
5786 /* increase array size to avoid an endless loop in the next block; this might happen if continuous variables
5791 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->reals1, conshdlrdata->reals1size, 1) );
5798 /* next if condition should normally not be true, because it means that presolving has created more binary
5799 * variables than binary + integer variables existed at the constraint initialization method, but for example if you would
5807 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->reals1, oldsize, conshdlrdata->reals1size) );
5808 BMSclearMemoryArray(&(conshdlrdata->reals1[oldsize]), conshdlrdata->reals1size - oldsize); /*lint !e866 */
5826 * - a_j < 0: x_j = lb or x_j = b*z + d with variable lower bound b*z + d with binary variable z
5827 * - a_j > 0: x_j = ub or x_j = b*z + d with variable upper bound b*z + d with binary variable z
5864 SCIPdebugMsg(scip, " -> binary variable %+.15g<%s>(%.15g)\n", valscale * knapvals[i], SCIPvarGetName(var), SCIPgetSolVal(scip, sol, var));
5892 if( (bvlb[j] >= 0.0 && SCIPisGT(scip, bvlb[j] * SCIPvarGetLbLocal(zvlb[j]) + dvlb[j], SCIPvarGetUbLocal(var))) ||
5893 (bvlb[j] <= 0.0 && SCIPisGT(scip, bvlb[j] * SCIPvarGetUbLocal(zvlb[j]) + dvlb[j], SCIPvarGetUbLocal(var))) )
5898 bvlb[j], SCIPvarGetName(zvlb[j]), SCIPvarGetLbLocal(zvlb[j]), SCIPvarGetUbLocal(zvlb[j]), dvlb[j]);
5919 SCIPdebugMsg(scip, " -> non-binary variable %+.15g<%s>(%.15g) replaced with lower bound %.15g (rhs=%.15g)\n",
5920 valscale * knapvals[i], SCIPvarGetName(var), SCIPgetSolVal(scip, sol, var), SCIPvarGetLbGlobal(var), rhs);
5924 assert(0 <= SCIPvarGetProbindex(zvlb[bestlbtype]) && SCIPvarGetProbindex(zvlb[bestlbtype]) < nbinvars);
5938 SCIPdebugMsg(scip, " -> non-binary variable %+.15g<%s>(%.15g) replaced with variable lower bound %+.15g<%s>(%.15g) %+.15g (rhs=%.15g)\n",
5972 if( (bvub[j] >= 0.0 && SCIPisLT(scip, bvub[j] * SCIPvarGetUbLocal(zvub[j]) + dvub[j], SCIPvarGetLbLocal(var))) ||
5973 (bvub[j] <= 0.0 && SCIPisLT(scip, bvub[j] * SCIPvarGetLbLocal(zvub[j]) + dvub[j], SCIPvarGetLbLocal(var))) )
5978 bvub[j], SCIPvarGetName(zvub[j]), SCIPvarGetLbLocal(zvub[j]), SCIPvarGetUbLocal(zvub[j]), dvub[j]);
5999 SCIPdebugMsg(scip, " -> non-binary variable %+.15g<%s>(%.15g) replaced with upper bound %.15g (rhs=%.15g)\n",
6000 valscale * knapvals[i], SCIPvarGetName(var), SCIPgetSolVal(scip, sol, var), SCIPvarGetUbGlobal(var), rhs);
6004 assert(0 <= SCIPvarGetProbindex(zvub[bestubtype]) && SCIPvarGetProbindex(zvub[bestubtype]) < nbinvars);
6018 SCIPdebugMsg(scip, " -> non-binary variable %+.15g<%s>(%.15g) replaced with variable upper bound %+.15g<%s>(%.15g) %+.15g (rhs=%.15g)\n",
6032 /* calculate scalar which makes all coefficients integral in relative allowed difference in between
6035 SCIP_CALL( SCIPcalcIntegralScalar(binvals, nbinvars, -SCIPepsilon(scip), KNAPSACKRELAX_MAXDELTA,
6039 /* if coefficients cannot be made integral, we have to use a scalar of 1.0 and only round fractional coefficients down */
6064 SCIPdebugMsg(scip, " -> positive scaled binary variable %+" SCIP_LONGINT_FORMAT "<%s> (unscaled %.15g): not changed (rhs=%.15g)\n",
6074 SCIPdebugMsg(scip, " -> negative scaled binary variable %+" SCIP_LONGINT_FORMAT "<%s> (unscaled %.15g): substituted by (1 - <%s>) (rhs=%.15g)\n",
6099 SCIPdebugMsg(scip, " -> linear constraint <%s> relaxed to knapsack:", cons != NULL ? SCIPconsGetName(cons) : "-");
6103 SCIPdebugMsgPrint(scip, " %+" SCIP_LONGINT_FORMAT "<%s>(%.15g)", consvals[i], SCIPvarGetName(consvars[i]),
6107 SCIPdebugMsgPrint(scip, " <= %" SCIP_LONGINT_FORMAT " (%.15g) [act: %.15g, min: %" SCIP_LONGINT_FORMAT " max: %" SCIP_LONGINT_FORMAT "]\n",
6122 SCIP_CALL( SCIPseparateKnapsackCuts(scip, cons, sepa, consvars, nconsvars, consvals, capacity, sol, usegubs, cutoff, ncuts) );
6158 )
6183 SCIP_CALL( SCIPseparateKnapsackCuts(scip, cons, NULL, consdata->vars, consdata->nvars, consdata->weights,
6226 SCIP_CALL( consdataEnsureVarsSize(scip, consdata, consdata->nvars+1, SCIPconsIsTransformed(cons)) );
6249 if( !consdata->existmultaggr && SCIPvarGetStatus(SCIPvarGetProbvar(var)) == SCIP_VARSTATUS_MULTAGGR )
6330 /* if the clique number is equal to the number of variables we have only cliques with one element, so we don't
6341 consdata->cliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6347 /* if the old clique number was greater than the new one we have to check that before a bigger clique number
6356 consdata->cliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6359 /* if we reached the end in the for loop, it means we have deleted the last element of the clique with
6365 /* if the old clique number was smaller than the new one we have to check the front for an element with
6370 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->cliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6373 consdata->cliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6375 /* if we deleted the last element of the clique with biggest index, we have to decrease the clique number */
6379 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->cliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6394 /* if the clique number is equal to the number of variables we have only cliques with one element, so we don't
6405 consdata->negcliquepartitioned = FALSE; /* recalculate the clique partition after a coefficient was removed */
6411 /* if the old clique number was greater than the new one we have to check that, before a bigger clique number
6420 consdata->negcliquepartitioned = FALSE; /* recalculate the negated clique partition after a coefficient was removed */
6423 /* if we reached the end in the for loop, it means we have deleted the last element of the clique with
6429 /* if the old clique number was smaller than the new one we have to check the front for an element with
6434 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->negcliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6437 consdata->negcliquepartitioned = FALSE; /* recalculate the negated clique partition after a coefficient was removed */
6439 /* if we deleted the last element of the clique with biggest index, we have to decrease the clique number */
6443 for( i = pos - 1; i >= 0 && i >= cliquenumbefore && consdata->negcliquepartition[i] < cliquenumbefore; --i ); /*lint !e722*/
6448 /* otherwise if the old clique number is equal to the new one the cliquepartition should be ok */
6559 SCIPsortPtrPtrLongIntInt((void**)consdata->vars, (void**)consdata->eventdata, consdata->weights,
6560 consdata->cliquepartition, consdata->negcliquepartition, SCIPvarCompActiveAndNegated, consdata->nvars);
6607 /* variables var1 and var2 are opposite: subtract smaller weight from larger weight, reduce capacity,
6614 SCIP_CALL( delCoefPos(scip, cons, v) ); /* this does not affect var2, because var2 stands before var1 */
6624 SCIP_CALL( delCoefPos(scip, cons, v) ); /* this does not affect var2, because var2 stands before var1 */
6635 assert(prev == 0 || ((prev > 0) && (SCIPvarIsActive(consdata->vars[prev - 1]) || SCIPvarGetStatus(consdata->vars[prev - 1]) == SCIP_VARSTATUS_NEGATED)) );
6636 /* either that was the last pair or both, the negated and "normal" variable in front doesn't match var1, so the order is irrelevant */
6637 if( prev == 0 || (var1 != consdata->vars[prev - 1] && var1 != SCIPvarGetNegatedVar(consdata->vars[prev - 1])) )
6667 /** in case the knapsack constraint is independent of every else, solve the knapsack problem (exactly) and apply the
6696 /* constraints for which the check flag is set to FALSE, did not contribute to the lock numbers; therefore, we cannot
6697 * use the locks to decide for a dual reduction using this constraint; for example after a restart the cuts which are
6716 /* check if we can apply the dual reduction; this can be done if the knapsack has the only locks on this constraint;
6757 SCIPdebugMsg(scip, "the knapsack constraint <%s> is independent to rest of the problem\n", SCIPconsGetName(cons));
6761 SCIP_CALL( SCIPsolveKnapsackExactly(scip, consdata->nvars, consdata->weights, profits, consdata->capacity,
6774 SCIPdebugMsg(scip, "variable <%s> only locked up in knapsack constraints: dual presolve <%s>[%.15g,%.15g] >= 1.0\n",
6787 SCIPdebugMsg(scip, "variable <%s> has no down locks: dual presolve <%s>[%.15g,%.15g] <= 0.0\n",
6809 /** check if the knapsack constraint is parallel to objective function; if so update the cutoff bound and avoid that the
6841 /* check if the knapsack constraints has the same number of variables as the objective function and if the initial
6847 /* There are no variables in the ojective function and in the constraint. Thus, the constraint is redundant. Since we
6875 /* if a variable has a zero objective coefficient the knapsack constraint is not parallel to objective function */
6914 /* avoid that the knapsack constraint enters the LP since it is parallel to the objective function */
6920 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provids a cutoff bound <%g>\n",
6923 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are
6928 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provids a cutoff bound <%g>\n",
6939 /* in case the cutoff bound is worse then currently known one we avoid additionaly enforcement and
6950 /* avoid that the knapsack constraint enters the LP since it is parallel to the objective function */
6956 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provids a lower bound <%g>\n",
6966 /** sort the variables and weights w.r.t. the clique partition; thereby ensure the current order of the variables when a
6967 * weight of one variable is greater or equal another weight and both variables are in the same cliques */
6977 {
7050 /* to reach the goal that all variables of each clique will be standing next to each other we will initialize the
7051 * starting pointers for each clique by adding the number of each clique to the last clique starting pointer
7052 * e.g. clique1 has 4 elements and clique2 has 3 elements the the starting pointer for clique1 will be the pointer
7053 * to vars[0], the starting pointer to clique2 will be the pointer to vars[4] and to clique3 it will be
7091 /** deletes all fixed variables from knapsack constraint, and replaces variables with binary representatives */
7178 /* @todo maybe resolve the problem that the eliminating of the multi-aggregation leads to a non-knapsack
7179 * constraint (converting into a linear constraint), for example the multi-aggregation consist of a non-binary
7180 * variable or due to resolving now their are non-integral coefficients or a non-integral capacity
7188 * 1b) If repvar is a negated variable of a multi-aggregated variable weight * repvar should be replaced by
7189 * weight - weight * (a_1*y_1 + ... + a_n*y_n + c), for better further use here we switch the sign of weight
7192 * 2a) weight * a_i < 0 than we add -weight * a_i * y_i_neg to the constraint and adjust the capacity through
7196 * 3b) If repvar was negated we need to subtract weight * (c - 1) from capacity(note we switched the sign of
7216 SCIPerrorMessage("try to resolve a multi-aggregation with a non-integral value for weight*aggrconst = %g\n", weight*aggrconst);
7231 SCIPerrorMessage("try to resolve a multi-aggregation with a non-binary %svariable <%s> with bounds [%g,%g]\n",
7232 SCIPvarIsIntegral(aggrvars[i]) ? "integral " : "", SCIPvarGetName(aggrvars[i]), SCIPvarGetLbGlobal(aggrvars[i]), SCIPvarGetUbGlobal(aggrvars[i]));
7237 SCIPerrorMessage("try to resolve a multi-aggregation with a non-integral value for weight*aggrscalars = %g\n", weight*aggrscalars[i]);
7240 /* if the new coefficient is smaller than zero, we need to add the negated variable instead and adjust the capacity */
7245 SCIP_CALL( addCoef(scip, cons, negvar, (SCIP_Longint)(SCIPfloor(scip, -weight * aggrscalars[i] + 0.5))) );
7250 SCIP_CALL( addCoef(scip, cons, aggrvars[i], (SCIP_Longint)(SCIPfloor(scip, weight * aggrscalars[i] + 0.5))) );
7256 /* adjust the capacity with the aggregation constant and if necessary the extra weight through the negation */
7289 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have to
7313 {
7347 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7357 assert(SCIPvarIsActive(consdata->vars[i]) || SCIPvarIsNegated(consdata->vars[i]) || SCIPvarGetStatus(consdata->vars[i]) == SCIP_VARSTATUS_FIXED);
7379 * - minweightsum = sum_{negated cliques C} ( sum(wi : i \in C) - W_max(C) ), where W_max(C) is the maximal weight of C
7381 * if for i \in C (a negated clique) oneweightsum + minweightsum - wi + W_max(C) > capacity => xi = 1
7413 /* save the end positions of the cliques because start positions are moved in the following loop */
7438 /* for summing up the minimum active weights due to cliques we have to omit the biggest weights of each
7439 * clique, we can only skip this clique if this variables is not fixed to zero, otherwise we have to fix all
7484 /* we found a fixed variable to zero so all other variables in this negated clique have to be fixed to one */
7493 SCIPdebugMsg(scip, " -> fixing variable <%s> to 1, due to negated clique information\n", SCIPvarGetName(myvars[v]));
7494 SCIP_CALL( SCIPinferBinvarCons(scip, myvars[v], TRUE, cons, SCIPvarGetIndex(myvars[i]), &infeasible, &tightened) );
7525 /* reset local minweightsum for clique because all fixed to one variables are now counted in consdata->onesweightsum */
7539 SCIPdebugMsg(scip, "knapsack constraint <%s> has minimum weight sum of <%" SCIP_LONGINT_FORMAT ">\n",
7566 /* no need to process this negated clique because all variables are already fixed (which we detect from a fixed maxvar) */
7572 /* if the sum of all weights of fixed variables to one plus the minimalweightsum (minimal weight which is already
7573 * used in this knapsack due to negated cliques) plus any weight minus the second largest weight in this clique
7576 if( consdata->onesweightsum + minweightsum + (maxcliqueweight - secondmaxweights[c]) > consdata->capacity )
7586 SCIP_CALL( SCIPinferBinvarCons(scip, maxvar, FALSE, cons, cliquestartposs[c], &infeasible, &tightened) );
7600 * the gain in any of the following negated cliques (the additional term if the maximum weight variable was set to 1, and the second
7603 * - the cliques are sorted by decreasing maximum weight -> for all c' >= c: maxweights[c'] <= maxcliqueweight
7606 else if( consdata->onesweightsum + minweightsum + (maxcliqueweight - consdata->weights[nvars - 1]) <= consdata->capacity )
7612 /* there should be no variable fixed to 0 between startvarposclique + 1 and endvarposclique unless we
7628 if( maxvarfixed || consdata->onesweightsum + minweightsum - myweights[i] + maxcliqueweight > consdata->capacity )
7633 SCIPdebugMsg(scip, " -> fixing variable <%s> to 1, due to negated clique information\n", SCIPvarGetName(myvars[i]));
7656 SCIP_Bool exceedscapacity = consdata->onesweightsum + minweightsum - myweights[i] + maxcliqueweight > consdata->capacity;
7679 SCIPdebugMsg(scip, " -> cutoff - fixed weight: %" SCIP_LONGINT_FORMAT ", capacity: %" SCIP_LONGINT_FORMAT " \n",
7686 if( (SCIPgetStage(scip) == SCIP_STAGE_SOLVING || SCIPinProbing(scip)) && SCIPisConflictAnalysisApplicable(scip) )
7688 /* start conflict analysis with the fixed-to-one variables, add only as many as needed to exceed the capacity */
7719 /* if all weights of fixed variables to one plus any weight exceeds the capacity the variables have to be fixed
7729 SCIP_CALL( SCIPinferBinvarCons(scip, consdata->vars[i], FALSE, cons, i, &infeasible, &tightened) );
7743 /* sum up the weights of all unfixed variables, plus the weight sum of all variables fixed to one already */
7755 /* we summed up all (unfixed and fixed to one) weights and did not exceed the capacity, so the constraint is redundant */
7756 SCIPdebugMsg(scip, " -> knapsack constraint <%s> is redundant: weightsum=%" SCIP_LONGINT_FORMAT ", unfixedweightsum=%" SCIP_LONGINT_FORMAT ", capacity=%" SCIP_LONGINT_FORMAT "\n",
7765 /** all but one variable fit into the knapsack constraint, so we can upgrade this constraint to an logicor constraint
7788 /* if the knapsack constraint consists only of two variables, we can upgrade it to a set-packing constraint */
7791 SCIPdebugMsg(scip, "upgrading knapsack constraint <%s> to a set-packing constraint", SCIPconsGetName(cons));
7793 SCIP_CALL( SCIPcreateConsSetpack(scip, &newcons, SCIPconsGetName(cons), consdata->nvars, consdata->vars,
7799 /* if the knapsack constraint consists of at least three variables, we can upgrade it to a logicor constraint
7806 SCIPdebugMsg(scip, "upgrading knapsack constraint <%s> to a logicor constraint", SCIPconsGetName(cons));
7811 SCIP_CALL( SCIPcreateConsLogicor(scip, &newcons, SCIPconsGetName(cons), consdata->nvars, consvars,
7832 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 13 => x4, x5 always fits into the knapsack, so we can delete them
7834 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 8 and we have the cliqueinformation (x1,x2,x3) is a clique
7837 * i.e. 5x1 + 5x2 + 5x3 + 1x4 + 1x5 <= 6 and we have the cliqueinformation (x1,x2,x3) is a clique and (x4,x5) too
7844 SCIP_Longint frontsum, /**< sum of front items which fit if we try to take from the first till the last */
7880 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
7897 /* all rear items are redundant, because leaving one item in front and incl. of splitpos out the rear itmes always
7933 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
7941 /* rear items can only be redundant, when the sum is smaller to the weight at splitpos and all rear items would
7942 * always fit into the knapsack, therefor the item directly after splitpos needs to be smaller than the one at
7956 SCIP_CALL( SCIPcalcCliquePartition(scip, &(consdata->vars[splitpos+1]), len, clqpart, &nclq) );
7978 /* all rear items are redundant due to clique information, if maxactduetoclq is smaller than the weight before,
7979 * so delete them and create for all clique the corresponding clique constraints and update the capacity
7989 SCIPdebugMsg(scip, "Found redundant variables in constraint <%s> due to clique information.\n", SCIPconsGetName(cons));
8006 /* we found a real clique so extract this constraint, because we do not know who this information generated so */
8012 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), capacity, c);
8064 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8083 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 13 => x4, x5 always fits into the knapsack, so we can delete them
8085 * i.e. 5x1 + 5x2 + 5x3 + 2x4 + 1x5 <= 8 and we have the cliqueinformation (x1,x2,x3) is a clique
8088 * i.e. 5x1 + 5x2 + 5x3 + 1x4 + 1x5 <= 6 and we have the cliqueinformation (x1,x2,x3) is a clique and (x4,x5) too
8100 {
8137 /* all but one variable fit into the knapsack, so we can upgrade this constraint to a logicor */
8152 /* all but one variable fit into the knapsack, so we can upgrade this constraint to a logicor */
8208 /* if all items fit, then delete the whole constraint but create clique constraints which led to this
8220 SCIPdebugMsg(scip, "Found redundant constraint <%s> due to clique information.\n", SCIPconsGetName(cons));
8239 /* we found a real clique so extract this constraint, because we do not know who this information generated so */
8245 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), capacity, c);
8278 /** divides weights by their greatest common divisor and divides capacity by the same value, rounding down the result */
8308 assert(SCIPvarGetUbLocal(consdata->vars[i]) > 0.5); /* all fixed variables should have been removed */
8315 SCIPdebugMessage("knapsack constraint <%s>: dividing weights by %" SCIP_LONGINT_FORMAT "\n", SCIPconsGetName(cons), gcd);
8336 * 1. a) check if all two pairs exceed the capacity, then we can upgrade this constraint to a set-packing constraint
8337 * b) check if all but the smallest weight fit into the knapsack, then we can upgrade this constraint to a logicor
8340 * 2. check if besides big coefficients, that fit only by itself, for a certain amount of variables all combination of
8343 * +219y1 + 180y2 + 74x1 + 70x2 + 63x3 + 62x4 + 53x5 <= 219 <=> 3y1 + 3y2 + x1 + x2 + x3 + x4 + x5 <= 3
8345 * 3. use the duality between a^Tx <= capacity <=> a^T~x >= weightsum - capacity to tighten weights, e.g.
8362 {
8413 SCIPdebugMsg(scip, "upgrading knapsack constraint <%s> to a set-packing constraint", SCIPconsGetName(cons));
8415 SCIP_CALL( SCIPcreateConsSetpack(scip, &newcons, SCIPconsGetName(cons), consdata->nvars, consdata->vars,
8431 /* all but one variable fit into the knapsack, so we can upgrade this constraint to a logicor */
8440 /* early termination, if the pair with biggest coeffcients together does not exceed the dualcapacity */
8451 * the following is done without looking at the dualcapacity; it is enough to check whether for a certain amount of
8458 * +219y1 + 180y_2 +74x1 + 70x2 + 63x3 + 62x4 + 53x5 <= 219 <=> 3y1 + 3y2 + x1 + x2 + x3 + x4 + x5 <= 3
8510 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8520 /* a certain amount of small variables exceed the capacity, so check if this holds for all combinations of the
8536 /* if the same amount but with the smallest possible weights also exceed the capacity, it holds for all
8568 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8581 /* if the following assert fails we have either a redundant constraint or a set-packing constraint, this should
8590 * either choose x1, or all other variables (weightsum of x2 to x10 is 979 above), so we can tighten this
8631 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8667 /* any negated variable out of the first n - 1 items is enough to fulfill the constraint, so we can update it to a logicor
8690 /* we have a dual-knapsack constraint where we either need to choose one variable out of a subset (big
8697 * 3x1 + 3x2 + 2x3 + 2x4 + 2x5 + 2x6 + x7 <= 12 <=> 3~x1 + 3~x2 + 2~x3 + 2~x4 + 2~x5 + 2~x6 + ~x7 >= 3
8763 * e.g. 9x1 + 9x2 + 6x3 + 4x4 + 4x5 + 4x6 <= 27 <=> 9~x1 + 9~x2 + 6~x3 + 4~x4 + 4~x5 + 4~x6 >= 9
8790 /* we found redundant variables, which does not influence the feasibility of any integral solution, e.g.
8809 /* for performance reasons we do not update the capacity(, i.e. reduce it by reductionsum) and directly
8820 * e.g. 9x1 + 9x2 + 6x3 + 6x4 + 4x5 + 4x6 <= 29 <=> 9~x1 + 9~x2 + 6~x3 + 6~x4 + 4~x5 + 4~x6 >= 9
8825 if( weights[v] > 1 || (weights[startv] > (SCIP_Longint)nvars - v) || (startv > 0 && weights[0] == (SCIP_Longint)nvars - v + 1) )
8839 /* adjust middle sized coefficients, which when choosing also one small coefficients exceed the
8870 newcap = ((SCIP_Longint)startv - 1) * newweight + ((SCIP_Longint)v - startv) * (newweight - 1) + ((SCIP_Longint)nvars - v);
8879 assert(weights[v] == 1 && (weights[startv] == (SCIP_Longint)nvars - v) && (startv == 0 || weights[0] == (SCIP_Longint)nvars - v + 1));
8884 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
8894 /* check if all rear items have the same weight as the last one, so we cannot tighten the constraint further */
8941 /* dualcapacity is odd, we can set the middle weights to dualcapacity but therefor need to multiply all
8985 /* @todo loop for "k" can be extended, same coefficient when determine next sumcoef can be left out */
9015 sumcoef = MIN(weights[nvars - 1] + weights[nvars - 5], weights[nvars - 2] + weights[nvars - 3]);
9019 sumcoef = MIN(weights[nvars - 1] + weights[nvars - 4], weights[nvars - 1] + weights[nvars - 2] + weights[nvars - 3]);
9026 /* tighten next coefficients that, pair with the current small coefficient, exceed the dualcapacity */
9034 /* @todo check for further reductions, when two times the minweight exceeds the dualcapacity */
9066 /* now check if a combination of small coefficients allows us to tighten big coefficients further */
9129 /* dualcapacity is odd, we can set the middle weights to dualcapacity but therefor need to multiply all
9187 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal
9212 /** fixes variables with weights bigger than the capacity and delete redundant constraints, also sort weights */
9311 * 1. use the duality between a^Tx <= capacity <=> -a^T~x <= capacity - weightsum to tighten weights, e.g.
9319 * 2. if variables in a constraint do not affect the (in-)feasibility of the constraint, we can delete them, e.g.
9323 * 3. Tries to use gcd information an all but one weight to change this not-included weight and normalize the
9326 * 9x1 + 6x2 + 6x3 + 5x4 <= 13 => 9x1 + 6x2 + 6x3 + 6x4 <= 12 => 3x1 + 2x2 + 2x3 + 2x4 <= 4 => 4x1 + 2x2 + 2x3 + 2x4 <= 4
9432 /* weight should still be sorted, because the reduction preserves this, but corresponding variables with equal weight
9455 /* determine coefficients as big as the capacity, these we do not need to take into account when calculating the
9474 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
9495 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
9506 /* if both first coefficients have a gcd of 1, both are candidates for the coefficient change */
9537 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
9579 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restweight = %" SCIP_LONGINT_FORMAT "; possible new weight of variable <%s> %" SCIP_LONGINT_FORMAT ", possible new capacity %" SCIP_LONGINT_FORMAT ", offset of coefficients as big as capacity %d\n", gcd, rest, restweight, SCIPvarGetName(vars[candpos]), newweight, consdata->capacity - rest, offsetv);
9581 /* must not change weights and capacity if one variable would be removed and we have a big coefficient,
9582 * e.g., 11x1 + 6x2 + 6x3 + 5x4 <= 11 => gcd = 6, offsetv = 1 => newweight = 0, but we would lose x1 = 1 => x4 = 0
9633 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
9682 /* we explicitly construct the complete implication graph where the knapsack variables are involved;
9687 SCIPdebugMsg(scip, "memory limit of %d bytes reached in knapsack preprocessing - abort collecting zero items\n",
9718 /** applies rule (3) of the weight tightening procedure, which can lift other variables into the knapsack:
9723 * - the weight of the variable or its negation (depending on v) can be increased as long as it has the same
9740 int* firstidxs[2]; /* first index in zeroitems for each binary variable/value pair, or zero for empty list */
9743 int* nextidxs; /* next index in zeroitems for the same binary variable, or zero for end of list */
9786 if( (!consdata->cliquepartitioned && nvars > MAX_USECLIQUES_SIZE) || consdata->ncliques > MAX_USECLIQUES_SIZE )
9795 /* we have to consider all integral variables since even integer and implicit integer variables can have binary bounds */
9816 /* next if conditions should normally not be true, because it means that presolving has created more binary variables
9817 * than binary + integer variables existed at the presolving initialization method, but for example if you would
9825 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->ints1, oldsize, conshdlrdata->ints1size) );
9826 BMSclearMemoryArray(&(conshdlrdata->ints1[oldsize]), conshdlrdata->ints1size - oldsize); /*lint !e866*/
9833 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->ints2, oldsize, conshdlrdata->ints2size) );
9834 BMSclearMemoryArray(&(conshdlrdata->ints2[oldsize]), conshdlrdata->ints2size - oldsize); /*lint !e866*/
9841 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->longints1, oldsize, conshdlrdata->longints1size) );
9842 BMSclearMemoryArray(&(conshdlrdata->longints1[oldsize]), conshdlrdata->longints1size - oldsize); /*lint !e866*/
9849 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->longints2, oldsize, conshdlrdata->longints2size) );
9850 BMSclearMemoryArray(&(conshdlrdata->longints2[oldsize]), conshdlrdata->longints2size - oldsize); /*lint !e866*/
9881 /* next if conditions should normally not be true, because it means that presolving has created more binary variables
9882 * than binary + integer variables existed at the presolving initialization method, but for example if you would
9890 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->bools1, oldsize, conshdlrdata->bools1size) );
9891 BMSclearMemoryArray(&(conshdlrdata->bools1[oldsize]), conshdlrdata->bools1size - oldsize); /*lint !e866*/
9898 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->bools2, oldsize, conshdlrdata->bools2size) );
9899 BMSclearMemoryArray(&(conshdlrdata->bools2[oldsize]), conshdlrdata->bools2size - oldsize); /*lint !e866*/
10043 /* calculate the clique partition and the maximal sum of weights using the clique information */
10049 /* next if condition should normally not be true, because it means that presolving has created more binary variables
10050 * in one constraint than binary + integer variables existed in the whole problem at the presolving initialization
10051 * method, but for example if you would transform all integers into their binary representation then it maybe happens
10058 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->bools3, oldsize, conshdlrdata->bools3size) );
10059 BMSclearMemoryArray(&(conshdlrdata->bools3[oldsize]), conshdlrdata->bools3size - oldsize); /*lint !e866*/
10093 /* next if condition should normally not be true, because it means that presolving has created more binary variables
10094 * in one constraint than binary + integer variables existed in the whole problem at the presolving initialization
10095 * method, but for example if you would transform all integers into their binary representation then it maybe happens
10102 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->bools4, oldsize, conshdlrdata->bools4size) );
10103 BMSclearMemoryArray(&conshdlrdata->bools4[oldsize], conshdlrdata->bools4size - oldsize); /*lint !e866*/
10114 /* for each binary variable xi and each fixing v, calculate the cliqueweightsum and update the weight of the
10115 * variable in the knapsack (this is sequence-dependent because the new or modified weights have to be
10141 /* mark the items that are implied to zero by setting the current variable to the current value */
10189 SCIPdebugMsg(scip, "knapsack constraint <%s>: adding lifted item %" SCIP_LONGINT_FORMAT "<%s>\n",
10226 /* if new items were added, multiple entries of the same variable are possible and we have to clean up the constraint */
10251 * - wi and capacity can be changed to have the same redundancy effect and the same results for
10252 * fixing xi to zero or one, but with a reduced wi and tightened capacity to tighten the LP relaxation
10256 * (2) increase weights from front to back(sortation is necessary) if there is no space left for another weight
10257 * - determine the four(can be adjusted) minimal weightsums of the knapsack, i.e. in increasing order
10258 * weights[nvars - 1], weights[nvars - 2], MIN(weights[nvars - 3], weights[nvars - 1] + weights[nvars - 2]),
10259 * MIN(MAX(weights[nvars - 3], weights[nvars - 1] + weights[nvars - 2]), weights[nvars - 4]), note that there
10261 * - check if summing up a minimal weightsum with a big weight exceeds the capacity, then we can increase the big
10272 * - weights wi, i in C, and capacity can be changed to have the same redundancy effect and the same results for
10273 * fixing xi, i in C, to zero or one, but with a reduced wi and tightened capacity to tighten the LP relaxation
10278 * This rule has to add the used cliques in order to ensure they are enforced - otherwise, the reduction might
10284 * - the weight of the variable or its negation (depending on v) can be increased as long as it has the same
10331 assert(consdata->weightsum > consdata->capacity); /* otherwise, the constraint is redundant */
10361 SCIPdebugMsg(scip, "knapsack constraint <%s>: changed weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT ", capacity from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10392 /* @todo loop for "k" can be extended, same coefficient when determine next sumcoef can be left out */
10448 /* tighten next coefficients that, paired with the current small coefficient, exceed the capacity */
10455 SCIPdebugMsg(scip, "in constraint <%s> changing weight %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10488 SCIPdebugMsg(scip, "in constraint <%s> changing weight %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10501 /* apply rule (2) (don't apply, if the knapsack has too many items for applying this costly method) */
10504 if( conshdlrdata->disaggregation && consdata->nvars - pos <= MAX_USECLIQUES_SIZE && consdata->nvars >= 2 &&
10506 consdata->weights[pos - 1] == consdata->capacity && (pos == consdata->nvars || consdata->weights[pos] == 1) )
10522 SCIPdebugMsg(scip, "upgrading knapsack constraint <%s> to a set-packing constraint", SCIPconsGetName(cons));
10524 SCIP_CALL( SCIPcreateConsSetpack(scip, &cliquecons, SCIPconsGetName(cons), pos, consdata->vars,
10556 SCIPdebugMsg(scip, "Disaggregating knapsack constraint <%s> due to clique information.\n", SCIPconsGetName(cons));
10582 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), consdata->capacity, c);
10604 else if( consdata->nvars <= MAX_USECLIQUES_SIZE || (consdata->cliquepartitioned && consdata->ncliques <= MAX_USECLIQUES_SIZE) )
10676 SCIPdebugMsg(scip, "knapsack constraint <%s>: weights of clique %d (maxweight: %" SCIP_LONGINT_FORMAT ") can be tightened: cliqueweightsum=%" SCIP_LONGINT_FORMAT ", capacity=%" SCIP_LONGINT_FORMAT " -> delta: %" SCIP_LONGINT_FORMAT "\n",
10706 /* check if our clique information results out of this knapsack constraint and if so check if we would loose the clique information */
10733 SCIPdebugMsg(scip, " -> change capacity from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT " (forceclique:%u)\n",
10745 SCIPdebugMsg(scip, " -> change weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10752 /* if before the weight update at least one pair of weights did not fit into the knapsack and now fits,
10753 * we have to make sure, the clique is enforced - the clique might have been constructed partially from
10754 * this constraint, and by reducing the weights, this clique information is not contained anymore in the
10767 (void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_clq_%" SCIP_LONGINT_FORMAT "_%d", SCIPconsGetName(cons), consdata->capacity, i);
10827 SCIPdebugMsg(scip, "knapsack constraint <%s>: changed weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10830 consdataChgWeight(consdata, i, consdata->capacity); /* this does not destroy the weight order! */
10850 SCIPdebugMsg(scip, "knapsack constraint <%s>: changed weight of <%s> from %" SCIP_LONGINT_FORMAT " to %" SCIP_LONGINT_FORMAT "\n",
10851 SCIPconsGetName(cons), SCIPvarGetName(consdata->vars[consdata->nvars-1]), weight, consdata->capacity);
10853 consdataChgWeight(consdata, consdata->nvars-1, consdata->capacity); /* this does not destroy the weight order! */
10958 /* determine maximal weights for all negated cliques and calculate minimal weightsum due to negated cliques */
10961 assert(0 <= consdata->negcliquepartition[v] && consdata->negcliquepartition[v] <= nnegcliques);
10978 /* free capacity is the rest of not used capacity if the smallest amount of weights due to negated cliques are used */
10982 SCIPdebugMsg(scip, "Try to add negated cliques in knapsack constraint handler for constraint %s; capacity = %" SCIP_LONGINT_FORMAT ", minactivity(due to neg. cliques) = %" SCIP_LONGINT_FORMAT ", freecapacity = %" SCIP_LONGINT_FORMAT ".\n",
10993 /* if we would take the biggest weight instead of another what would we gain, take weight[v] instead of
10999 gainweights[nposcliquevars] = maxweights[consdata->negcliquepartition[v]] - consdata->weights[w];
11011 SCIPsortDownLongPtrInt(gainweights,(void**) poscliquevars, gaincliquepartition, nposcliquevars);
11024 /* taking bigger weights make the knapsack redundant so we will create cliques, only take items which are not
11026 for( w = v + 1; w < nposcliquevars && !cliqueused[gaincliquepartition[w]] && gainweights[w] + lastweight > freecapacity; ++w )
11050 /* try to replace the last item in the clique by a different item to obtain a slightly different clique */
11051 for( ++w; w < nposcliquevars && !cliqueused[gaincliquepartition[w]] && beforelastweight + gainweights[w] > freecapacity; ++w )
11079 * greedily detects cliques by first sorting the items by decreasing weights (optional) and then collecting greedily
11081 * 2) looping through the remaining items and finding the largest set of preceding items to build a clique => possibly many more cliques
11091 SCIP_Real cliqueextractfactor,/**< lower clique size limit for greedy clique extraction algorithm (relative to largest clique) */
11136 /* no more cliques to be found (don't know if this can actually happen, since the knapsack could be replaced by a set-packing constraint)*/
11143 /* try to replace the last item in the clique by a different item to obtain a slightly different clique */
11144 /* loop over remaining, smaller items and compare each item backwards against larger weights, starting with the second smallest weight */
11162 /* include this item together with all items that have a weight at least as large as the compare weight in a clique */
11181 /* choose a preceding, larger weight to compare small items against. Clique size is reduced by 1 simultaneously */
11198 SCIP_Real cliqueextractfactor,/**< lower clique size limit for greedy clique extraction algorithm (relative to largest clique) */
11259 /* calculate minimal activity due to negated cliques, and determine second maximal weight in each clique */
11288 /* free capacity is the rest of not used capacity if the smallest amount of weights due to negated cliques are used */
11292 SCIPdebugMsg(scip, "Try to add cliques in knapsack constraint handler for constraint %s; capacity = %" SCIP_LONGINT_FORMAT ", minactivity(due to neg. cliques) = %" SCIP_LONGINT_FORMAT ", freecapacity = %" SCIP_LONGINT_FORMAT ".\n",
11295 /* create negated cliques out of negated cliques, if we do not take the smallest weight of a cliques ... */
11318 SCIP_CALL( greedyCliqueAlgorithm(scip, poscliquevars, gainweights, nposcliquevars, freecapacity, FALSE, cliqueextractfactor, cutoff, nbdchgs) );
11326 SCIP_CALL( greedyCliqueAlgorithm(scip, consdata->vars, consdata->weights, nvars, consdata->capacity, TRUE, cliqueextractfactor, cutoff, nbdchgs) );
11347 /** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
11427 /** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
11439 {
11496 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
11527 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
11591 for( c = (consdata0->presolvedtiming == SCIP_PRESOLTIMING_EXHAUSTIVE ? firstchange : 0); c < chkind; ++c )
11611 if( consdata0->presolvedtiming >= SCIP_PRESOLTIMING_EXHAUSTIVE && consdata1->presolvedtiming >= SCIP_PRESOLTIMING_EXHAUSTIVE ) /*lint !e574*/
11645 SCIPdebugMsg(scip, "preprocess knapsack constraint pair <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
11682 /* if cons1 is possible contained in cons0 (consdata0->weights[v0] / quotient) must be greater equals consdata1->weights[v1] */
11683 if( iscons1incons0contained && SCIPisLT(scip, ((SCIP_Real) consdata0->weights[v0]) / quotient, (SCIP_Real) consdata1->weights[v1]) )
11689 /* if cons0 is possible contained in cons1 (consdata0->weight[v0] / quotient) must be less equals consdata1->weight[v1] */
11690 else if( iscons0incons1contained && SCIPisGT(scip, ((SCIP_Real) consdata0->weights[v0]) / quotient, (SCIP_Real) consdata1->weights[v1]) )
11718 /* neither one constraint was contained in another or we checked all variables of one constraint against the
11728 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
11739 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
11761 )
11772 SCIPdebugMsg(scip, "knapsack enforcement of %d/%d constraints for %s solution\n", nusefulconss, nconss,
11778 maxncuts = (SCIPgetDepth(scip) == 0 ? conshdlrdata->maxsepacutsroot : conshdlrdata->maxsepacuts);
11846 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
11848 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
11868 /* if the right hand side is non-infinite, we have to negate all variables with negative coefficient;
11869 * otherwise, we have to negate all variables with positive coefficient and multiply the row with -1
11903 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
11931 SCIPdebugMsg(scip, "upgrading constraint <%s> to knapsack constraint\n", SCIPconsGetName(cons));
11933 /* create the knapsack constraint (an automatically upgraded constraint is always unmodifiable) */
11935 SCIP_CALL( createNormalizedKnapsack(scip, upgdcons, SCIPconsGetName(cons), nvars, vars, vals, lhs, rhs,
11968 /** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
12001 /* all variables which are of integral type can be binary; this can be checked via the method SCIPvarIsBinary(var) */
12010 /** deinitialization method of constraint handler (called before transformed problem is freed) */
12029 /** presolving initialization method of constraint handler (called when presolving is about to begin) */
12043 /* all variables which are of integral type can be binary; this can be checked via the method SCIPvarIsBinary(var) */
12072 /** presolving deinitialization method of constraint handler (called after presolving has been finished) */
12086 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
12116 /** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
12189 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
12190 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
12193 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
12202 /** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
12252 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
12280 SCIP_CALL( separateCons(scip, conss[i], NULL, sepacardinality, conshdlrdata->usegubs, &cutoff, &ncuts) );
12321 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
12341 SCIP_CALL( separateCons(scip, conss[i], sol, sepacardinality, conshdlrdata->usegubs, &cutoff, &ncuts) );
12402 {
12434 /* do not propagate constraints with multi-aggregated variables, which should only happen in probing mode,
12444 SCIP_CALL( propagateCons(scip, conss[i], &cutoff, &redundant, &nfixedvars, conshdlrdata->negatedclique) );
12491 newchanges = (nrounds == 0 || nnewfixedvars > 0 || nnewaggrvars > 0 || nnewchgbds > 0 || nnewupgdconss > 0);
12543 SCIP_CALL( propagateCons(scip, cons, &cutoff, &redundant, nfixedvars, (presoltiming & SCIP_PRESOLTIMING_MEDIUM)) );
12566 /* check again for redundancy (applyFixings() might have decreased weightsum due to fixed-to-zero vars) */
12569 SCIPdebugMsg(scip, " -> knapsack constraint <%s> is redundant: weightsum=%" SCIP_LONGINT_FORMAT ", capacity=%" SCIP_LONGINT_FORMAT "\n",
12581 SCIP_CALL( simplifyInequalities(scip, cons, nfixedvars, ndelconss, nchgcoefs, nchgsides, naddconss, &cutoff) );
12598 SCIP_CALL( tightenWeights(scip, cons, presoltiming, nchgcoefs, nchgsides, naddconss, ndelconss, &cutoff) );
12604 if( conshdlrdata->dualpresolving && SCIPallowStrongDualReds(scip) && (presoltiming & SCIP_PRESOLTIMING_MEDIUM) != 0 )
12606 /* in case the knapsack constraints is independent of everything else, solve the knapsack and apply the
12624 if( !cutoff && conshdlrdata->presolusehashing && (presoltiming & SCIP_PRESOLTIMING_MEDIUM) != 0 )
12626 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
12627 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &cutoff, ndelconss) );
12630 if( (*ndelconss != oldndelconss) || (*nchgsides != oldnchgsides) || (*nchgcoefs != oldnchgcoefs) || (*naddconss != oldnaddconss) )
12635 if( !cutoff && firstchange < nconss && conshdlrdata->presolpairwise && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 )
12650 npaircomparisons += ((SCIPconsGetData(cons)->presolvedtiming < SCIP_PRESOLTIMING_EXHAUSTIVE) ? (SCIP_Longint) c : ((SCIP_Longint) c - (SCIP_Longint) firstchange));
12656 if( (*ndelconss != oldndelconss) || (*nchgsides != oldnchgsides) || (*nchgcoefs != oldnchgcoefs) )
12658 if( ((SCIP_Real) (*ndelconss - oldndelconss) + ((SCIP_Real) (*nchgsides - oldnchgsides))/2.0 +
12659 ((SCIP_Real) (*nchgcoefs - oldnchgcoefs))/10.0) / ((SCIP_Real) npaircomparisons) < MINGAINPERNMINCOMPARISONS )
12669 /* @todo upgrade to cardinality constraints: the code below relies on disabling the checking of the knapsack
12670 * constraint in the original problem, because the upgrade ensures that at most the given number of continuous
12671 * variables has a nonzero value, but not that the binary variables corresponding to the continuous variables with
12672 * value zero are set to zero as well. This can cause problems if the user accesses the values of the binary
12673 * variables (as the MIPLIB solution checker does), or the transformed problem is freed and the original problem
12674 * (possibly with some user modifications) is re-optimized. Until there is a way to force the binary variables to 0
12676 /* upgrade to cardinality constraints - only try to upgrade towards the end of presolving, since the process below is quite expensive */
12677 if ( ! cutoff && conshdlrdata->upgdcardinality && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) && ! conshdlrdata->upgradedcard )
12695 * - First, determine for each binary variable the number of cardinality constraints that can be upgraded to a
12696 * knapsack constraint and contain this variable; this number has to coincide with the number of variable up
12697 * locks; otherwise it would be infeasible to delete the knapsack constraints after the constraint update.
12731 /* check whether all variables are of the form 0 <= x_v <= u_v y_v for y_v \in \{0,1\} and zero objective */
12813 /* for each variable: check whether the number of cardinality constraints that can be upgraded to a
12818 if ( SCIPvarGetNLocksUpType(vars[v], SCIP_LOCKTYPE_MODEL) != SCIPhashmapGetImageInt(varhash, vars[v]) )
12828 SCIPdebugMessage("Upgrading knapsack constraint <%s> to cardinality constraint ...\n", SCIPconsGetName(cons));
12832 SCIP_CALL( SCIPcreateConsCardinality(scip, &cardcons, SCIPconsGetName(cons), nvars, cardvars, (int) consdata->capacity, vars, cardweights,
12835 SCIPconsIsLocal(cons), SCIPconsIsDynamic(cons), SCIPconsIsRemovable(cons), SCIPconsIsStickingAtNode(cons)) );
12850 /* We need to disable the original knapsack constraint, since it might happen that the binary variables
12851 * are 1 although the continuous variables are 0. Thus, the knapsack constraint might be violated,
12917 /* according to negated cliques the minweightsum and all variables which are fixed to one which led to a fixing of
12918 * another negated clique variable to one, the inferinfo was chosen to be the negative of the position in the
12925 /* locate the inference variable and calculate the capacity that has to be used up to conclude infervar == 0;
12926 * inferinfo stores the position of the inference variable (but maybe the variables were resorted)
12939 /* add fixed-to-one variables up to the point, that their weight plus the weight of the conflict variable exceeds
12957 /* NOTE: It might be the case that capsum < consdata->capacity. This is due the fact that the fixing of the variable
12958 * to zero can included negated clique information. A negated clique means, that at most one of the clique
12959 * variables can be zero. These information can be used to compute a minimum activity of the constraint and
12962 * Even if capsum < consdata->capacity we still reported a complete reason since the minimum activity is based
12963 * on global variable bounds. It might even be the case that we reported to many variables which are fixed to
13061 -SCIPinfinity(scip), (SCIP_Real) SCIPgetCapacityKnapsack(sourcescip, sourcecons), varmap, consmap,
13062 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
13141 SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, "expected '<= ' at begin of '%s'\n", str);
13155 SCIPverbMessage(scip, SCIP_VERBLEVEL_MINIMAL, NULL, "error parsing capacity from '%s'\n", str);
13161 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
13193 /** constraint method of constraint handler which returns the number of variables (if possible) */
13238 case SCIP_EVENTTYPE_VARFIXED: /* the variable should be removed from the constraint in presolving */
13245 /* if the variable was aggregated or multiaggregated, we must signal to propagation that we are no longer merged */
13252 (SCIPvarGetStatus(var) == SCIP_VARSTATUS_NEGATED && SCIPvarGetStatus(SCIPvarGetNegatedVar(var)) == SCIP_VARSTATUS_AGGREGATED) )
13256 case SCIP_EVENTTYPE_IMPLADDED: /* further preprocessing might be possible due to additional implications */
13290 SCIP_CALL( SCIPincludeEventhdlrBasic(scip, &(conshdlrdata->eventhdlr), EVENTHDLR_NAME, EVENTHDLR_DESC,
13322 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolKnapsack,CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
13324 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropKnapsack, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
13327 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpKnapsack, consSepasolKnapsack, CONSHDLR_SEPAFREQ,
13334 /* include the linear constraint to knapsack constraint upgrade in the linear constraint handler */
13335 SCIP_CALL( SCIPincludeLinconsUpgrade(scip, linconsUpgdKnapsack, LINCONSUPGD_PRIORITY, CONSHDLR_NAME) );
13341 "multiplier on separation frequency, how often knapsack cuts are separated (-1: never, 0: only at root)",
13342 &conshdlrdata->sepacardfreq, TRUE, DEFAULT_SEPACARDFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
13345 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cuts",
13349 "lower clique size limit for greedy clique extraction algorithm (relative to largest clique)",
13350 &conshdlrdata->cliqueextractfactor, TRUE, DEFAULT_CLIQUEEXTRACTFACTOR, 0.0, 1.0, NULL, NULL) );
13397 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
13401 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
13423 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
13452 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
13454 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
13480 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
13494 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
13495 * method SCIPcreateConsKnapsack(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
13499 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
13509 )
13621 /** gets the array of variables in the knapsack constraint; the user must not modify this array! */
13644 /** gets the array of weights in the knapsack constraint; the user must not modify this array! */
13719 /** returns the linear relaxation of the given knapsack constraint; may return NULL if no LP row was yet created;
13748 SCIP_Bool* infeasible /**< pointer to return whether the problem was detected to be infeasible */
13763 nconss = onlychecked ? SCIPconshdlrGetNCheckConss(conshdlr) : SCIPconshdlrGetNActiveConss(conshdlr);
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:438
SCIP_RETCODE SCIPcalcCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques)
Definition: scip_var.c:7237
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4209
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:86
Definition: cons_knapsack.c:272
int SCIPconshdlrGetNCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4614
Definition: type_result.h:33
SCIP_EXPORT SCIP_Bool SCIPvarIsTransformed(SCIP_VAR *var)
Definition: var.c:17159
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_knapsack.c:6494
Definition: type_result.h:37
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:6536
SCIP_RETCODE SCIPcreateConsLogicor(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_logicor.c:5202
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:292
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:586
static SCIP_RETCODE getCover(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int *ncovervars, int *nnoncovervars, SCIP_Longint *coverweight, SCIP_Bool *found, SCIP_Bool modtransused, int *ntightened, SCIP_Bool *fractional)
Definition: cons_knapsack.c:2342
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2486
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:877
SCIP_RETCODE SCIPseparateKnapsackCuts(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_SOL *sol, SCIP_Bool usegubs, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5502
public methods for SCIP parameter handling
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1996
SCIP_CONS * SCIPfindOrigCons(SCIP *scip, const char *name)
Definition: scip_prob.c:2892
static SCIP_RETCODE GUBsetCalcCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques, SCIP_Real *solvals)
Definition: cons_knapsack.c:2087
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:221
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:453
static SCIP_DECL_CONSRESPROP(consRespropKnapsack)
Definition: cons_knapsack.c:12898
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:490
Definition: struct_scip.h:59
static SCIP_RETCODE GUBsetMoveVar(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars, int var, int oldgubcons, int newgubcons)
Definition: cons_knapsack.c:1790
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5184
static SCIP_RETCODE addNegatedCliques(SCIP *const scip, SCIP_CONS *const cons, SCIP_Bool *const cutoff, int *const nbdchgs)
Definition: cons_knapsack.c:10890
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:934
SCIP_EXPORT int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3250
public methods for memory management
Definition: type_conflict.h:50
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:308
static SCIP_DECL_HASHKEYVAL(hashKeyValKnapsackcons)
Definition: cons_knapsack.c:11402
#define SCIPallocClearBufferArray(scip, ptr, num)
Definition: scip_mem.h:113
public methods for implications, variable bounds, and cliques
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool sepacuts, SCIP_Bool usegubs, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:6158
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1951
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:166
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4263
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1484
public methods for conflict handler plugins and conflict analysis
SCIP_RETCODE SCIPgetNegatedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **negvars)
Definition: scip_var.c:1564
#define SCIPallocClearBlockMemoryArray(scip, ptr, num)
Definition: scip_mem.h:84
SCIP_RETCODE SCIPinferBinvarCons(SCIP *scip, SCIP_VAR *var, SCIP_Bool fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5704
static void updateWeightSums(SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Longint weightdelta)
Definition: cons_knapsack.c:627
Definition: type_result.h:49
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2547
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:816
SCIP_RETCODE SCIPgetBinvarRepresentative(SCIP *scip, SCIP_VAR *var, SCIP_VAR **repvar, SCIP_Bool *negated)
Definition: scip_var.c:1601
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1353
SCIP_EXPORT void SCIPsortDownLongPtrPtrIntInt(SCIP_Longint *longarray, void **ptrarray1, void **ptrarray2, int *intarray1, int *intarray2, int len)
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5301
static SCIP_RETCODE getLiftingSequenceGUB(SCIP *scip, SCIP_GUBSET *gubset, SCIP_Real *solvals, SCIP_Longint *weights, int *varsC1, int *varsC2, int *varsF, int *varsR, int nvarsC1, int nvarsC2, int nvarsF, int nvarsR, int *gubconsGC1, int *gubconsGC2, int *gubconsGFC1, int *gubconsGR, int *ngubconsGC1, int *ngubconsGC2, int *ngubconsGFC1, int *ngubconsGR, int *ngubconscapexceed, int *maxgubvarssize)
Definition: cons_knapsack.c:2880
Definition: type_set.h:37
SCIP_EXPORT SCIP_Longint SCIPsepaGetNCutsFound(SCIP_SEPA *sepa)
Definition: sepa.c:844
static SCIP_RETCODE separateSequLiftedMinimalCoverInequality(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *mincovervars, int *nonmincovervars, int nmincovervars, int nnonmincovervars, SCIP_SOL *sol, SCIP_GUBSET *gubset, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:4739
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2152
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:9008
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Longint weight)
Definition: cons_knapsack.c:6200
static SCIP_DECL_CONSINITLP(consInitlpKnapsack)
Definition: cons_knapsack.c:12212
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:770
Definition: struct_var.h:198
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:314
SCIP_EXPORT void SCIPsortDownLongPtrInt(SCIP_Longint *longarray, void **ptrarray, int *intarray, int len)
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_knapsack.c:6821
static SCIP_RETCODE separateSupLiftedMinimalCoverInequality(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *mincovervars, int *nonmincovervars, int nmincovervars, int nnonmincovervars, SCIP_Longint mincoverweight, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5140
int SCIPgetNVarsKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13607
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:747
SCIP_RETCODE SCIPhashmapInsertInt(SCIP_HASHMAP *hashmap, void *origin, int image)
Definition: misc.c:3131
static SCIP_RETCODE dualWeightsTightening(SCIP *scip, SCIP_CONS *cons, int *ndelconss, int *nchgcoefs, int *nchgsides, int *naddconss)
Definition: cons_knapsack.c:8362
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_knapsack.c:775
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, SCIP_Bool *redundant, int *nfixedvars, SCIP_Bool usenegatedclique)
Definition: cons_knapsack.c:7313
SCIP_EXPORT SCIP_VAR ** SCIPvarGetImplVars(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:17962
Definition: cons_knapsack.c:282
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:216
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONS *cons, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1368
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5719
SCIP_RETCODE SCIPcreateConsKnapsack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_knapsack.c:13434
Definition: cons_knapsack.c:274
Definition: cons_knapsack.c:291
static SCIP_RETCODE insertZerolist(SCIP *scip, int **liftcands, int *nliftcands, int **firstidxs, SCIP_Longint **zeroweightsums, int **zeroitems, int **nextidxs, int *zeroitemssize, int *nzeroitems, int probindex, SCIP_Bool value, int knapsackidx, SCIP_Longint knapsackweight, SCIP_Bool *memlimitreached)
Definition: cons_knapsack.c:9651
SCIP_RETCODE SCIPcreateEmptyRowUnspec(SCIP *scip, SCIP_ROW **row, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1428
static SCIP_RETCODE separateSequLiftedExtendedWeightInequality(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *feassetvars, int *nonfeassetvars, int nfeassetvars, int nnonfeassetvars, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:4973
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3468
static void consdataChgWeight(SCIP_CONSDATA *consdata, int item, SCIP_Longint newweight)
Definition: cons_knapsack.c:825
SCIP_RETCODE SCIPparseVarName(SCIP *scip, const char *str, SCIP_VAR **var, char **endptr)
Definition: scip_var.c:524
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:277
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:563
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:799
SCIP_ROW * SCIPgetRowKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13730
static void getPartitionNoncovervars(SCIP *scip, SCIP_Real *solvals, int *noncovervars, int nnoncovervars, int *varsF, int *varsR, int *nvarsF, int *nvarsR)
Definition: cons_knapsack.c:2746
public methods for problem variables
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:48
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3690
SCIP_RETCODE SCIPchgCapacityKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_Longint capacity)
Definition: cons_knapsack.c:13576
SCIP_EXPORT SCIP_Real * SCIPvarGetImplBounds(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:17991
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2616
Definition: type_result.h:40
SCIP_RETCODE SCIPflushRowExtensions(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1604
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1233
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:119
SCIP_Longint * SCIPgetWeightsKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13653
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:525
Definition: struct_sepa.h:37
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:381
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1258
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:839
Constraint handler for the set partitioning / packing / covering constraints .
public methods for SCIP variables
SCIP_RETCODE SCIPsolveKnapsackExactly(SCIP *scip, int nitems, SCIP_Longint *weights, SCIP_Real *profits, SCIP_Longint capacity, int *items, int *solitems, int *nonsolitems, int *nsolitems, int *nnonsolitems, SCIP_Real *solval, SCIP_Bool *success)
Definition: cons_knapsack.c:1043
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:501
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:891
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:874
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4354
static SCIP_RETCODE GUBsetGetCliquePartition(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars, SCIP_Real *solvals)
Definition: cons_knapsack.c:2245
SCIP_EXPORT void SCIPsortPtrPtrLongIntInt(void **ptrarray1, void **ptrarray2, SCIP_Longint *longarray, int *intarray1, int *intarray2, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:357
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1461
SCIP_EXPORT void SCIPsortDownRealIntLong(SCIP_Real *realarray, int *intarray, SCIP_Longint *longarray, int len)
public methods for numerical tolerances
SCIP_EXPORT SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:17459
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2235
Definition: cons_knapsack.c:281
static SCIP_DECL_CONSDELETE(consDeleteKnapsack)
Definition: cons_knapsack.c:12150
public methods for querying solving statistics
Definition: struct_sol.h:64
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_knapsack.c:11761
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:464
Definition: cons_knapsack.c:301
int SCIPhashmapGetImageInt(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3220
public methods for the branch-and-bound tree
static SCIP_DECL_HASHGETKEY(hashGetKeyKnapsackcons)
Definition: cons_knapsack.c:11349
static SCIP_RETCODE GUBconsDelVar(SCIP *scip, SCIP_GUBCONS *gubcons, int var, int gubvarsidx)
Definition: cons_knapsack.c:1753
SCIP_RETCODE SCIPgetNegatedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **negvar)
Definition: scip_var.c:1531
static SCIP_RETCODE stableSort(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR **vars, SCIP_Longint *weights, int *cliquestartposs, SCIP_Bool usenegatedclique)
Definition: cons_knapsack.c:6977
SCIP_Bool SCIPhashmapExists(SCIP_HASHMAP *hashmap, void *origin)
Definition: misc.c:3362
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:92
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool printreason, SCIP_Bool *violated)
Definition: cons_knapsack.c:925
Definition: struct_misc.h:128
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:7101
public methods for managing constraints
Constraint handler for knapsack constraints of the form , x binary and .
SCIP_RETCODE SCIPcacheRowExtensions(SCIP *scip, SCIP_ROW *row)
Definition: scip_lp.c:1581
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:405
SCIP_RETCODE SCIPcreateEmptyRowConshdlr(SCIP *scip, SCIP_ROW **row, SCIP_CONSHDLR *conshdlr, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1337
SCIP_EXPORT void SCIPsortDownRealInt(SCIP_Real *realarray, int *intarray, int len)
static SCIP_DECL_HASHKEYEQ(hashKeyEqKnapsackcons)
Definition: cons_knapsack.c:11359
static SCIP_DECL_CONSEXITSOL(consExitsolKnapsack)
Definition: cons_knapsack.c:12126
static void getPartitionCovervars(SCIP *scip, SCIP_Real *solvals, int *covervars, int ncovervars, int *varsC1, int *varsC2, int *nvarsC1, int *nvarsC2)
Definition: cons_knapsack.c:2616
Definition: type_result.h:35
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nfixedvars, int *ndelconss, int *nchgcoefs, int *nchgsides, int *naddconss, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:9339
Definition: struct_cons.h:37
SCIP_EXPORT SCIP_RETCODE SCIPvarsGetProbvarBinary(SCIP_VAR ***vars, SCIP_Bool **negatedarr, int nvars)
Definition: var.c:12049
SCIP_EXPORT void SCIPsortDownLongPtr(SCIP_Longint *longarray, void **ptrarray, int len)
SCIP_EXPORT SCIP_VAR * SCIPvarGetNegatedVar(SCIP_VAR *var)
Definition: var.c:17483
SCIP_EXPORT int SCIPvarGetNImpls(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:17945
Definition: struct_cons.h:117
static SCIP_DECL_CONSDELVARS(consDelvarsKnapsack)
Definition: cons_knapsack.c:13002
static SCIP_RETCODE catchEvents(SCIP *scip, SCIP_CONS *cons, SCIP_CONSDATA *consdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_knapsack.c:537
public methods for event handler plugins and event handlers
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:773
static void GUBsetSwapVars(SCIP *scip, SCIP_GUBSET *gubset, int var1, int var2)
Definition: cons_knapsack.c:1881
Constraint handler for logicor constraints (equivalent to set covering, but algorithms are suited fo...
SCIP_RETCODE SCIPcreateConsBasicKnapsack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Longint *weights, SCIP_Longint capacity)
Definition: cons_knapsack.c:13509
static SCIP_RETCODE sequentialUpAndDownLiftingGUB(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars, int ngubconscapexceed, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *gubconsGC1, int *gubconsGC2, int *gubconsGFC1, int *gubconsGR, int ngubconsGC1, int ngubconsGC2, int ngubconsGFC1, int ngubconsGR, int alpha0, int *liftcoefs, SCIP_Real *cutact, int *liftrhs, int maxgubvarssize)
Definition: cons_knapsack.c:3873
static SCIP_DECL_CONSINITPRE(consInitpreKnapsack)
Definition: cons_knapsack.c:12039
Definition: cons_knapsack.c:269
Definition: type_result.h:36
SCIP_CONS ** SCIPconshdlrGetCheckConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4571
static SCIP_DECL_CONSENFORELAX(consEnforelaxKnapsack)
Definition: cons_knapsack.c:12372
SCIP_EXPORT void SCIPsortPtrPtrIntInt(void **ptrarray1, void **ptrarray2, int *intarray1, int *intarray2, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
static SCIP_Longint safeAddMinweightsGUB(SCIP_Longint val1, SCIP_Longint val2)
Definition: cons_knapsack.c:3802
Definition: type_var.h:44
SCIP_EXPORT void SCIPsortPtrInt(void **ptrarray, int *intarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
Definition: type_set.h:43
Definition: type_retcode.h:33
public methods for problem copies
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:646
SCIP_RETCODE SCIPsetConshdlrInitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITPRE((*consinitpre)))
Definition: scip_cons.c:477
static void GUBconsFree(SCIP *scip, SCIP_GUBCONS **gubcons)
Definition: cons_knapsack.c:1700
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:632
static SCIP_DECL_CONSENFOPS(consEnfopsKnapsack)
Definition: cons_knapsack.c:12381
Definition: type_result.h:42
Definition: grphload.c:88
static SCIP_RETCODE createRelaxation(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:863
SCIP_RETCODE SCIPcalcNegatedCliquePartition(SCIP *const scip, SCIP_VAR **const vars, int const nvars, int *const cliquepartition, int *const ncliques)
Definition: scip_var.c:7456
static SCIP_RETCODE getLiftingSequence(SCIP *scip, SCIP_Real *solvals, SCIP_Longint *weights, int *varsF, int *varsC2, int *varsR, int nvarsF, int nvarsC2, int nvarsR)
Definition: cons_knapsack.c:2794
public methods for constraint handler plugins and constraints
Definition: type_retcode.h:34
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1749
SCIP_RETCODE SCIPcleanupConssKnapsack(SCIP *scip, SCIP_Bool onlychecked, SCIP_Bool *infeasible)
Definition: cons_knapsack.c:13753
static SCIP_DECL_CONSPRESOL(consPresolKnapsack)
Definition: cons_knapsack.c:12471
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num, SCIP_Bool transformed)
Definition: cons_knapsack.c:589
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_knapsack.c:6280
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:17953
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:220
public data structures and miscellaneous methods
static SCIP_RETCODE enlargeMinweights(SCIP *scip, SCIP_Longint **minweightsptr, int *minweightslen, int *minweightssize, int newlen)
Definition: cons_knapsack.c:3374
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4439
SCIP_EXPORT void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:391
SCIP_EXPORT SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:17471
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1208
SCIP_RETCODE SCIPhashmapCreate(SCIP_HASHMAP **hashmap, BMS_BLKMEM *blkmem, int mapsize)
Definition: misc.c:3013
static SCIP_RETCODE calcCliquepartition(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONSDATA *consdata, SCIP_Bool normalclique, SCIP_Bool negatedclique)
Definition: cons_knapsack.c:469
SCIP_EXPORT void SCIPsortIntInt(int *intarray1, int *intarray2, int len)
static SCIP_RETCODE superadditiveUpLifting(SCIP *scip, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int ncovervars, int nnoncovervars, SCIP_Longint coverweight, SCIP_Real *liftcoefs, SCIP_Real *cutact)
Definition: cons_knapsack.c:4608
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:332
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2473
Definition: type_message.h:43
Definition: type_var.h:46
static SCIP_RETCODE greedyCliqueAlgorithm(SCIP *const scip, SCIP_VAR **items, SCIP_Longint *weights, int nitems, SCIP_Longint capacity, SCIP_Bool sorteditems, SCIP_Real cliqueextractfactor, SCIP_Bool *const cutoff, int *const nbdchgs)
Definition: cons_knapsack.c:11092
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4199
static SCIP_DECL_CONSEXITPRE(consExitpreKnapsack)
Definition: cons_knapsack.c:12082
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Longint *weights, SCIP_Longint capacity)
Definition: cons_knapsack.c:647
Definition: struct_lp.h:192
static SCIP_RETCODE eventdataCreate(SCIP *scip, SCIP_EVENTDATA **eventdata, SCIP_CONS *cons, SCIP_Longint weight)
Definition: cons_knapsack.c:337
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1308
public methods for LP management
static SCIP_RETCODE GUBsetCreate(SCIP *scip, SCIP_GUBSET **gubset, int nvars, SCIP_Longint *weights, SCIP_Longint capacity)
Definition: cons_knapsack.c:1921
public methods for cuts and aggregation rows
SCIP_VAR ** SCIPgetVarsKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13630
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1593
int SCIPconshdlrGetNActiveConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4628
Definition: type_var.h:45
SCIP_Bool SCIPisCutEfficacious(SCIP *scip, SCIP_SOL *sol, SCIP_ROW *cut)
Definition: scip_cut.c:88
SCIP_RETCODE SCIPaddConflictBinvar(SCIP *scip, SCIP_VAR *var)
Definition: scip_conflict.c:547
SCIP_Real SCIPgetDualsolKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13676
Definition: cons_knapsack.c:273
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8255
static void normalizeWeights(SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_knapsack.c:8288
Constraint handler for linear constraints in their most general form, .
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:694
SCIP_EXPORT SCIP_CLIQUE ** SCIPvarGetCliques(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:18030
SCIP_RETCODE SCIPcreateConsCardinality(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, int cardval, SCIP_VAR **indvars, SCIP_Real *weights, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_cardinality.c:3310
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:825
static SCIP_RETCODE prepareCons(SCIP *scip, SCIP_CONS *cons, int *nfixedvars, int *ndelconss, int *nchgcoefs)
Definition: cons_knapsack.c:9222
static SCIP_RETCODE deleteRedundantVars(SCIP *scip, SCIP_CONS *cons, SCIP_Longint frontsum, int splitpos, int *nchgcoefs, int *nchgsides, int *naddconss)
Definition: cons_knapsack.c:7849
static SCIP_RETCODE changePartitionCovervars(SCIP *scip, SCIP_Longint *weights, int *varsC1, int *varsC2, int *nvarsC1, int *nvarsC2)
Definition: cons_knapsack.c:2665
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:95
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:130
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1979
static SCIP_RETCODE dropEvents(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_knapsack.c:564
public methods for the LP relaxation, rows and columns
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2132
static SCIP_RETCODE dualPresolving(SCIP *scip, SCIP_CONS *cons, int *nfixedvars, int *ndelconss, SCIP_Bool *deleted)
Definition: cons_knapsack.c:6679
SCIP_EXPORT int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3193
SCIP_EXPORT void SCIPselectWeightedDownRealLongRealInt(SCIP_Real *realarray1, SCIP_Longint *longarray, SCIP_Real *realarray3, int *intarray, SCIP_Real *weights, SCIP_Real capacity, int len, int *medianpos)
static SCIP_RETCODE upgradeCons(SCIP *scip, SCIP_CONS *cons, int *ndelconss, int *naddconss)
Definition: cons_knapsack.c:7777
static SCIP_DECL_CONSSEPALP(consSepalpKnapsack)
Definition: cons_knapsack.c:12229
Definition: type_set.h:36
methods for sorting joint arrays of various types
SCIP_RETCODE SCIPgetSolVals(SCIP *scip, SCIP_SOL *sol, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_sol.c:1390
static SCIP_RETCODE sequentialUpAndDownLifting(SCIP *scip, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *varsM1, int *varsM2, int *varsF, int *varsR, int nvarsM1, int nvarsM2, int nvarsF, int nvarsR, int alpha0, int *liftcoefs, SCIP_Real *cutact, int *liftrhs)
Definition: cons_knapsack.c:3424
public methods for branching rule plugins and branching
static SCIP_RETCODE createNormalizedKnapsack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_knapsack.c:11827
static SCIP_DECL_LINCONSUPGD(linconsUpgdKnapsack)
Definition: cons_knapsack.c:11922
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:221
Definition: struct_misc.h:80
static SCIP_RETCODE GUBconsCreate(SCIP *scip, SCIP_GUBCONS **gubcons)
Definition: cons_knapsack.c:1679
public methods for managing events
general public methods
static SCIP_RETCODE GUBsetCheck(SCIP *scip, SCIP_GUBSET *gubset, SCIP_VAR **vars)
Definition: cons_knapsack.c:2002
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:812
static SCIP_DECL_CONSGETNVARS(consGetNVarsKnapsack)
Definition: cons_knapsack.c:13203
SCIP_Real SCIPgetDualfarkasKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13702
public methods for solutions
SCIP_EXPORT void SCIPsortDownPtrInt(void **ptrarray, int *intarray, SCIP_DECL_SORTPTRCOMP((*ptrcomp)), int len)
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *ndelconss)
Definition: cons_knapsack.c:11439
Definition: type_lp.h:48
public methods for the probing mode
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:786
constraint handler for cardinality constraints
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1641
static SCIP_Bool checkMinweightidx(SCIP_Longint *weights, SCIP_Longint capacity, int *covervars, int ncovervars, SCIP_Longint coverweight, int minweightidx, int j)
Definition: cons_knapsack.c:2573
SCIP_EXPORT int SCIPvarGetMultaggrNVars(SCIP_VAR *var)
Definition: var.c:17435
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4551
Definition: cons_knapsack.c:271
public methods for message output
SCIP_EXPORT SCIP_Real * SCIPvarGetVlbConstants(SCIP_VAR *var)
Definition: var.c:17891
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6902
Definition: type_var.h:84
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:74
static SCIP_DECL_CONSGETVARS(consGetVarsKnapsack)
Definition: cons_knapsack.c:13181
Definition: cons_knapsack.c:283
static SCIP_RETCODE GUBconsAddVar(SCIP *scip, SCIP_GUBCONS *gubcons, int var)
Definition: cons_knapsack.c:1718
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_knapsack.c:524
Definition: struct_implics.h:66
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:451
public methods for message handling
static SCIP_DECL_CONSSEPASOL(consSepasolKnapsack)
Definition: cons_knapsack.c:12303
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:477
static SCIP_RETCODE tightenWeights(SCIP *scip, SCIP_CONS *cons, SCIP_PRESOLTIMING presoltiming, int *nchgcoefs, int *nchgsides, int *naddconss, int *ndelconss, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:10301
static SCIP_DECL_CONSENFOLP(consEnfolpKnapsack)
Definition: cons_knapsack.c:12363
static SCIP_RETCODE removeZeroWeights(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:6470
Definition: cons_knapsack.c:270
SCIP_RETCODE SCIPsolveKnapsackApproximately(SCIP *scip, int nitems, SCIP_Longint *weights, SCIP_Real *profits, SCIP_Longint capacity, int *items, int *solitems, int *nonsolitems, int *nsolitems, int *nnonsolitems, SCIP_Real *solval)
Definition: cons_knapsack.c:1541
SCIP_EXPORT SCIP_BOUNDTYPE * SCIPvarGetImplTypes(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:17977
Definition: type_retcode.h:45
SCIP_EXPORT SCIP_Bool SCIPvarsHaveCommonClique(SCIP_VAR *var1, SCIP_Bool value1, SCIP_VAR *var2, SCIP_Bool value2, SCIP_Bool regardimplics)
Definition: var.c:11249
Definition: type_set.h:44
static SCIP_RETCODE makeCoverMinimal(SCIP *scip, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int *ncovervars, int *nnoncovervars, SCIP_Longint *coverweight, SCIP_Bool modtransused)
Definition: cons_knapsack.c:5254
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:345
SCIP_EXPORT SCIP_RETCODE SCIPvarGetProbvarBinary(SCIP_VAR **var, SCIP_Bool *negated)
Definition: var.c:12081
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:98
static SCIP_RETCODE getFeasibleSet(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, SCIP_VAR **vars, int nvars, int ntightened, SCIP_Longint *weights, SCIP_Longint capacity, SCIP_Real *solvals, int *covervars, int *noncovervars, int *ncovervars, int *nnoncovervars, SCIP_Longint *coverweight, SCIP_Bool modtransused, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5403
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, int *ndelconss)
Definition: cons_knapsack.c:11563
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_knapsack.c:511
public methods for separators
Definition: type_retcode.h:35
SCIP_RETCODE SCIPcreateConsSetpack(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_setppc.c:9113
SCIP_RETCODE SCIPaddCoefKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Longint weight)
Definition: cons_knapsack.c:13528
static SCIP_RETCODE eventdataFree(SCIP *scip, SCIP_EVENTDATA **eventdata)
Definition: cons_knapsack.c:355
static SCIP_RETCODE detectRedundantVars(SCIP *scip, SCIP_CONS *cons, int *ndelconss, int *nchgcoefs, int *nchgsides, int *naddconss)
Definition: cons_knapsack.c:8100
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:199
SCIP_EXPORT int SCIPvarGetNCliques(SCIP_VAR *var, SCIP_Bool varfixing)
Definition: var.c:18019
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1697
Definition: type_retcode.h:43
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1110
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17692
SCIP_RETCODE SCIPincludeConshdlrKnapsack(SCIP *scip)
Definition: cons_knapsack.c:13284
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:793
Definition: objbenders.h:33
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:266
SCIP_RETCODE SCIPcalcIntegralScalar(SCIP_Real *vals, int nvals, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Real maxscale, SCIP_Real *intscalar, SCIP_Bool *success)
Definition: misc.c:9444
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyKnapsack)
Definition: cons_knapsack.c:11961
public methods for global and local (sub)problems
Definition: type_var.h:43
SCIP_EXPORT SCIP_Real * SCIPvarGetVubConstants(SCIP_VAR *var)
Definition: var.c:17933
static SCIP_RETCODE changePartitionFeasiblesetvars(SCIP *scip, SCIP_Longint *weights, int *varsC1, int *varsC2, int *nvarsC1, int *nvarsC2)
Definition: cons_knapsack.c:2705
static SCIP_RETCODE tightenWeightsLift(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, SCIP_Bool *cutoff)
Definition: cons_knapsack.c:9737
SCIP_Bool SCIPisEfficacious(SCIP *scip, SCIP_Real efficacy)
Definition: scip_cut.c:106
static SCIP_RETCODE addCliques(SCIP *const scip, SCIP_CONS *const cons, SCIP_Real cliqueextractfactor, SCIP_Bool *const cutoff, int *const nbdchgs)
Definition: cons_knapsack.c:11203
SCIP_EXPORT SCIP_VAR ** SCIPvarGetMultaggrVars(SCIP_VAR *var)
Definition: var.c:17447
Definition: type_result.h:39
Definition: struct_event.h:195
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:609
SCIP_Longint SCIPgetCapacityKnapsack(SCIP *scip, SCIP_CONS *cons)
Definition: cons_knapsack.c:13550
SCIP_RETCODE SCIPcreateEmptyRowSepa(SCIP *scip, SCIP_ROW **row, SCIP_SEPA *sepa, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1399
SCIP_Longint SCIPconshdlrGetNCutsFound(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4858
static void computeMinweightsGUB(SCIP_Longint *minweights, SCIP_Longint *finished, SCIP_Longint *unfinished, int minweightslen)
Definition: cons_knapsack.c:3821
methods for selecting (weighted) k-medians
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:850
SCIP_RETCODE SCIPsetConsChecked(SCIP *scip, SCIP_CONS *cons, SCIP_Bool check)
Definition: scip_cons.c:1283
SCIP_RETCODE SCIPhashmapSetImageInt(SCIP_HASHMAP *hashmap, void *origin, int image)
Definition: misc.c:3296
memory allocation routines