cons_linear.c
Go to the documentation of this file.
17 * @brief Constraint handler for linear constraints in their most general form, \f$lhs <= a^T x <= rhs\f$.
47 /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/
92 #define CONSHDLR_ENFOPRIORITY -1000000 /**< priority of the constraint handler for constraint enforcing */
93 #define CONSHDLR_CHECKPRIORITY -1000000 /**< priority of the constraint handler for checking feasibility */
94 #define CONSHDLR_SEPAFREQ 0 /**< frequency for separating cuts; zero means to separate only in the root node */
95 #define CONSHDLR_PROPFREQ 1 /**< frequency for propagating domains; zero means only preprocessing propagation */
96 #define CONSHDLR_EAGERFREQ 100 /**< frequency for using all instead of only the useful constraints in separation,
98 #define CONSHDLR_MAXPREROUNDS -1 /**< maximal number of presolving rounds the constraint handler participates in (-1: no limit) */
99 #define CONSHDLR_DELAYSEPA FALSE /**< should separation method be delayed, if other separators found cuts? */
100 #define CONSHDLR_DELAYPROP FALSE /**< should propagation method be delayed, if other propagators found reductions? */
101 #define CONSHDLR_NEEDSCONS TRUE /**< should the constraint handler be skipped, if no constraints are available? */
103 #define CONSHDLR_PRESOLTIMING (SCIP_PRESOLTIMING_FAST | SCIP_PRESOLTIMING_EXHAUSTIVE) /**< presolving timing of the constraint handler (fast, medium, or exhaustive) */
113 #define DEFAULT_TIGHTENBOUNDSFREQ 1 /**< multiplier on propagation frequency, how often the bounds are tightened */
114 #define DEFAULT_MAXROUNDS 5 /**< maximal number of separation rounds per node (-1: unlimited) */
115 #define DEFAULT_MAXROUNDSROOT -1 /**< maximal number of separation rounds in the root node (-1: unlimited) */
117 #define DEFAULT_MAXSEPACUTSROOT 200 /**< maximal number of cuts separated per separation round in root node */
118 #define DEFAULT_PRESOLPAIRWISE TRUE /**< should pairwise constraint comparison be performed in presolving? */
119 #define DEFAULT_PRESOLUSEHASHING TRUE /**< should hash table be used for detecting redundant constraints in advance */
120 #define DEFAULT_NMINCOMPARISONS 200000 /**< number for minimal pairwise presolving comparisons */
121 #define DEFAULT_MINGAINPERNMINCOMP 1e-06 /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise
123 #define DEFAULT_SORTVARS TRUE /**< should variables be sorted after presolve w.r.t their coefficient absolute for faster
125 #define DEFAULT_CHECKRELMAXABS FALSE /**< should the violation for a constraint with side 0.0 be checked relative
127 #define DEFAULT_MAXAGGRNORMSCALE 0.0 /**< maximal allowed relative gain in maximum norm for constraint aggregation
129 #define DEFAULT_MAXEASYACTIVITYDELTA 1e6 /**< maximum activity delta to run easy propagation on linear constraint
131 #define DEFAULT_MAXCARDBOUNDDIST 0.0 /**< maximal relative distance from current node's dual bound to primal bound compared
133 #define DEFAULT_SEPARATEALL FALSE /**< should all constraints be subject to cardinality cut generation instead of only
135 #define DEFAULT_AGGREGATEVARIABLES TRUE /**< should presolving search for redundant variables in equations */
136 #define DEFAULT_SIMPLIFYINEQUALITIES TRUE /**< should presolving try to simplify inequalities */
138 #define DEFAULT_SINGLETONSTUFFING TRUE /**< should stuffing of singleton continuous variables be performed? */
139 #define DEFAULT_SINGLEVARSTUFFING FALSE /**< should single variable stuffing be performed, which tries to fulfill
141 #define DEFAULT_DETECTCUTOFFBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
144 #define DEFAULT_DETECTLOWERBOUND TRUE /**< should presolving try to detect constraints parallel to the objective
147 #define DEFAULT_DETECTPARTIALOBJECTIVE TRUE/**< should presolving try to detect subsets of constraints parallel to the
150 #define DEFAULT_RANGEDROWARTCONS TRUE /**< should presolving and propagation extract sub-constraints from ranged rows and equations? */
154 #define DEFAULT_MULTAGGRREMOVE FALSE /**< should multi-aggregations only be performed if the constraint can be
159 #define MAXSCALEDCOEFINTEGER 1e+05 /**< maximal coefficient value after scaling if all variables are of integral
163 #define MAXVALRECOMP 1e+06 /**< maximal abolsute value we trust without recomputing the activity */
164 #define MINVALRECOMP 1e-05 /**< minimal abolsute value we trust without recomputing the activity */
167 #define QUADCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of quadratic constraints */
168 #define NONLINCONSUPGD_PRIORITY 1000000 /**< priority of the constraint handler for upgrading of nonlinear constraints */
170 /* @todo add multi-aggregation of variables that are in exactly two equations (, if not numerically an issue),
182 SCIP_Real minactivity; /**< minimal value w.r.t. the variable's local bounds for the constraint's
184 SCIP_Real maxactivity; /**< maximal value w.r.t. the variable's local bounds for the constraint's
190 SCIP_Real glbminactivity; /**< minimal value w.r.t. the variable's global bounds for the constraint's
192 SCIP_Real glbmaxactivity; /**< maximal value w.r.t. the variable's global bounds for the constraint's
194 SCIP_Real lastglbminactivity; /**< last global minimal activity which was computed by complete summation
196 SCIP_Real lastglbmaxactivity; /**< last global maximal activity which was computed by complete summation
198 SCIP_Real maxactdelta; /**< maximal activity contribution of a single variable, or SCIP_INVALID if invalid */
199 SCIP_VAR* maxactdeltavar; /**< variable with maximal activity contribution, or NULL if invalid */
206 int minactivityneginf; /**< number of coefficients contributing with neg. infinite value to minactivity */
207 int minactivityposinf; /**< number of coefficients contributing with pos. infinite value to minactivity */
208 int maxactivityneginf; /**< number of coefficients contributing with neg. infinite value to maxactivity */
209 int maxactivityposinf; /**< number of coefficients contributing with pos. infinite value to maxactivity */
210 int minactivityneghuge; /**< number of coefficients contributing with huge neg. value to minactivity */
211 int minactivityposhuge; /**< number of coefficients contributing with huge pos. value to minactivity */
212 int maxactivityneghuge; /**< number of coefficients contributing with huge neg. value to maxactivity */
213 int maxactivityposhuge; /**< number of coefficients contributing with huge pos. value to maxactivity */
214 int glbminactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbminactivity */
215 int glbminactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbminactivity */
216 int glbmaxactivityneginf;/**< number of coefficients contrib. with neg. infinite value to glbmaxactivity */
217 int glbmaxactivityposinf;/**< number of coefficients contrib. with pos. infinite value to glbmaxactivity */
218 int glbminactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbminactivity */
219 int glbminactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbminactivity */
220 int glbmaxactivityneghuge;/**< number of coefficients contrib. with huge neg. value to glbmaxactivity */
221 int glbmaxactivityposhuge;/**< number of coefficients contrib. with huge pos. value to glbmaxactivity */
228 unsigned int rangedrowpropagated:2; /**< did we perform ranged row propagation on this constraint?
240 unsigned int changed:1; /**< was constraint changed since last aggregation round in preprocessing? */
243 unsigned int upgraded:1; /**< is the constraint upgraded and will it be removed after preprocessing? */
248 unsigned int binvarssorted:1; /**< are binary variables sorted w.r.t. the absolute of their coefficient? */
250 unsigned int hascontvar:1; /**< does the constraint contain at least one continuous variable? */
251 unsigned int hasnonbinvar:1; /**< does the constraint contain at least one non-binary variable? */
252 unsigned int hasnonbinvalid:1; /**< is the information stored in hasnonbinvar and hascontvar valid? */
253 unsigned int checkabsolute:1; /**< should the constraint be checked w.r.t. an absolute feasibilty tolerance? */
268 SCIP_LINCONSUPGRADE** linconsupgrades; /**< linear constraint upgrade methods for specializing linear constraints */
269 SCIP_Real maxaggrnormscale; /**< maximal allowed relative gain in maximum norm for constraint aggregation
271 SCIP_Real maxcardbounddist; /**< maximal relative distance from current node's dual bound to primal bound compared
273 SCIP_Real mingainpernmincomp; /**< minimal gain per minimal pairwise presolving comparisons to repeat pairwise comparison round */
274 SCIP_Real maxeasyactivitydelta;/**< maximum activity delta to run easy propagation on linear constraint
278 int tightenboundsfreq; /**< multiplier on propagation frequency, how often the bounds are tightened */
285 SCIP_Bool presolpairwise; /**< should pairwise constraint comparison be performed in presolving? */
286 SCIP_Bool presolusehashing; /**< should hash table be used for detecting redundant constraints in advance */
287 SCIP_Bool separateall; /**< should all constraints be subject to cardinality cut generation instead of only
289 SCIP_Bool aggregatevariables; /**< should presolving search for redundant variables in equations */
290 SCIP_Bool simplifyinequalities;/**< should presolving try to cancel down or delete coefficients in inequalities */
292 SCIP_Bool singletonstuffing; /**< should stuffing of singleton continuous variables be performed? */
293 SCIP_Bool singlevarstuffing; /**< should single variable stuffing be performed, which tries to fulfill
296 SCIP_Bool checkrelmaxabs; /**< should the violation for a constraint with side 0.0 be checked relative
298 SCIP_Bool detectcutoffbound; /**< should presolving try to detect constraints parallel to the objective
301 SCIP_Bool detectlowerbound; /**< should presolving try to detect constraints parallel to the objective
304 SCIP_Bool detectpartialobjective;/**< should presolving try to detect subsets of constraints parallel to
306 SCIP_Bool rangedrowpropagation;/**< should presolving and propagation try to improve bounds, detect
309 SCIP_Bool rangedrowartcons; /**< should presolving and propagation extract sub-constraints from ranged rows and equations?*/
312 SCIP_Bool multaggrremove; /**< should multi-aggregations only be performed if the constraint can be
335 PROPRULE_1_RANGEDROW = 3, /**< fixed variables and gcd of all left variables tighten bounds of a
338 };
350 } asbits;
352 } val;
415 /** constructs an inference information out of a propagation rule and a position number, returns info as int */
447 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &conshdlrdata->linconsupgrades, conshdlrdata->linconsupgradessize, newsize) );
449 }
476 SCIP_CALL( SCIPreallocBlockMemoryArray(scip, &consdata->eventdata, consdata->varssize, newsize) );
509 }
544 (*conshdlrdata)->eventhdlr = eventhdlr;
566 SCIPfreeBlockMemoryArrayNull(scip, &(*conshdlrdata)->linconsupgrades, (*conshdlrdata)->linconsupgradessize);
590 {
592 SCIPwarningMessage(scip, "Try to add already known upgrade message %p for constraint handler %s.\n", linconsupgd, conshdlrname);
615 SCIP_CALL( conshdlrdataEnsureLinconsupgradesSize(scip, conshdlrdata, conshdlrdata->nlinconsupgrades+1) );
620 conshdlrdata->linconsupgrades[i] = conshdlrdata->linconsupgrades[i-1];
633 /** installs rounding locks for the given variable associated to the given coefficient in the linear constraint */
666 /** removes rounding locks for the given variable associated to the given coefficient in the linear constraint */
906 if( SCIPisConsCompressionEnabled(scip) && SCIPisEQ(scip, SCIPvarGetLbGlobal(var), SCIPvarGetUbGlobal(var)) )
948 /* due to compressed copying, we may have fixed variables contributing to the left and right hand side */
1019 SCIP_CALL( SCIPgetTransformedVars(scip, (*consdata)->nvars, (*consdata)->vars, (*consdata)->vars) );
1091 SCIP_CALL( SCIPwriteVarsLinearsum(scip, file, consdata->vars, consdata->vals, consdata->nvars, TRUE) );
1124 SCIPmessageFPrintInfo(SCIPgetMessagehdlr(scip), file, " [%s] <%s>: ", SCIPconshdlrGetName(SCIPconsGetHdlr(cons)), SCIPconsGetName(cons));
1244 {
1246 bound = (SCIPvarGetBestBoundType(consdata->vars[i]) == SCIP_BOUNDTYPE_LOWER) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1292 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbLocal(consdata->vars[i]) : SCIPvarGetUbLocal(consdata->vars[i]);
1294 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1319 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbLocal(consdata->vars[i]) : SCIPvarGetLbLocal(consdata->vars[i]);
1321 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1346 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetLbGlobal(consdata->vars[i]) : SCIPvarGetUbGlobal(consdata->vars[i]);
1348 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1373 bound = (consdata->vals[i] > 0.0 ) ? SCIPvarGetUbGlobal(consdata->vars[i]) : SCIPvarGetLbGlobal(consdata->vars[i]);
1375 && !SCIPisHugeValue(scip, consdata->vals[i] * bound) && !SCIPisHugeValue(scip, -consdata->vals[i] * bound) )
1439 /** checks the type of all variables of the constraint and sets hasnonbinvar and hascontvar flags accordingly */
1534 {
1588 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1640 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1642 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1696 * lower bound + neg. coef: update maxactivity, positive and negative infinity counters have to be switched
1698 * upper bound + neg. coef: update minactivity, positive and negative infinity counters have to be switched
1766 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1794 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1819 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1825 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1828 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1834 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1837 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1852 * but checking here that the bound is not huge again would not handle a change from a huge to an infinite bound
1858 /* if the bound changed to +infinity, increase the counter for positive infinite contributions */
1861 /* if the bound changed to -infinity, increase the counter for negative infinite contributions */
1867 /* if the contribution of this variable is too large and positive, increase the corresponding counter */
1870 /* if the contribution of this variable is too large and negative, increase the corresponding counter */
1922 /* update the activity, if the current value is valid and there was a change in the finite part */
1971 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
1980 consdataUpdateActivities(scip, consdata, var, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, FALSE, checkreliability);
1982 assert(!SCIPisInfinity(scip, -consdata->minactivity) && !SCIPisInfinity(scip, consdata->minactivity));
1983 assert(!SCIPisInfinity(scip, -consdata->maxactivity) && !SCIPisInfinity(scip, consdata->maxactivity));
1996 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2005 consdataUpdateActivities(scip, consdata, var, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, FALSE, checkreliability);
2007 assert(!SCIPisInfinity(scip, -consdata->minactivity) && !SCIPisInfinity(scip, consdata->minactivity));
2008 assert(!SCIPisInfinity(scip, -consdata->maxactivity) && !SCIPisInfinity(scip, consdata->maxactivity));
2020 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2028 consdataUpdateActivities(scip, consdata, NULL, oldlb, newlb, val, SCIP_BOUNDTYPE_LOWER, TRUE, checkreliability);
2030 assert(!SCIPisInfinity(scip, -consdata->glbminactivity) && !SCIPisInfinity(scip, consdata->glbminactivity));
2031 assert(!SCIPisInfinity(scip, -consdata->glbmaxactivity) && !SCIPisInfinity(scip, consdata->glbmaxactivity));
2043 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2051 consdataUpdateActivities(scip, consdata, NULL, oldub, newub, val, SCIP_BOUNDTYPE_UPPER, TRUE, checkreliability);
2053 assert(!SCIPisInfinity(scip, -consdata->glbminactivity) && !SCIPisInfinity(scip, consdata->glbminactivity));
2054 assert(!SCIPisInfinity(scip, -consdata->glbmaxactivity) && !SCIPisInfinity(scip, consdata->glbmaxactivity));
2058 /** updates minimum and maximum activity and maximum absolute value for coefficient addition */
2065 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2101 consdataUpdateActivitiesLb(scip, consdata, var, 0.0, SCIPvarGetLbLocal(var), val, checkreliability);
2102 consdataUpdateActivitiesUb(scip, consdata, var, 0.0, SCIPvarGetUbLocal(var), val, checkreliability);
2103 consdataUpdateActivitiesGlbLb(scip, consdata, 0.0, SCIPvarGetLbGlobal(var), val, checkreliability);
2104 consdataUpdateActivitiesGlbUb(scip, consdata, 0.0, SCIPvarGetUbGlobal(var), val, checkreliability);
2108 /** updates minimum and maximum activity for coefficient deletion, invalidates maximum absolute value if necessary */
2115 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2158 consdataUpdateActivitiesLb(scip, consdata, var, SCIPvarGetLbLocal(var), 0.0, val, checkreliability);
2159 consdataUpdateActivitiesUb(scip, consdata, var, SCIPvarGetUbLocal(var), 0.0, val, checkreliability);
2160 consdataUpdateActivitiesGlbLb(scip, consdata, SCIPvarGetLbGlobal(var), 0.0, val, checkreliability);
2161 consdataUpdateActivitiesGlbUb(scip, consdata, SCIPvarGetUbGlobal(var), 0.0, val, checkreliability);
2165 /** updates minimum and maximum activity for coefficient change, invalidates maximum absolute value if necessary */
2173 SCIP_Bool checkreliability /**< should the reliability of the recalculated activity be checked? */
2253 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
2259 /* @todo do something more clever here, e.g. if oldval * newval >= 0, do the update directly */
2358 /** gets minimal activity for constraint and given values of counters for infinite and huge contributions
2359 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2372 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2376 SCIP_Bool* issettoinfinity /**< pointer to store whether minactivity was set to infinity or calculated */
2403 /* if we have neg. huge contributions, we only know that -infty is a relaxation of the minactivity */
2410 /* we do not need a good relaxation and we have positve huge contributions, so we just return -infty as activity */
2441 * times the minimum value counting as "huge" plus finite (and non-huge) part of minactivity - delta
2459 /** gets maximal activity for constraint and given values of counters for infinite and huge contributions
2460 * and (if needed) delta to subtract from stored finite part of activity in case of a residual activity
2473 SCIP_Bool goodrelax, /**< should a good relaxation be computed or are relaxed acticities ignored, anyway? */
2477 SCIP_Bool* issettoinfinity /**< pointer to store whether maxactivity was set to infinity or calculated */
2504 /* if we have pos. huge contributions, we only know that +infty is a relaxation of the maxactivity */
2511 /* we do not need a good relaxation and we have positve huge contributions, so we just return +infty as activity */
2542 * times the minimum value counting as "huge" plus the finite (and non-huge) part of maxactivity minus delta
2569 SCIP_Bool* minisrelax, /**< pointer to store whether the returned minactivity is just a relaxation,
2572 SCIP_Bool* maxisrelax /**< pointer to store whether the returned maxactivity is just a relaxation,
2698 SCIP_Bool* minisrelax, /**< pointer to store whether the returned residual minactivity is just a
2701 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned residual maxactivity is just a
2704 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2705 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2706 )
2753 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2754 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2791 consdata->minactivityposhuge, consdata->minactivityneghuge, absval * minactbound, FALSE, goodrelax,
2795 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
2796 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2833 consdata->maxactivityposhuge, consdata->maxactivityneghuge, absval * maxactbound, FALSE, goodrelax,
2845 SCIP_Real* glbminactivity, /**< pointer to store the minimal activity, or NULL, if not needed */
2846 SCIP_Real* glbmaxactivity, /**< pointer to store the maximal activity, or NULL, if not needed */
2847 SCIP_Bool* minisrelax, /**< pointer to store whether the returned minactivity is just a relaxation,
2850 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned maxactivity is just a relaxation,
2853 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2854 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2909 SCIP_Real* minresactivity, /**< pointer to store the minimal residual activity, or NULL, if not needed */
2910 SCIP_Real* maxresactivity, /**< pointer to store the maximal residual activity, or NULL, if not needed */
2911 SCIP_Bool* minisrelax, /**< pointer to store whether the returned residual minactivity is just a
2914 SCIP_Bool* maxisrelax, /**< pointer to store whether the returned residual maxactivity is just a
2917 SCIP_Bool* isminsettoinfinity, /**< pointer to store whether minresactivity was set to infinity or calculated */
2918 SCIP_Bool* ismaxsettoinfinity /**< pointer to store whether maxresactivity was set to infinity or calculated */
2919 )
2960 /* get/compute minactivity by calling getMinActivity() with updated counters for infinite and huge values
2961 * and contribution of variable set to zero that has to be subtracted from finite part of activity
2967 getMinActivity(scip, consdata, consdata->glbminactivityposinf - 1, consdata->glbminactivityneginf,
2975 getMinActivity(scip, consdata, consdata->glbminactivityposinf, consdata->glbminactivityneginf - 1,
3008 /* get/compute maxactivity by calling getMaxActivity() with updated counters for infinite and huge values
3009 * and contribution of variable set to zero that has to be subtracted from finite part of activity
3015 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf, consdata->glbmaxactivityneginf - 1,
3023 getMaxActivity(scip, consdata, consdata->glbmaxactivityposinf - 1, consdata->glbmaxactivityneginf,
3090 else if( (SCIPisInfinity(scip, solval) && negsign) || (SCIPisInfinity(scip, -solval) && !negsign) )
3097 SCIPdebugMsg(scip, "activity of linear constraint: %.15g, %d positive infinity values, %d negative infinity values \n", activity, nposinf, nneginf);
3139 }
3186 /** index comparison method of linear constraints: compares two indices of the variable set in the linear constraint */
3205 )
3323 /* count binary variables and permute variables such that binaries appear first in the sorted vars array */
3372 assert((v >= consdata->nbinvars && !SCIPvarIsBinary(vars[v])) || (v < consdata->nbinvars && SCIPvarIsBinary(vars[v])));
3469 /* the left hand side switched from -infinity to a non-infinite value -> install rounding locks */
3494 /* the left hand side switched from a non-infinite value to -infinity -> remove rounding locks */
3515 /* check whether the left hand side is increased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3597 /* the right hand side switched from infinity to a non-infinite value -> install rounding locks */
3622 /* the right hand side switched from a non-infinite value to infinity -> remove rounding locks */
3643 /* check whether the right hand side is decreased, if and only if that's the case we maybe can propagate, tighten and add more cliques */
3801 && (SCIPvarCompare(consdata->vars[consdata->nvars-2], consdata->vars[consdata->nvars-1]) <= 0);
3847 var = consdata->vars[pos];
3888 consdata->sorted = consdata->sorted && (pos + 2 >= consdata->nvars || (SCIPvarCompare(consdata->vars[pos], consdata->vars[pos + 1]) <= 0));
3892 /* if at most one variable is left, the activities should be recalculated (to correspond exactly to the bounds
3904 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4048 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4056 SCIPwarningMessage(scip, "coefficient %.15g of variable <%s> in linear constraint <%s> scaled to zero (scalar: %.15g)\n",
4078 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasFloor, we add an additional 0.5 before
4090 /* because SCIPisScalingIntegral uses another integrality check as SCIPfeasCeil, we subtract 0.5 before ceiling up
4152 * Apply the following rules in the given order, until the sign of the factor is determined. Later rules only apply,
4157 * 4. the number of positive coefficients must not be smaller than the number of negative coefficients
4160 * Try to identify a rational representation of the fractional coefficients, and multiply all coefficients
4254 SCIPdebugMsg(scip, "divide linear constraint with %g, because all coefficients are in absolute value the same\n", maxabsval);
4299 epsilon = SCIPepsilon(scip) * 0.9; /* slightly decrease epsilon to be safe in rational conversion below */
4358 /* 3. the absolute value of the right hand side must be greater than that of the left hand side */
4367 /* 4. the number of positive coefficients must not be smaller than the number of negative coefficients */
4420 /* it might be that we have really big coefficients, but all are integral, in that case we want to divide them by
4440 SCIPdebugMsg(scip, "scale linear constraint with %" SCIP_LONGINT_FORMAT " to make coefficients integral\n", scm);
4489 /* since the lhs/rhs is not respected for gcd calculation it can happen that we detect infeasibility */
4492 if( SCIPisEQ(scip, consdata->lhs, consdata->rhs) && !SCIPisFeasIntegral(scip, consdata->rhs / gcd) )
4504 SCIPdebugMsg(scip, "divide linear constraint by greatest common divisor %" SCIP_LONGINT_FORMAT "\n", gcd);
4577 /* if the variable defining the maximal activity delta was removed from the constraint, the maximal activity
4785 if( SCIPisEQ(scip, lhssubtrahend, consdata->lhs) && SCIPisFeasGE(scip, REALABS(lhssubtrahend), 1.0) )
4801 if( SCIPisEQ(scip, rhssubtrahend, consdata->rhs ) && SCIPisFeasGE(scip, REALABS(rhssubtrahend), 1.0) )
4816 /* if aggregated variables have been replaced, multiple entries of the same variable are possible and we have
4835 /** for each variable in the linear constraint, except the inferred variable, adds one bound to the conflict analysis'
4836 * candidate store (bound depends on sign of coefficient and whether the left or right hand side was the reason for the
4837 * inference variable's bound change); the conflict analysis can be initialized with the linear constraint being the
4845 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
4874 /* for each variable, add the bound to the conflict queue, that is responsible for the minimal or maximal
4875 * residual value, depending on whether the left or right hand side is responsible for the bound change:
4880 /* if the variable is integral we only need to add reason bounds until the propagation could be applied */
4893 /* calculate the minimal and maximal global activity of all other variables involved in the constraint */
4898 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, &minresactivity, NULL,
4901 consdataGetGlbActivityResiduals(scip, consdata, infervar, vals[inferpos], FALSE, NULL, &maxresactivity,
4915 if( (reasonisrhs && !isminsettoinfinity && !minisrelax) || (!reasonisrhs && !ismaxsettoinfinity && !maxisrelax) ) /*lint !e644*/
4922 /* calculate the residual capacity that would be left, if the variable would be set to one more / one less
4977 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound */
4979 rescap -= vals[i] * (SCIPgetVarLbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetLbGlobal(vars[i]));
4983 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound */
4985 rescap -= vals[i] * (SCIPgetVarUbAtIndex(scip, vars[i], bdchgidx, FALSE) - SCIPvarGetUbGlobal(vars[i]));
5005 /* rhs is reason and coeff is positive, or lhs is reason and coeff is negative -> lower bound is responsible */
5010 /* lhs is reason and coeff is positive, or rhs is reason and coeff is negative -> upper bound is responsible */
5018 /** for each variable in the linear ranged row constraint, except the inferred variable, adds the bounds of all fixed
5019 * variables to the conflict analysis' candidate store; the conflict analysis can be initialized
5020 * with the linear constraint being the conflict detecting constraint by using NULL as inferred variable
5027 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5059 if( !SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetLbGlobal(vars[v])) )
5065 if( !SCIPisEQ(scip, SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPvarGetUbGlobal(vars[v])) )
5075 if( SCIPisEQ(scip, SCIPgetVarLbAtIndex(scip, vars[v], bdchgidx, FALSE), SCIPgetVarUbAtIndex(scip, vars[v], bdchgidx, FALSE)) )
5077 /* add all bounds of fixed variables which lead to the boundchange of the given inference variable */
5134 /** resolves a propagation on the given variable by supplying the variables needed for applying the corresponding
5145 SCIP_BDCHGIDX* bdchgidx, /**< bound change index (time stamp of bound change), or NULL for current time */
5146 SCIP_RESULT* result /**< pointer to store the result of the propagation conflict resolving call */
5187 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5188 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5197 /* the bound of the variable was tightened, because the minimal or maximal residual activity of the linear
5198 * constraint (only taking the other variables into account) didn't leave enough space for a larger
5207 /* the bound of the variable was tightened, because some variables were already fixed and the leftover only allow
5219 SCIPerrorMessage("invalid inference information %d in linear constraint <%s> at position %d for %s bound of variable <%s>\n",
5230 /** analyzes conflicting bounds on given constraint, and adds conflict constraint to problem */
5239 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5245 /* add the conflicting bound for each variable of infeasible constraint to conflict candidate queue */
5273 + consdata->maxactivityposinf
5294 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5318 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
5319 SCIPconsGetName(cons), SCIPvarGetName(var), lb, oldub, consdata->vals[pos], consdata->minactivity, consdata->maxactivity, consdata->lhs, consdata->rhs, newub);
5324 SCIP_CALL( SCIPinferVarUbCons(scip, var, newub, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5363 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5387 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, activity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
5388 SCIPconsGetName(cons), SCIPvarGetName(var), oldlb, ub, consdata->vals[pos], consdata->minactivity, consdata->maxactivity, consdata->lhs, consdata->rhs, newlb);
5393 SCIP_CALL( SCIPinferVarLbCons(scip, var, newlb, cons, getInferInt(proprule, pos), force, &infeasible, &tightened) );
5429 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
5492 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5504 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5541 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5553 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5589 /* if the minactivity is larger than the right hand side by feasibility epsilon, the constraint is infeasible */
5601 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5637 /* if the maxactivity is smaller than the left hand side by feasibility epsilon, the constraint is infeasible */
5649 /* if the slack is zero in tolerances (or negative, but not enough to make the constraint infeasible), we set
5681 /** analyzes conflicting bounds on given ranged row constraint, and adds conflict constraint to problem */
5704 if( (SCIPgetStage(scip) != SCIP_STAGE_SOLVING && !SCIPinProbing(scip)) || !SCIPisConflictAnalysisApplicable(scip) )
5710 /* add the conflicting fixed variables of this ranged row constraint to conflict candidate queue */
5724 * Check ranged rows for possible solutions, possibly detect infeasibility, fix variables due to having only one possible
5725 * solution, tighten bounds if having only two possible solutions or add constraints which propagate a subset of
5810 addartconss = conshdlrdata->rangedrowartcons && SCIPgetDepth(scip) < 1 && !SCIPinProbing(scip) && !SCIPinRepropagation(scip);
5815 /* we are not allowed to add artificial constraints during propagation; if nothing changed on this constraint since
5816 * the last rangedrowpropagation, we can stop; otherwise, we mark this constraint to be rangedrowpropagated without
5834 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5863 * coefficient so that all variables in this group will have a gcd greater than 1, this group will be implicitly
5866 * the second group will contain all left unfixed variables and will be saved as infcheckvars with corresponding
5867 * coefficients as infcheckvals, the order of these variables should be the same as in the consdata object
5870 /* find first integral variables with integral coefficient greater than 1, thereby collecting all other unfixed
5880 /* partition the variables, do not change the order of collection, because it might be used later on */
5884 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5912 while( v < consdata->nvars && SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) );
5926 assert(!SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])));
5927 assert(SCIPisIntegral(scip, consdata->vals[v]) && SCIPvarGetType(consdata->vars[v]) != SCIP_VARTYPE_CONTINUOUS && REALABS(consdata->vals[v]) > 1.5);
5934 /* go on to partition the variables, do not change the order of collection, because it might be used later on;
5938 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
5951 if( !SCIPisIntegral(scip, consdata->vals[v]) || SCIPvarGetType(consdata->vars[v]) == SCIP_VARTYPE_CONTINUOUS ||
5990 /* it should not happen that all variables are of integral type and have a gcd >= 2, this should be done by
6049 SCIPdebugMsg(scip, "minactinfvarsinvalid = %u, minactinfvars = %g, maxactinfvarsinvalid = %u, maxactinfvars = %g, gcd = %lld, ninfcheckvars = %d, ncontvars = %d\n",
6050 minactinfvarsinvalid, minactinfvars, maxactinfvarsinvalid, maxactinfvars, gcd, ninfcheckvars, ncontvars);
6052 /* @todo maybe we took the wrong variables as infcheckvars we could try to exchange integer variables */
6053 /* @todo if minactinfvarsinvalid or maxactinfvarsinvalid are true, try to exchange both partitions to maybe get valid
6055 /* @todo calculate minactivity and maxactivity for all non-intcheckvars, and use this for better bounding,
6057 * that therefore the conflict variables in addConflictFixedVars() need to be extended by all variables which
6061 /* check if between left hand side and right hand side exist a feasible point, if not the constraint leads to
6066 SCIPdebugMsg(scip, "no feasible value exist, constraint <%s> lead to infeasibility", SCIPconsGetName(cons));
6071 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6088 gcdinfvars = SCIPcalcGreComDiv(gcdinfvars, (SCIP_Longint)(REALABS(infcheckvals[v]) + feastol));
6096 /* compute solutions for this ranged row, if all variables are of integral type with integral coefficients */
6153 SCIPdebugMsg(scip, "here nsols %s %d, minsolvalue = %g, maxsolvalue = %g, ninfcheckvars = %d, nunfixedvars = %d\n",
6161 SCIPdebugMsg(scip, "no solution found; constraint <%s> lead to infeasibility\n", SCIPconsGetName(cons));
6166 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6194 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6215 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6227 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6309 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6316 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6321 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals,
6373 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6394 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, NULL, SCIP_INVALID) );
6416 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6428 if( SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v2]), SCIPvarGetUbLocal(consdata->vars[v2])) )
6535 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newlb) );
6556 SCIP_CALL( analyzeConflictRangedRow(scip, cons, infcheckvars, ninfcheckvars, consdata->vars[v], newub) );
6564 /* at least two solutions and more than one variable, so we add a new constraint which bounds the feasible
6567 else if( addartconss && (SCIPisGT(scip, minvalue, minactinfvars) || SCIPisLT(scip, maxvalue, maxactinfvars)) )
6589 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons1_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6594 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6603 /* @todo maybe add constraint for all variables which are not infcheckvars, lhs should be minvalue, rhs
6624 if( !SCIPisEQ(scip, SCIPvarGetLbLocal(consdata->vars[v]), SCIPvarGetUbLocal(consdata->vars[v])) )
6674 if( v == consdata->nvars && !SCIPisHugeValue(scip, -minact) && !SCIPisHugeValue(scip, maxact) )
6689 (void)SCIPsnprintf(name, SCIP_MAXSTRLEN, "%s_artcons2_%d", SCIPconsGetName(cons), conshdlrdata->naddconss);
6694 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, name, ninfcheckvars, infcheckvars, infcheckvals, newlhs, newrhs,
6720 SCIP_Bool force /**< should a possible bound change be forced even if below bound strengthening tolerance */
6763 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
6784 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6795 (!SCIPisUbBetter(scip, newub, lb, ub) && (!SCIPisFeasLT(scip, newub, ub) || !SCIPvarIsIntegral(var))
6802 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newub=%.15g\n",
6803 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6819 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6836 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6851 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6852 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6868 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6886 ((force && SCIPisGT(scip, newlb, lb)) || (SCIPvarIsIntegral(var) && SCIPisFeasGT(scip, newlb, lb)) || SCIPisLbBetter(scip, newlb, lb, ub)) )
6897 || (!SCIPisLbBetter(scip, newlb, lb, ub) && (!SCIPisFeasGT(scip, newlb, lb) || !SCIPvarIsIntegral(var))
6904 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g] -> newlb=%.15g\n",
6905 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newlb);
6921 lb = SCIPvarGetLbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6937 ((force && SCIPisLT(scip, newub, ub)) || (SCIPvarIsIntegral(var) && SCIPisFeasLT(scip, newub, ub)) || SCIPisUbBetter(scip, newub, lb, ub)) )
6952 SCIPdebugMsg(scip, "linear constraint <%s>: tighten <%s>, old bds=[%.15g,%.15g], val=%.15g, resactivity=[%.15g,%.15g], sides=[%.15g,%.15g], newub=%.15g\n",
6953 SCIPconsGetName(cons), SCIPvarGetName(var), lb, ub, val, minresactivity, maxresactivity, lhs, rhs, newub);
6969 ub = SCIPvarGetUbLocal(var); /* get bound again: it may be additionally modified due to integrality */
6989 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7076 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minisrelax, &maxisrelax);
7080 slack = (SCIPisInfinity(scip, consdata->rhs) || SCIPisInfinity(scip, -minactivity)) ? SCIPinfinity(scip) : (consdata->rhs - minactivity);
7081 surplus = (SCIPisInfinity(scip, -consdata->lhs) || SCIPisInfinity(scip, maxactivity)) ? SCIPinfinity(scip) : (maxactivity - consdata->lhs);
7091 /* as long as the bounds might be tightened again, try to tighten them; abort after a maximal number of rounds */
7099 for( nrounds = 0; (force || consdata->boundstightened < tightenmode) && nrounds < MAXTIGHTENROUNDS; ++nrounds ) /*lint !e574*/
7104 /* try to tighten the bounds of each variable in the constraint. During solving process, the binary variable
7130 && !SCIPisFeasEQ(scip, SCIPvarGetUbLocal(consdata->vars[v]), SCIPvarGetLbLocal(consdata->vars[v])) )
7137 SCIPdebugMessage("linear constraint <%s> found %d bound changes in round %d\n", SCIPconsGetName(cons),
7145 assert(*cutoff || SCIPisFeasEQ(scip, SCIPvarGetLbLocal(consdata->vars[0]), SCIPvarGetUbLocal(consdata->vars[0])));
7157 SCIP_Bool checklprows, /**< Do constraints represented by rows in the current LP have to be checked? */
7158 SCIP_Bool checkrelmaxabs, /**< Should the violation for a constraint with side 0.0 be checked relative
7194 SCIPdebugMsg(scip, " consdata activity=%.15g (lhs=%.15g, rhs=%.15g, row=%p, checklprows=%u, rowinlp=%u, sol=%p, hascurrentnodelp=%u)\n",
7216 /* the activity of pseudo solutions may be invalid if it comprises positive and negative infinity contributions; we
7232 else if( !consdata->checkabsolute && (SCIPisFeasLT(scip, activity, consdata->lhs) || SCIPisFeasGT(scip, activity, consdata->rhs)) )
7245 /* the (much) more complicated check: we try to disregard random noise and violations of a 0.0 side which are
7294 SCIPdebugMsg(scip, " lhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7348 SCIPdebugMsg(scip, " rhs violated absolutely (violation=%16.9g), but feasible when using relative tolerance w.r.t. maximum absolute value (%16.9g)\n",
7384 ((!SCIPisInfinity(scip, -consdata->lhs) && SCIPisGT(scip, consdata->lhs-activity, SCIPfeastol(scip))) ||
7385 (!SCIPisInfinity(scip, consdata->rhs) && SCIPisGT(scip, activity-consdata->rhs, SCIPfeastol(scip)))) )
7427 SCIP_CALL( SCIPcreateEmptyRowCons(scip, &consdata->row, SCIPconsGetHdlr(cons), SCIPconsGetName(cons), consdata->lhs, consdata->rhs,
7430 SCIP_CALL( SCIPaddVarsToRow(scip, consdata->row, consdata->nvars, consdata->vars, consdata->vals) );
7488 /** separates linear constraint: adds linear constraint as cut, if violated by given solution */
7496 SCIP_Bool separateall, /**< should all constraints be subject to cardinality cut generation instead of only
7518 SCIP_CALL( checkCons(scip, cons, sol, (sol != NULL), conshdlrdata->checkrelmaxabs, &violated) );
7531 /* we only want to call the knapsack cardinality cut separator for rows that have a non-zero dual solution */
7585 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7628 /* increase age of constraint; age is reset to zero, if a conflict or a propagation was found */
7669 SCIPdebugMsg(scip, "linear constraint <%s> found %d bound changes and %d fixings\n", SCIPconsGetName(cons), *nchgbds - oldnchgbds, nfixedvars);
7679 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
7683 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (rhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7694 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible (lhs): activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7703 else if( SCIPisGE(scip, minactivity, consdata->lhs) && SCIPisLE(scip, maxactivity, consdata->rhs) )
7705 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
7708 /* remove the constraint locally unless it has become empty, in which case it is removed globally */
7766 SCIPdebugMsg(scip, "converting variable <%s> with fixed bounds [%.15g,%.15g] into fixed variable fixed at %.15g\n",
7803 * a) if the constraint has a finite right hand side and the negative infinity counters for the minactivity are zero
7804 * then add the variables as a clique for which all successive pairs of coefficients fullfill the following
7809 * and also add the binary to binary implication also for non-successive variables for which the same argument
7814 * e.g. 5.3 x1 + 3.6 x2 + 3.3 x3 + 2.1 x4 <= 5.5 (all x are binary) would lead to the clique (x1, x2, x3) and the
7817 * b) if the constraint has a finite left hand side and the positive infinity counters for the maxactivity are zero
7818 * then add the variables as a clique for which all successive pairs of coefficients fullfill the follwoing
7823 * and also add the binary to binary implication also for non-successive variables for which the same argument
7830 * c) the constraint has a finite right hand side and a finite minactivity then add the variables as a negated
7831 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7836 * and also add the binary to binary implication also for non-successive variables for which the
7841 * e.g. -4 x1 -3 x2 - 2 x3 + 2 x4 <= -4 would lead to the (negated) clique (~x1, ~x2) and the binary to binary
7844 * d) the constraint has a finite left hand side and a finite maxactivity then add the variables as a negated
7845 * clique(clique on the negated variables) for which all successive pairs of coefficients fullfill the following
7850 * and also add the binary to binary implication also for non-successive variables for which the same argument
7857 * 2. if the linear constraint represents a set-packing or set-partitioning constraint, the whole constraint is added
7865 SCIP_Real maxeasyactivitydelta,/**< maximum activity delta to run easy propagation on linear constraint */
7909 * for now we only add binary to non-binary implications, and this is only done for the binary variable with the
7910 * maximal absolute contribution and also only if this variable would force all other variables to their bound
7918 /* @todo we might extract implications/cliques if SCIPvarIsBinary() variables exist and we have integer variables
7936 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
7938 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
7939 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
7943 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8006 /* if the right hand side and the minimal activity are finite and changing the variable with the biggest
8007 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8010 if( finiterhs && finiteminact && SCIPisEQ(scip, consdata->glbminactivity, consdata->rhs - maxabscontrib) )
8022 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8029 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8041 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8047 /* if the left hand side and the maximal activity are finite and changing the variable with the biggest
8048 * influence to their bound forces all other variables to be at their minimal contribution, we can add these
8051 if( finitelhs && finitemaxact && SCIPisEQ(scip, consdata->glbmaxactivity, consdata->lhs - maxabscontrib) )
8063 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_LOWER, SCIPvarGetUbGlobal(vars[v]), &infeasible, &nbdchgs) );
8070 SCIP_CALL( SCIPaddVarImplication(scip, vars[position], posval, vars[v], SCIP_BOUNDTYPE_UPPER, SCIPvarGetLbGlobal(vars[v]), &infeasible, &nbdchgs) );
8082 /* stop when reaching a 'real' binary variable because the variables are sorted after their type */
8091 SCIPdebugMsg(scip, "extracted %d implications from constraint %s which led to %d bound changes, %scutoff detetcted\n", nimpls, SCIPconsGetName(cons), *nchgbds - oldnchgbds, *cutoff ? "" : "no ");
8096 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8145 finitenegminact = (consdata->glbminactivityneginf == 0 && consdata->glbminactivityneghuge == 0);
8147 finiteposminact = (consdata->glbminactivityposinf == 0 && consdata->glbminactivityposhuge == 0);
8148 finiteposmaxact = (consdata->glbmaxactivityposinf == 0 && consdata->glbmaxactivityposhuge == 0);
8152 /* 1. we wheck whether some variables do not fit together into this constraint and add the corresponding clique
8155 if( (finiterhs || finitelhs) && (finitenegminact || finiteposminact || finitenegmaxact || finiteposmaxact) )
8192 /* setppc constraints will be handled later; we need at least two binary variables with same sign to extract
8228 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8229 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8267 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8276 SCIP_CALL( SCIPaddClique(scip, clqvars, NULL, lastfit - i + 2, FALSE, &infeasible, &nbdchgs) );
8304 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8377 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8378 /* check that it is possible to choose binvar[i], otherwise it should have been fixed to zero */
8418 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8429 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), NULL, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8457 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8537 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8556 SCIP_CALL( SCIPaddClique(scip, &(binvars[j+1]), values, i - j, FALSE, &infeasible, &nbdchgs) );
8578 /* iterate up to the front with j and up to the end with lastfit, and check for different cliques */
8589 SCIP_CALL( SCIPaddClique(scip, &(clqvars[lastfit - jstart - 2]), values, i - lastfit + 2, FALSE, &infeasible, &nbdchgs) );
8619 /* did we find some boundchanges, then we need to remove fixings and tighten the bounds further */
8697 #if 0 /* assertion should only holds when constraints were fully propagated and boundstightened */
8736 /* iterate up to the end with j and up to the front with lastfit, and check for different cliques */
8745 SCIP_CALL( SCIPaddClique(scip, clqvars, values, lastfit - i + 2, FALSE, &infeasible, &nbdchgs) );
8782 /* check if all variables are binary, if the coefficients are +1 or -1, and if the right hand side is equal
8783 * to 1 - number of negative coefficients, or if the left hand side is equal to number of positive coefficients - 1
8814 SCIP_CALL( SCIPaddClique(scip, vars, values, nvars, SCIPisEQ(scip, consdata->lhs, consdata->rhs), &infeasible, &nbdchgs) );
8881 SCIPdebugMsg(scip, "rounding sides=[%.15g,%.15g] of linear constraint <%s> with integral coefficients and variables only "
8915 /** tightens coefficients of binary, integer, and implicit integer variables due to activity bounds in presolving:
8922 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
8931 * xi fixed to its bounds, but with a reduced ai and tightened sides to tighten the LP relaxation
8939 * A deviation of only one from their bound makes the lhs/rhs feasible (i.e., redundant), even if all other
8940 * variables are set to their "worst" bound. If all variables which are not surely non-redundant cannot make
8941 * the lhs/rhs redundant, even if they are set to their "best" bound, they can be removed from the constraint.
8942 * E.g., for binary variables and an inequality x_1 +x_2 +10y_1 +10y_2 >= 5, setting either of the y_i to one
8943 * suffices to fulfill the inequality, whereas the x_i do not contribute to feasibility and can be removed.
8945 * @todo use also some tightening procedures for (knapsack) constraints with non-integer coefficients, see
8958 SCIP_Real minactivity; /* minimal value w.r.t. the variable's local bounds for the constraint's
8960 SCIP_Real maxactivity; /* maximal value w.r.t. the variable's local bounds for the constraint's
8996 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
9018 SCIPisGE(scip, minactivity + val, consdata->lhs) && SCIPisLE(scip, maxactivity - val, consdata->rhs) )
9035 if( !SCIPisInfinity(scip, -consdata->lhs) && consdata->minactivityneginf + consdata->minactivityneginf == 0 )
9038 lval -= otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9041 if( !SCIPisInfinity(scip,consdata->rhs) && consdata->maxactivityneginf + consdata->maxactivityneginf == 0 )
9044 rval += otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9059 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9076 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
9080 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9089 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9124 SCIPisGE(scip, minactivity - val, consdata->lhs) && SCIPisLE(scip, maxactivity + val, consdata->rhs) )
9141 if( !SCIPisInfinity(scip,-consdata->lhs) && consdata->minactivityneginf + consdata->minactivityneginf == 0 )
9144 lval += otherval > 0.0 ? otherval * SCIPvarGetLbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetUbLocal(consdata->vars[1-i]);
9147 if( !SCIPisInfinity(scip,consdata->rhs) && consdata->maxactivityneginf + consdata->maxactivityneginf == 0 )
9150 rval -= otherval > 0.0 ? otherval * SCIPvarGetUbLocal(consdata->vars[1-i]) : otherval * SCIPvarGetLbLocal(consdata->vars[1-i]);
9165 SCIPdebugMsg(scip, "linear constraint <%s>: change coefficient %+.15g<%s> to %+.15g<%s>, act=[%.15g,%.15g], side=[%.15g,%.15g]\n",
9182 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
9186 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9195 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9238 /* if the lhs is finite, we will check in the following whether the not non-redundant variables can make lhs feasible;
9239 * this is not valid, if the minactivity is -\infty (aggrlhs would be minus infinity in the following computation)
9240 * or if huge values contributed to the minactivity, because the minactivity is then just a relaxation
9241 * (<= the exact minactivity), and we might falsely claim variables to be redundant in the following
9244 if( !SCIPisInfinity(scip, -consdata->lhs) && (SCIPisInfinity(scip, -minactivity) || minactisrelax) )
9247 /* if the rhs is finite, we will check in the following whether the not non-redundant variables can make rhs feasible;
9248 * this is not valid, if the maxactivity is \infty (aggrrhs would be infinity in the following computation)
9249 * or if huge values contributed to the maxactivity, because the maxactivity is then just a relaxation
9250 * (>= the exact maxactivity), and we might falsely claim variables to be redundant in the following
9253 if( !SCIPisInfinity(scip, consdata->rhs) && (SCIPisInfinity(scip, maxactivity) || maxactisrelax) )
9257 * surely non-redundant variables are all those where a deviation from the bound makes the lhs/rhs redundant
9262 /* check if the constraint contains variables which are redundant. The reasoning is the following:
9263 * Each non-redundant variable can make the lhs/rhs feasible with a deviation of only one in the bound.
9295 SCIPisLT(scip, minactivity + val, consdata->lhs) || SCIPisGT(scip, maxactivity - val, consdata->rhs) )
9299 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9309 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
9311 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9322 SCIPisLT(scip, minactivity - val, consdata->lhs) || SCIPisGT(scip, maxactivity + val, consdata->rhs) )
9324 SCIPdebugMsg(scip, "linear constraint <%s>: remove variable <%s> with coefficient <%g> from constraint since it is redundant\n",
9334 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
9336 /* we return above if the condition does not hold and deleting a variable cannot increase the number of
9344 /* the following update step is needed in every iteration cause otherwise it is possible that the surely none-
9346 * e.g. y_1 + 16y_2 >= 25, y1 with bounds [9,12], y2 with bounds [0,2], minactivity would be 9, it follows that
9347 * y_2 is surely not redundant and y_1 is redundant so we would first delete y1 and without updating the sides
9355 SCIPdebugMsg(scip, "linear constraint <%s>: change lhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->lhs, newlhs);
9362 SCIPdebugMsg(scip, "linear constraint <%s>: change rhs %.15g to %.15g\n", SCIPconsGetName(cons), consdata->rhs, newrhs);
9374 /* processes equality with only one variable by fixing the variable and deleting the constraint */
9430 /* processes equality with exactly two variables by aggregating one of the variables and deleting the constraint */
9461 SCIP_CALL( SCIPaggregateVars(scip, consdata->vars[0], consdata->vars[1], consdata->vals[0], consdata->vals[1],
9488 /** calculates the new lhs and rhs of the constraint after the given variable is aggregated out */
9538 /* processes equality with more than two variables by multi-aggregating one of the variables and converting the equality
9539 * into an inequality; if multi-aggregation is not possible, tries to identify one continuous or integer variable that
9542 * @todo Check whether a more clever way of avoiding aggregation of variables containing implicitly integer variables
9553 )
9598 SCIPdebugMsg(scip, "linear constraint <%s>: try to multi-aggregate equality\n", SCIPconsGetName(cons));
9602 * maxnlocksstay: maximal sum of lock numbers if the constraint does not become redundant after the aggregation
9603 * maxnlocksremove: maximal sum of lock numbers if the constraint can be deleted after the aggregation
9610 /* If the constraint becomes redundant, 3 non-zeros are removed, and we get 1 additional non-zero for each
9611 * constraint the variable appears in. Thus, the variable must appear in at most 3 other constraints.
9617 /* If the constraint becomes redundant, 4 non-zeros are removed, and we get 2 additional non-zeros for each
9618 * constraint the variable appears in. Thus, the variable must appear in at most 2 other constraints.
9624 /* If the constraint is redundant but has more than 4 variables, we can only accept one other constraint. */
9675 assert(!SCIPconsIsChecked(cons) || SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) >= 1); /* because variable is locked in this equality */
9720 /* check, if variable is used in too many other constraints, even if this constraint could be deleted */
9721 nlocks = SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL);
9769 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
9772 /* do not perform the multi-aggregation due to numerics, if we have huge contributions in the residual
9779 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9784 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
9787 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity)
9791 removescons = (SCIPisFeasLE(scip, newlhs, minresactivity) && SCIPisFeasLE(scip, maxresactivity, newrhs));
9802 /* if the constraint does not become redundant, only accept the variable if it does not appear in
9821 /* if all coefficients and variables are integral, the right hand side must also be integral */
9834 /* check whether the the infimum and the supremum of the multi-aggregation can be get infinite */
9871 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
9872 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
9875 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
9879 /* if the slack variable is of integer type, and the constraint itself may take fractional values,
9923 SCIPdebugMsg(scip, "linear constraint <%s>: multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(slackvar));
9929 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g], nlocks=%d, maxnlocks=%d, removescons=%u\n",
9930 aggrconst, SCIPvarGetName(slackvar), SCIPvarGetLbGlobal(slackvar), SCIPvarGetUbGlobal(slackvar),
9944 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
9954 SCIPdebugMsg(scip, "linear constraint <%s>: redundant after multi-aggregation\n", SCIPconsGetName(cons));
9971 /* upgrade continuous variable to an implicit one, if the absolute value of the coefficient is one */
9975 SCIPdebugMsg(scip, "linear constraint <%s>: converting continuous variable <%s> to implicit integer variable\n",
9980 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
9986 /* aggregate continuous variable to an implicit one, if the absolute value of the coefficient is unequal to one */
9987 /* @todo check if the aggregation coefficient should be in some range(, which is not too big) */
10001 SCIP_CALL( SCIPcreateVar(scip, &newvar, newvarname, -SCIPinfinity(scip), SCIPinfinity(scip), 0.0,
10002 SCIP_VARTYPE_IMPLINT, SCIPvarIsInitial(var), SCIPvarIsRemovable(var), NULL, NULL, NULL, NULL, NULL) );
10017 SCIPdebugMsg(scip, "linear constraint <%s>: aggregating continuous variable <%s> to newly created implicit integer variable <%s>, aggregation factor = %g\n",
10021 SCIP_CALL( SCIPaggregateVars(scip, var, newvar, absval, -1.0, 0.0, &infeasible, &redundant, &aggregated) );
10025 SCIPdebugMsg(scip, "infeasible aggregation of variable <%s> to implicit variable <%s>, domain is empty\n",
10044 /* we do not have any event on vartype changes, so we need to manually force this constraint to be presolved
10056 /* this seems to help for rococo instances, but does not for rout (where all coefficients are +/- 1.0)
10069 SCIPdebugMsg(scip, "linear constraint <%s>: converting integer variable <%s> to implicit integer variable\n",
10074 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
10085 /** checks if the given variables and their coefficient are equal (w.r.t. scaling factor) to the objective function */
10104 nvars = consdata->nvars;
10123 /* if a variable has a zero objective coefficient the linear constraint is not a subset of the objective
10161 /** check if the linear equality constraint is equal to a subset of the objective function; if so we can remove the
10190 /* check if the linear equality constraints does not have more variables than the objective function */
10196 (nvars == nobjvars && (!conshdlrdata->detectcutoffbound || !conshdlrdata->detectlowerbound)) )
10202 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10214 SCIPdebugMsg(scip, "linear equality constraint <%s> == %g (offset %g) is a subset of the objective function\n",
10230 /** updates the cutoff if the given primal bound (which is implied by the given constraint) is better */
10240 /* increase the cutoff bound value by an epsilon to ensue that solution with the value of the cutoff bound are still
10258 /* we cannot disable the enforcement and propagation on ranged rows, because the cutoffbound could only have
10263 /* in case the cutoff bound is worse then the currently known one, we additionally avoid enforcement and
10274 /** check if the linear constraint is parallel to objective function; if so update the cutoff bound and avoid that the
10305 /* check if the linear inequality constraints has the same number of variables as the objective function and if the
10314 /* There are no variables in the ojective function and in the constraint. Thus, the constraint is redundant or proves
10315 * infeasibility. Since we have a pure feasibility problem, we do not want to set a cutoff or lower bound.
10320 /* checks if the variables and their coefficients are equal (w.r.t. scaling factor) to the objective function */
10336 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10348 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10357 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10370 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a lower bound <%g>\n",
10382 SCIPdebugMsg(scip, "constraint <%s> is parallel to objective function and provides a cutoff bound <%g>\n",
10391 /* avoid that the linear constraint enters the LP since it is parallel to the objective function */
10454 /** returns whether the linear sum of all variables/coefficients except the given one divided by the given value is always
10473 if( v != pos && (!SCIPvarIsIntegral(consdata->vars[v]) || !SCIPisIntegral(scip, consdata->vals[v]/val)) )
10475 }
10501 *minval = -maxresactivity;
10525 /* applies dual presolving for variables that are locked only once in a direction, and this locking is due to a
10555 * otherwise we would have to check for variables with nlocks == 0, and these are already processed by the
10567 /* search for a single-locked variable which can be multi-aggregated; if a valid continuous variable was found, we
10574 /* We only want to multi-aggregate variables, if they appear in maximal one additional constraint,
10576 * - If there are only two variables in the constraint from which the multi-aggregation arises, no fill-in will be
10578 * - If there are three variables in the constraint, multi-aggregation in three additional constraints will remove
10579 * six nonzeros (three from the constraint and the three entries of the multi-aggregated variable) and add
10581 * - If there at most four variables in the constraint, multi-aggregation in two additional constraints will remove
10582 * six nonzeros (four from the constraint and the two entries of the multi-aggregated variable) and add
10594 /* if this constraint has both sides, it also provides a lock for the other side and thus we can allow one more lock */
10610 isint = (SCIPvarGetType(var) == SCIP_VARTYPE_BINARY || SCIPvarGetType(var) == SCIP_VARTYPE_INTEGER);
10616 /* better do not multi-aggregate binary variables, since most plugins rely on their binary variables to be either
10634 * - fix x_i to the smallest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10638 * - fix x_i to the largest value for this constraint: x_i := lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10642 * - fix x_i to the largest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10646 * - fix x_i to the smallest value for this constraint: x_i := rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j
10648 * but: all this is only applicable, if the aggregated value is inside x_i's bounds for all possible values
10653 && ((val > 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10655 || (val < 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10658 && ((val > 0.0 && !SCIPisPositive(scip, obj) && SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) == 1
10660 || (val < 0.0 && !SCIPisNegative(scip, obj) && SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL) == 1
10674 consdataGetActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
10687 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10702 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10710 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10722 /* check again if lhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10723 calculateMinvalAndMaxval(scip, consdata->lhs, val, minresactivity, maxresactivity, &minval, &maxval);
10730 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10733 if( !isint || (SCIPisIntegral(scip, consdata->lhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10747 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10762 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastminactivity) )
10769 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastmaxactivity) )
10778 /* check again if rhs/a_i - \sum_{j \neq i} a_j/a_i * x_j is always inside the bounds of x_i */
10779 calculateMinvalAndMaxval(scip, consdata->rhs, val, minresactivity, maxresactivity, &minval, &maxval);
10785 /* if the variable is integer, we have to check whether the integrality condition would always be satisfied
10788 if( !isint || (SCIPisIntegral(scip, consdata->rhs/val) && consdataIsResidualIntegral(scip, consdata, i, val)) )
10826 (SCIPvarGetType(bestvar) == SCIP_VARTYPE_BINARY || SCIPvarGetType(bestvar) == SCIP_VARTYPE_INTEGER));
10834 SCIPdebugMsg(scip, "linear constraint <%s> (dual): multi-aggregate <%s> ==", SCIPconsGetName(cons), SCIPvarGetName(bestvar));
10907 SCIPdebugMsgPrint(scip, " %+.15g, bounds of <%s>: [%.15g,%.15g]\n", aggrconst, SCIPvarGetName(bestvar),
10924 /* @todo if multi-aggregate makes them numerical trouble, avoid them if the coefficients differ to much, see
10927 SCIP_CALL( SCIPmultiaggregateVar(scip, bestvar, naggrs, aggrvars, aggrcoefs, aggrconst, &infeasible, &aggregated) );
10931 /* If the infimum and the supremum of a multi-aggregation are both infinite, then the multi-aggregation might not be resolvable.
10932 * E.g., consider the equality z = x-y. If x and y are both fixed to +infinity, the value for z is not determined */
10933 SCIPdebugMsg(scip, "do not perform multi-aggregation: infimum and supremum are both infinite\n");
10942 SCIPdebugMsg(scip, "linear constraint <%s>: infeasible multi-aggregation\n", SCIPconsGetName(cons));
10988 }
11172 /** sorting method for constraint data, compares two variables on given indices, continuous variables will be sorted to
11173 * the end and for all other variables the sortation will be in non-increasing order of their absolute value of the
11206 /* for all non-continuous variables, the variables are sorted after decreasing absolute coefficients */
11210 /** tries to simplify coefficients and delete variables in ranged row of the form lhs <= a^Tx <= rhs, e.g. using the greatest
11213 * 1. lhs <= a^Tx <= rhs, forall a_i >= lhs, a_i <= rhs, and forall pairs a_i + a_j > rhs then we can change this
11291 if( SCIPisGE(scip, minval, lhs) && SCIPisLE(scip, maxval, rhs) && SCIPisGT(scip, minval + secondminval, rhs) )
11310 /** tries to simplify coefficients and delete variables in constraints of the form lhs <= a^Tx <= rhs
11315 * 1. We try to determine parts of the constraint which will not change anything on (in-)feasibility of the constraint
11321 * e.g. 5.2x1 + 5.1x2 + 3x3 <= 8.3 => will be changed to 5x1 + 5x2 + 3x3 <= 8 if all x are binary
11325 * e.g. 10x1 + 5y2 + 5x3 + 3x4 <= 15 => will be changed to 2x1 + y2 + x3 + x4 <= 3 if all xi are binary and y2 is
11405 /* @todo the following might be too hard, check which steps can be applied and what code must be corrected
11412 /* @todo: change the following: due to vartype changes, the status of the normalization can be wrong, need an event
11454 /* if we have a normalized inequality (not ranged) the one side should be positive, @see normalizeCons() */
11461 /* call sorting method, order continuous variables to the end and all other variables after non-increasing absolute
11475 assert(consdata->validmaxabsval ? (SCIPisFeasEQ(scip, consdata->maxabsval, REALABS(vals[0])) || SCIPvarGetType(vars[nvars - 1]) == SCIP_VARTYPE_CONTINUOUS) : TRUE);
11485 if( SCIPisEQ(scip, REALABS(vals[0]), 1.0) && ((hasrhs && SCIPisIntegral(scip, rhs)) || (haslhs && SCIPisIntegral(scip, lhs))) )
11511 /* we now determine coefficients as large as the side of the constraint to retrieve a better reduction where we
11515 * c1: +5x1 + 5x2 + 3x3 + 3x4 + x5 >= 5 (x5 is redundant and does not change (in-)feasibility of this constraint)
11516 * c2: +4x1 + 4x2 + 3x3 + 3x4 + x5 >= 4 (gcd (without the coefficient of x5) after the large coefficients is 3
11517 * c3: +30x1 + 29x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 30 (gcd (without the coefficient of x2) after the large coefficients is 7
11522 * c2: +6x1 + 6x2 + 3x3 + 3x4 + 3x5 >= 6 (will be changed to c2: +2x1 + 2x2 + x3 + x4 + x5 >= 2)
11523 * c3: +28x1 + 28x2 + 14x3 + 14z1 + 7x5 + 7x6 <= 28 (will be changed to c3: +4x1 + 4x2 + 2x3 + 2z1 + x5 + x6 <= 4)
11526 /* if the minimal activity is negative and we found more than one variable with a coefficient bigger than the left
11529 * e.g. 7x1 + 7x2 - 4x3 - 4x4 >= 7 => xi = 1 for all i is not a solution, but if we would do a change on the
11530 * coefficients due to the gcd on the "small" coefficients we would get 8x1 + 8x2 - 4x3 - 4x4 >= 8 were xi = 1
11541 /* if we have integer variable with "side"-coefficients but also with a lower bound greater than 0 we stop this
11553 /* easy and quick fix: if all coefficients were equal to the side, we cannot apply further simplifications */
11554 /* todo find numerically stable normalization conditions to scale this cons to have coefficients almost equal to 1 */
11566 /* all but one variable are processed or the next variable is continuous we cannot perform the extra coefficient
11593 /* find and remove redundant variables which do not interact with the (in-)feasibility of this constraint
11682 if( (offsetv == -1 && hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd)) || (haslhs && SCIPisFeasLT(scip, maxactsub, siderest) && minactsub >= siderest - gcd) )
11708 SCIPdebugMsg(scip, "stopped at pos %d (of %d), subactivities [%g, %g], redundant = %u, hasrhs = %u, siderest = %g, gcd = %" SCIP_LONGINT_FORMAT ", offset position for 'side' coefficients = %d\n",
11713 (offsetv == -1 && hasrhs && maxactsub <= siderest && SCIPisFeasGT(scip, minactsub, siderest - gcd)) ||
11762 assert((hasrhs && SCIPisLE(scip, tmpmaxactsub, siderest) && tmpminactsub > siderest - gcd) || (haslhs && tmpmaxactsub < siderest && SCIPisGE(scip, tmpminactsub, siderest - gcd)));
11765 SCIPdebugMsg(scip, "removing %d last variables from constraint <%s>, because they never change anything on the feasibility of this constraint\n",
11866 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
11953 /* new coeffcient must not be zero if we would loose the implication that a variable needs to be 0 if
11979 if( (!notchangable && hasrhs && ((!SCIPisFeasIntegral(scip, rhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(rhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd))) ||
11980 ( haslhs && (!SCIPisFeasIntegral(scip, lhs) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(lhs + feastol)) < gcd) && (SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(vals[candpos]) + feastol)) == gcd)) )
12033 /* @todo we still can remove continuous variables if they are redundant due to the non-integrality argument */
12049 /* check if the non-integrality part of all integral variables is smaller than the non-inegrality part of the right
12050 * hand side or bigger than the left hand side respectively, so we can make all of them integral
12054 if( (hasrhs && !SCIPisFeasIntegral(scip, rhs)) || (haslhs && !SCIPisFeasIntegral(scip, lhs)) )
12099 /* if we exceed the fractional part of the right hand side, we cannot tighten the coefficients
12192 /* the fractional part on each variable need to exceed the fractional part on the left hand side */
12293 /* maximal absolute value of coefficients in constraint is one, so we cannot tighten it further */
12310 if( SCIPisEQ(scip, REALABS(vals[nvars - 1]), 1.0) && SCIPisEQ(scip, REALABS(vals[nvars - 2]), 1.0) )
12315 /* calculate greatest common divisor over all integer variables; note that the onlybin flag needs to be recomputed
12337 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12338 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12359 /* we need at least one binary variable and a gcd greater than 1 to try to perform further coefficient changes */
12368 /* calculate greatest common divisor over all integer and binary variables and determine the candidate where we might
12376 /* arithmetic precision can lead to the absolute value only being integral up to feasibility tolerance,
12377 * even though the value itself is feasible up to epsilon, but since we add feastol later, this is enough
12394 /* if the greatest commmon divisor has become 1, we might have found the possible coefficient to change or we
12405 /* if we have only binary variables and both first coefficients have a gcd of 1, both are candidates for
12439 /* we should have found one coefficient, that led to a gcd of 1, otherwise we could normalize the constraint
12447 /* check again, if we have a normalized inequality (not ranged) the one side should be positive,
12503 assert(SCIPisZero(scip, newcoef) || SCIPcalcGreComDiv(gcd, (SCIP_Longint)(REALABS(newcoef) + feastol)) == gcd);
12505 SCIPdebugMsg(scip, "gcd = %" SCIP_LONGINT_FORMAT ", rest = %" SCIP_LONGINT_FORMAT ", restcoef = %" SCIP_LONGINT_FORMAT "; changing coef of variable <%s> to %g and %s by %" SCIP_LONGINT_FORMAT "\n", gcd, rest, restcoef, SCIPvarGetName(vars[candpos]), newcoef, hasrhs ? "reduced rhs" : "increased lhs", hasrhs ? rest : (rest > 0 ? gcd - rest : 0));
12536 SCIPdebugMsg(scip, "we did %d coefficient changes and %d side changes on constraint %s when applying one round of the gcd algorithm\n", *nchgcoefs - oldnchgcoefs, *nchgsides - oldnchgsides, SCIPconsGetName(cons));
12544 /* tries to aggregate an (in)equality and an equality in order to decrease the number of variables in the (in)equality:
12546 * where a = val1[v] and b = -val0[v] for common variable v which removes most variable weight;
12548 * the variable weight is a weighted sum over all included variables, where each binary variable weighs BINWEIGHT,
12549 * each integer or implicit integer variable weighs INTWEIGHT and each continuous variable weighs CONTWEIGHT
12558 int* diffidx0minus1, /**< array with indices of variables in cons0, that don't appear in cons1 */
12559 int* diffidx1minus0, /**< array with indices of variables in cons1, that don't appear in cons0 */
12562 int diffidx0minus1weight, /**< variable weight sum of variables in cons0, that don't appear in cons1 */
12563 int diffidx1minus0weight, /**< variable weight sum of variables in cons1, that don't appear in cons0 */
12564 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
12569 {
12578 SCIP_Bool commonvarlindependent; /* indicates whether coefficient vector of common variables in linearly dependent */
12604 SCIPdebugMsg(scip, "try aggregation of <%s> and <%s>\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
12640 /* count the number of variables in the potential new constraint a * consdata0 + b * consdata1 */
12665 * v's common coefficient in cons1 / v's common coefficient in cons0 should be constant, i.e., equal 0's common coefficient in cons1 / 0's common coefficient in cons0
12733 /* setup best* variables that were not setup above because we are in the commonvarlindependent case */
12738 SCIPdebugMsg(scip, "aggregate linear constraints <%s> := %.15g*<%s> + %.15g*<%s> -> nvars: %d -> %d, weight: %d -> %d\n",
12769 /* if we recognized linear dependency of the common coefficients, then the aggregation coefficient should be 0.0 for every common variable */
12822 SCIP_CALL( SCIPcreateConsLinear(scip, &newcons, SCIPconsGetName(cons0), newnvars, newvars, newvals, newlhs, newrhs,
12843 if( consdataGetMaxAbsval(SCIPconsGetData(newcons)) <= maxaggrnormscale * consdataGetMaxAbsval(consdata0) )
12878 /** returns TRUE iff both keys are equal; two constraints are equal if they have the same variables and the
12960 assert(consdata->nvars > 0);
12974 SCIPcombineTwoInt(maxidx, SCIPrealHashCode(consdata->vals[consdata->nvars - 1] * scale))); /*lint !e571*/
12977 /** returns the key for deciding which of two parallel constraints should be kept (smaller key should be kept);
12978 * prefers non-upgraded constraints and as second criterion the constraint with the smallest position
12992 return (((unsigned int)consdata->upgraded)<<31) + (unsigned int)SCIPconsGetPos(cons); /*lint !e571*/
13002 SCIP_CONS** querycons, /**< pointer to linear constraint used to look for duplicates in the hash table;
13015 while( (parallelcons = (SCIP_CONS*)SCIPhashtableRetrieve(hashtable, (void*)(*querycons))) != NULL )
13057 /** compares each constraint with all other constraints for possible redundancy and removes or changes constraint
13114 /* get constraints from current hash table with same variables as cons0 and with coefficients equal
13115 * to the ones of cons0 when both are scaled such that maxabsval is 1.0 and the coefficient of the
13146 /* constraint found: create a new constraint with same coefficients and best left and right hand side;
13177 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with equal coefficients into single ranged row\n",
13191 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with negated coefficients into single ranged row\n",
13203 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13215 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13220 /* ensure that lhs <= rhs holds without tolerances as we only allow such rows to enter the LP */
13260 SCIP_Real maxaggrnormscale, /**< maximal allowed relative gain in maximum norm for constraint aggregation */
13324 for( c = (cons0changed ? 0 : firstchange); c < chkind && !(*cutoff) && conss[chkind] != NULL; ++c )
13363 /* SCIPdebugMsg(scip, "preprocess linear constraint pair <%s>[chgd:%d, upgd:%d] and <%s>[chgd:%d, upgd:%d]\n",
13390 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13391 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13393 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13394 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13396 && ((possignature0 | possignature1) == possignature0) /* possignature0 >= possignature1 (as bit vector) */
13397 && ((negsignature0 | negsignature1) == negsignature1); /* negsignature0 <= negsignature1 (as bit vector) */
13399 && ((possignature0 | possignature1) == possignature1) /* possignature0 <= possignature1 (as bit vector) */
13400 && ((negsignature0 | negsignature1) == negsignature0); /* negsignature0 >= negsignature1 (as bit vector) */
13415 * - if lhs0 >= lhs1 and for each variable v and each solution value x_v val0[v]*x_v <= val1[v]*x_v,
13417 * - if rhs0 <= rhs1 and for each variable v and each solution value x_v val0[v]*x_v >= val1[v]*x_v,
13419 * - if val0[v] == -val1[v] for all variables v, the two inequalities can be replaced by a single
13421 * - if at least one constraint is an equality, count the weighted number of common variables W_c
13422 * and the weighted number of variable in the difference sets W_0 = w(V_0 \ V_1), W_1 = w(V_1 \ V_0),
13423 * where the weight of each variable depends on its type, such that aggregations in order to remove the
13425 * - if W_c > W_1, try to aggregate consdata0 := a * consdata0 + b * consdata1 in order to decrease the
13426 * variable weight in consdata0, where a = +/- val1[v] and b = -/+ val0[v] for common v which leads to
13427 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13429 * - if W_c > W_0, try to aggregate consdata1 := a * consdata1 + b * consdata0 in order to decrease the
13430 * variable weight in consdata1, where a = +/- val0[v] and b = -/+ val1[v] for common v which leads to
13431 * the smallest weight; for numerical stability, we will only accept integral a and b; the sign of a has
13565 /* the coefficients in both rows are either equal or negated: create a new constraint with same coefficients and
13568 SCIPdebugMsg(scip, "aggregate linear constraints <%s> and <%s> with %s coefficients into single ranged row\n",
13587 SCIPdebugMsg(scip, "aggregated linear constraint <%s> is infeasible\n", SCIPconsGetName(cons0));
13628 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13640 /* check for domination: remove dominated sides, but don't touch equalities as long as they are not totally
13643 if( cons1dominateslhs && (!cons0isequality || cons1dominatesrhs || SCIPisInfinity(scip, consdata0->rhs) ) )
13654 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13667 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13674 else if( cons0dominateslhs && (!cons1isequality || cons0dominatesrhs || SCIPisInfinity(scip, consdata1->rhs)) )
13685 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13697 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13704 if( cons1dominatesrhs && (!cons0isequality || cons1dominateslhs || SCIPisInfinity(scip, -consdata0->lhs)) )
13715 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13728 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13735 else if( cons0dominatesrhs && (!cons1isequality || cons0dominateslhs || SCIPisInfinity(scip, -consdata1->lhs)) )
13746 SCIPdebugMsg(scip, "linear constraints <%s> and <%s> are infeasible\n", SCIPconsGetName(cons0), SCIPconsGetName(cons1));
13758 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13775 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13790 /* update flags of constraint which caused the redundancy s.t. nonredundant information doesn't get lost */
13812 SCIP_CALL( aggregateConstraints(scip, cons0, cons1, commonidx0, commonidx1, diffidx0minus1, diffidx1minus0,
13827 if( !aggregated && cons0isequality && !consdata1->upgraded && commonidxweight > diffidx0minus1weight )
13830 SCIP_CALL( aggregateConstraints(scip, cons1, cons0, commonidx1, commonidx0, diffidx1minus0, diffidx0minus1,
13862 SCIP_Bool singletonstuffing, /**< should stuffing of singleton continuous variables be performed? */
13863 SCIP_Bool singlevarstuffing, /**< should single variable stuffing be performed, which tries to fulfill
13907 consdataGetActivityBounds(scip, consdata, FALSE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
13915 /* we want to have a <= constraint, if the rhs is infinite, we implicitly multiply the constraint by -1,
13945 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
13979 if( (SCIPvarGetNLocksUpType(var, SCIP_LOCKTYPE_MODEL) + SCIPvarGetNLocksDownType(var, SCIP_LOCKTYPE_MODEL)) == 1
14076 if( tryfixing && nsingletons > 0 && (SCIPisGT(scip, rhs, maxcondactivity) || SCIPisLE(scip, rhs, mincondactivity)) )
14138 /* @note: we could in theory tighten the bound of the first singleton variable which does not fall into the above case,
14139 * since it cannot be fully fixed. However, this is not needed and should be done by activity-based bound tightening
14140 * anyway after all other continuous singleton columns were fixed; doing it here may introduce numerical
14171 SCIPdebugMsg(scip, "### stuffing fixed %d variables and changed %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds);
14185 * setting all variables to their upper bound (giving us the maximal activity of the constraint) is worst w.r.t.
14186 * feasibility of the constraint. On the other hand, this gives the best objective function contribution of the
14187 * variables contained in the constraint. The maximal activity should be larger than the rhs, otherwise the constraint
14189 * Now we are searching for a variable x_k with maximal ratio c_k / a_k (note that all these ratios are negative), so
14190 * that by reducing the value of this variable we reduce the activity of the constraint while having the smallest
14191 * objective deterioration per activity unit. If x_k has no downlocks, is continuous, and can be reduced enough to
14192 * render the constraint feasible, and ALL other variables have only the one uplock installed by the current constraint,
14193 * we can reduce the upper bound of x_k such that the maxactivity equals the rhs and fix all other variables to their
14195 * Note that the others variables may have downlocks from other constraints, which we do not need to care
14196 * about since we are setting them to the highest possible value. Also, they may be integer or binary, because the
14197 * computed ratio is still a lower bound on the change in the objective caused by reducing those variable to reach
14198 * constraint feasibility. On the other hand, uplocks on x_k from other constraint do no interfer with the method.
14199 * With a slight adjustment, the procedure even works for integral x_k. If (maxactivity - rhs)/val is integral,
14200 * the variable gets an integral value in order to fulfill the constraint tightly, and we can just apply the procedure.
14201 * If (maxactivity - rhs)/val is fractional, we need to check, if overfulfilling the constraint by setting x_k to
14202 * ceil((maxactivity - rhs)/val) is still better than setting x_k to ceil((maxactivity - rhs)/val) - 1 and
14203 * filling the remaining gap in the constraint with the next-best variable. For this, we check that
14205 * c_k * floor((maxactivity - rhs)/val) + c_j * ((maxactivity - rhs) - (floor((maxactivity - rhs)/val) * val))/a_j.
14207 * If there are variables with a_i < 0 and c_i > 0, they are negated to obtain the above form, variables with same
14236 /* if both objective and constraint push the variable to the same direction, we can do nothing here */
14258 if( ratio > bestratio || ((ratio == bestratio) && downlocks == 0 && (bestdownlocks > 0 /*lint !e777*/
14323 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14324 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/-val) )
14351 SCIPdebugMsg(scip, "tighten the lower bound of <%s> from %g to %g (ub=%g)\n", SCIPvarGetName(var), lb, lb + bounddelta, ub);
14360 /* the best variable is integer, and we need to overfulfill the constraint when using just the variable */
14361 if( SCIPvarGetType(var) != SCIP_VARTYPE_CONTINUOUS && !SCIPisIntegral(scip, (maxactivity - rhs)/val))
14388 SCIPdebugMsg(scip, "tighten the upper bound of <%s> from %g to %g (lb=%g)\n", SCIPvarGetName(var), ub, ub - bounddelta, lb);
14403 SCIPdebugMsg(scip, "cons <%s>: %g <=\n", SCIPconsGetName(cons), factor > 0 ? consdata->lhs : -consdata->rhs);
14406 SCIPdebugMsg(scip, "%+g <%s>([%g,%g],%g,[%d,%d],%s)\n", factor * vals[v], SCIPvarGetName(vars[v]),
14439 SCIPdebugMsg(scip, "### new stuffing fixed %d vars, tightened %d bounds\n", *nfixedvars - oldnfixedvars, *nchgbds - oldnchgbds);
14473 * redlb[v] == k : if x_v >= k, we can always round x_v down to x_v == k without violating any constraint
14474 * redub[v] == k : if x_v <= k, we can always round x_v up to x_v == k without violating any constraint
14487 * This is because then, the value of the variable is either determined by one of its bounds or
14509 /* copy the variable array since this array might change during the curse of this algorithm */
14531 /* Initialize isimplint array: variable may be implied integer if rounded to their best bound they are integral.
14547 isimplint[v] = (SCIPisInfinity(scip, -lb) || SCIPisIntegral(scip, lb)) && (SCIPisInfinity(scip, ub) || SCIPisIntegral(scip, ub));
14563 /* we only need to consider constraints that have been locked (i.e., checked constraints or constraints that are
14597 assert(0 <= contv && contv < ncontvars); /* variable should be active due to applyFixings() */
14649 consdataGetGlbActivityResiduals(scip, consdata, var, val, FALSE, &minresactivity, &maxresactivity,
14659 if( !isminsettoinfinity && SCIPisUpdateUnreliable(scip, minresactivity, consdata->lastglbminactivity) )
14663 if( !ismaxsettoinfinity && SCIPisUpdateUnreliable(scip, maxresactivity, consdata->lastglbmaxactivity) )
14669 assert(0 <= arrayindex && arrayindex < nvars); /* variable should be active due to applyFixings() */
14738 /* there is more than one continuous variable or the integer variables have fractional coefficients:
14756 /* there is exactly one continuous variable and the integer variables have integral coefficients:
14757 * this is the interesting case, and we have to check whether the coefficient is +/-1 and the corresponding
14810 * if largest bound to make constraints redundant is -infinity, we better do nothing for numerical reasons
14818 /* if x_v >= redlb[v], we can always round x_v down to x_v == redlb[v] without violating any constraint
14821 SCIPdebugMsg(scip, "variable <%s> only locked down in linear constraints: dual presolve <%s>[%.15g,%.15g] <= %.15g\n",
14837 * if smallest bound to make constraints redundant is +infinity, we better do nothing for numerical reasons
14845 /* if x_v <= redub[v], we can always round x_v up to x_v == redub[v] without violating any constraint
14848 SCIPdebugMsg(scip, "variable <%s> only locked up in linear constraints: dual presolve <%s>[%.15g,%.15g] >= %.15g\n",
14886 SCIPdebugMsg(scip, "infeasible upgrade of variable <%s> to integral type, domain is empty\n", SCIPvarGetName(var));
14892 SCIPdebugMsg(scip, "dual presolve: converting continuous variable <%s>[%g,%g] to implicit integer\n",
14938 SCIPdebugMsg(scip, "Enforcement method of linear constraints for %s solution\n", sol == NULL ? "LP" : "relaxation");
14977 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
15002 /** destructor of constraint handler to free constraint handler data (called when SCIP is exiting) */
15021 }
15050 /** deinitialization method of constraint handler (called before transformed problem is freed) */
15093 return !(SCIPisEQ(scip, lhs, rhs) || SCIPisInfinity(scip, -lhs) || SCIPisInfinity(scip, rhs) );
15102 {
15110 * iterates through all linear constraints and stores relevant statistics in the linear constraint statistics \p linconsstats.
15112 * @note only constraints are iterated that belong to the linear constraint handler. If the problem has been presolved already,
15113 * constraints that were upgraded to more special types such as, e.g., varbound constraints, will not be shown correctly anymore.
15114 * Similarly, if specialized constraints were created through the API, these are currently not present.
15200 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_SINGLETON, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15220 /* precedence constraints have the same coefficient, but with opposite sign for the same variable type */
15239 /* is constraint of type SCIP_CONSTYPE_{SETPARTITION, SETPACKING, SETCOVERING, CARDINALITY, INVKNAPSACK}? */
15251 /* scan through variables and detect if all variables are binary and have a coefficient +/-1 */
15327 /* if both sides are infinite at this point, no further classification is necessary for this constraint */
15378 SCIPlinConsStatsIncTypeCount(linconsstats, matched ? SCIP_LINCONSTYPE_BINPACKING : SCIP_LINCONSTYPE_KNAPSACK, 1);
15381 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15413 /* check if finite left hand side allows for a second classification, relax already used right hand side */
15438 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_MIXEDBINARY, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15447 SCIPlinConsStatsIncTypeCount(linconsstats, SCIP_LINCONSTYPE_GENERAL, isRangedRow(scip, lhs, rhs) ? 2 : 1);
15454 /** presolving deinitialization method of constraint handler (called after presolving has been finished) */
15500 SCIPstatisticMessage("below threshold: %d / %d ratio= %g\n", ngoodconss, nallconss, (100.0 * ngoodconss / nallconss));
15516 /* this is no problem reduction, because the upgraded constraint was added to the problem before, and the
15517 * (redundant) linear constraint was only kept in order to support presolving the the linear constraint handler
15523 /* since we are not allowed to detect infeasibility in the exitpre stage, we dont give an infeasible pointer */
15532 /** solving process deinitialization method of constraint handler (called before branch and bound process data is freed) */
15551 }
15567 "(restart) converted %d cuts from the global cut pool into linear constraints\n", ncutsadded);
15568 /* an extra blank line should be printed separately since the buffer message handler only handles up to one
15664 SCIP_CALL( consdataCreate(scip, &targetdata, sourcedata->nvars, sourcedata->vars, sourcedata->vals, sourcedata->lhs, sourcedata->rhs) );
15667 SCIP_CALL( SCIPcreateCons(scip, targetcons, SCIPconsGetName(sourcecons), conshdlr, targetdata,
15668 SCIPconsIsInitial(sourcecons), SCIPconsIsSeparated(sourcecons), SCIPconsIsEnforced(sourcecons),
15671 SCIPconsIsDynamic(sourcecons), SCIPconsIsRemovable(sourcecons), SCIPconsIsStickingAtNode(sourcecons)) );
15677 /** LP initialization method of constraint handler (called before the initial LP relaxation at a node is solved) */
15730 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
15753 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, NULL, separatecards, conshdlrdata->separateall, &ncuts, &cutoff) );
15796 if( (depth == 0 && conshdlrdata->maxroundsroot >= 0 && nrounds >= conshdlrdata->maxroundsroot)
15811 SCIP_CALL( separateCons(scip, conss[c], conshdlrdata, sol, TRUE, conshdlrdata->separateall, &ncuts, &cutoff) );
15887 SCIPdebugMsg(scip, "-> constraints checked, %s\n", *result == SCIP_FEASIBLE ? "all constraints feasible" : "infeasibility detected");
15939 SCIPinfoMessage(scip, NULL, "activity invalid due to positive and negative infinity contributions\n");
15941 SCIPinfoMessage(scip, NULL, "violation: left hand side is violated by %.15g\n", consdata->lhs - activity);
15943 SCIPinfoMessage(scip, NULL, "violation: right hand side is violated by %.15g\n", activity - consdata->rhs);
15974 /* check, if we want to tighten variable's bounds (in probing, we always want to tighten the bounds) */
15988 && ((tightenboundsfreq == 0 && depth == 0) || (tightenboundsfreq >= 1 && (depth % tightenboundsfreq == 0)));
16114 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16127 /* apply presolving as long as possible on the single constraint (however, abort after a certain number of rounds
16170 SCIP_CALL( tightenBounds(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars, &cutoff, nchgbds) );
16180 consdataGetActivityBounds(scip, consdata, TRUE, &minactivity, &maxactivity, &minactisrelax, &maxactisrelax);
16181 if( SCIPisFeasGT(scip, minactivity, consdata->rhs) || SCIPisFeasLT(scip, maxactivity, consdata->lhs) )
16183 SCIPdebugMsg(scip, "linear constraint <%s> is infeasible: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16188 else if( SCIPisFeasGE(scip, minactivity, consdata->lhs) && SCIPisFeasLE(scip, maxactivity, consdata->rhs) )
16190 SCIPdebugMsg(scip, "linear constraint <%s> is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16199 else if( !SCIPisInfinity(scip, -consdata->lhs) && SCIPisFeasGE(scip, minactivity, consdata->lhs) )
16201 SCIPdebugMsg(scip, "linear constraint <%s> left hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16207 else if( !SCIPisInfinity(scip, consdata->rhs) && SCIPisFeasLE(scip, maxactivity, consdata->rhs) )
16209 SCIPdebugMsg(scip, "linear constraint <%s> right hand side is redundant: activitybounds=[%.15g,%.15g], sides=[%.15g,%.15g]\n",
16239 /* reduce big-M coefficients, that make the constraint redundant if the variable is on a bound */
16282 SCIP_CALL( extractCliques(scip, cons, conshdlrdata->maxeasyactivitydelta, conshdlrdata->sortvars,
16310 SCIP_CALL( convertEquality(scip, cons, conshdlrdata, &cutoff, nfixedvars, naggrvars, ndelconss) );
16314 if( !cutoff && SCIPconsIsActive(cons) && conshdlrdata->dualpresolving && SCIPallowDualReds(scip) )
16329 /* remember the first constraint that was not yet tried to be upgraded, to begin the next upgrading round with */
16336 (conshdlrdata->singletonstuffing || conshdlrdata->singlevarstuffing) && SCIPallowDualReds(scip) )
16368 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && (conshdlrdata->presolusehashing || conshdlrdata->presolpairwise) && !SCIPisStopped(scip) )
16374 /* detect redundant constraints; fast version with hash table instead of pairwise comparison */
16375 SCIP_CALL( detectRedundantConstraints(scip, SCIPblkmem(scip), conss, nconss, &firstchange, &cutoff,
16418 npaircomparisons += (SCIPconsGetData(conss[c])->changed) ? c : (c - firstchange); /*lint !e776*/
16421 SCIP_CALL( preprocessConstraintPairs(scip, usefulconss, firstchange, c, conshdlrdata->maxaggrnormscale,
16427 if( ((*ndelconss - oldndelconss) + (*nchgsides - oldnchgsides)/2.0 + (*nchgcoefs - oldnchgcoefs)/10.0) / ((SCIP_Real) npaircomparisons) < conshdlrdata->mingainpernmincomp )
16440 /* before upgrading, check whether we can apply some additional dual presolving, because a variable only appears
16444 && *nfixedvars == oldnfixedvars && *naggrvars == oldnaggrvars && *nchgbds == oldnchgbds && *ndelconss == oldndelconss
16455 * only upgrade constraints, if no reductions were found in this round (otherwise, the linear constraint handler
16456 * may find additional reductions before giving control away to other (less intelligent?) constraint handlers)
16458 if( !cutoff && (presoltiming & SCIP_PRESOLTIMING_EXHAUSTIVE) != 0 && SCIPisPresolveFinished(scip) )
16471 /* only upgrade completely presolved constraints, that changed since the last upgrading call */
16498 * delete upgraded equalities, if we don't need it anymore for aggregation and redundancy checking
16514 else if( *nfixedvars > oldnfixedvars || *naggrvars > oldnaggrvars || *nchgbds > oldnchgbds || *ndelconss > oldndelconss
16532 SCIP_CALL( resolvePropagation(scip, cons, infervar, intToInferInfo(inferinfo), boundtype, bdchgidx, result) );
16557 {
16634 consname = name;
16638 SCIP_CALL( SCIPcopyConsLinear(scip, cons, sourcescip, consname, nvars, sourcevars, sourcecoefs,
16639 SCIPgetLhsLinear(sourcescip, sourcecons), SCIPgetRhsLinear(sourcescip, sourcecons), varmap, consmap,
16640 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode, global, valid) );
16648 /* find operators '<=', '==', '>=', [free] in input string and return those places. There should only be one operator,
16706 /* assign the found operator to the first or second pointer and check for violations of the linear constraint grammar */
16790 /* find operators in the line first, all other remaining parsing depends on occurence of the operators '<=', '>=', '==',
16803 /* assign the strings for parsing the left hand side, right hand side, and the linear variable sum */
16844 SCIPerrorMessage("Parsing has wrong operator character '%c', should be one of <=>[", *firstop);
16880 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
16889 SCIP_CALL( SCIPparseVarsLinearsum(scip, varstrptr, vars, coefs, &nvars, coefssize, &requsize, &endptr, success) );
16890 assert(!*success || requsize <= coefssize); /* if successful, then should have had enough space now */
16900 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
16933 /** constraint method of constraint handler which returns the number of variables (if possible) */
17014 /* bound change can turn the constraint infeasible or redundant only if it was a tightening */
17019 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17032 if( (val > 0.0 ? !SCIPisInfinity(scip, consdata->rhs) : !SCIPisInfinity(scip, -consdata->lhs)) )
17036 if( (val > 0.0 ? !SCIPisInfinity(scip, -consdata->lhs) : !SCIPisInfinity(scip, consdata->rhs)) )
17075 /* reset maximal activity delta, so that it will be recalculated on the next real propagation */
17085 /* there is only one lock left: we may multi-aggregate the variable as slack of an equation */
17153 /* create array of variables and coefficients: sum_{i \in P} x_i - sum_{i \in N} x_i >= 1 - |N| */
17185 (void) SCIPsnprintf(consname, SCIP_MAXSTRLEN, "cf%" SCIP_LONGINT_FORMAT, SCIPgetNConflictConssApplied(scip));
17186 SCIP_CALL( SCIPcreateConsLinear(scip, &cons, consname, nbdchginfos, vars, vals, lhs, SCIPinfinity(scip),
17189 /* try to automatically convert a linear constraint into a more specific and more specialized constraint */
17216 /** upgrades quadratic constraints with only and at least one linear variables into a linear constraint
17230 SCIPdebugMsg(scip, "upgradeConsQuadratic called for constraint <%s>\n", SCIPconsGetName(cons));
17259 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original quadratic constraint */
17296 SCIPgetNLinearVarsNonlinear(scip, cons), SCIPgetLinearVarsNonlinear(scip, cons), SCIPgetLinearCoefsNonlinear(scip, cons),
17306 /* check violation of this linear constraint with absolute tolerances, to be consistent with the original nonlinear constraint */
17336 SCIP_CALL( SCIPincludeConflicthdlrBasic(scip, &conflicthdlr, CONFLICTHDLR_NAME, CONFLICTHDLR_DESC, CONFLICTHDLR_PRIORITY,
17364 SCIP_CALL( SCIPsetConshdlrPresol(scip, conshdlr, consPresolLinear, CONSHDLR_MAXPREROUNDS, CONSHDLR_PRESOLTIMING) );
17366 SCIP_CALL( SCIPsetConshdlrProp(scip, conshdlr, consPropLinear, CONSHDLR_PROPFREQ, CONSHDLR_DELAYPROP,
17369 SCIP_CALL( SCIPsetConshdlrSepa(scip, conshdlr, consSepalpLinear, consSepasolLinear, CONSHDLR_SEPAFREQ,
17377 SCIP_CALL( SCIPincludeQuadconsUpgrade(scip, upgradeConsQuadratic, QUADCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17383 SCIP_CALL( SCIPincludeNonlinconsUpgrade(scip, upgradeConsNonlinear, NULL, NONLINCONSUPGD_PRIORITY, TRUE, CONSHDLR_NAME) );
17389 "multiplier on propagation frequency, how often the bounds are tightened (-1: never, 0: only at root)",
17390 &conshdlrdata->tightenboundsfreq, TRUE, DEFAULT_TIGHTENBOUNDSFREQ, -1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17425 "maximal allowed relative gain in maximum norm for constraint aggregation (0.0: disable constraint aggregation)",
17426 &conshdlrdata->maxaggrnormscale, TRUE, DEFAULT_MAXAGGRNORMSCALE, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17429 "maximum activity delta to run easy propagation on linear constraint (faster, but numerically less stable)",
17430 &conshdlrdata->maxeasyactivitydelta, TRUE, DEFAULT_MAXEASYACTIVITYDELTA, 0.0, SCIP_REAL_MAX, NULL, NULL) );
17433 "maximal relative distance from current node's dual bound to primal bound compared to best node's dual bound for separating knapsack cardinality cuts",
17437 "should all constraints be subject to cardinality cut generation instead of only the ones with non-zero dual value?",
17457 "should single variable stuffing be performed, which tries to fulfill constraints using the cheapest variable?",
17460 "constraints/" CONSHDLR_NAME "/sortvars", "apply binaries sorting in decr. order of coeff abs value?",
17464 "should the violation for a constraint with side 0.0 be checked relative to 1.0 (FALSE) or to the maximum absolute value in the activity (TRUE)?",
17468 "should presolving try to detect constraints parallel to the objective function defining an upper bound and prevent these constraints from entering the LP?",
17472 "should presolving try to detect constraints parallel to the objective function defining a lower bound and prevent these constraints from entering the LP?",
17480 "should presolving and propagation try to improve bounds, detect infeasibility, and extract sub-constraints from ranged rows and equations?",
17493 &conshdlrdata->rangedrowfreq, TRUE, DEFAULT_RANGEDROWFREQ, 1, SCIP_MAXTREEDEPTH, NULL, NULL) );
17541 (void) SCIPsnprintf(paramname, SCIP_MAXSTRLEN, "constraints/linear/upgrade/%s", conshdlrname);
17542 (void) SCIPsnprintf(paramdesc, SCIP_MAXSTRLEN, "enable linear upgrading for constraint handler <%s>", conshdlrname);
17553 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17582 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup?
17584 SCIP_Bool stickingatnode /**< should the constraint always be kept at the node where it was added, even
17603 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
17619 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
17627 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
17641 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17651 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17667 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", name);
17677 SCIPerrorMessage("try to generate inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", name);
17720 SCIP_CALL( SCIPcreateCons(scip, cons, name, conshdlr, consdata, initial, separate, enforce, check, propagate,
17727 * in its most basic version, i. e., all constraint flags are set to their basic value as explained for the
17728 * method SCIPcreateConsLinear(); all flags can be set via SCIPsetConsFLAGNAME-methods in scip.h
17732 * @note the constraint gets captured, hence at one point you have to release it using the method SCIPreleaseCons()
17751 }
17761 SCIP_Real* sourcecoefs, /**< coefficient array of the linear constraint, or NULL if all coefficients are one */
17764 SCIP_HASHMAP* varmap, /**< a SCIP_HASHMAP mapping variables of the source SCIP to corresponding
17766 SCIP_HASHMAP* consmap, /**< a hashmap to store the mapping of source constraints to the corresponding
17776 SCIP_Bool removable, /**< should the relaxation be removed from the LP due to aging or cleanup? */
17777 SCIP_Bool stickingatnode, /**< should the constraint always be kept at the node where it was added, even
17802 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17823 /* transform source variable to active variables of the source SCIP since only these can be mapped to variables of
17828 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, nvars, &constant, &requiredsize, TRUE) );
17835 SCIP_CALL( SCIPgetProbvarLinearSum(sourcescip, vars, coefs, &nvars, requiredsize, &constant, &requiredsize, TRUE) );
17856 SCIP_CALL( SCIPgetVarCopy(sourcescip, scip, var, &vars[v], varmap, consmap, global, &success) );
17870 initial, separate, enforce, check, propagate, local, modifiable, dynamic, removable, stickingatnode) );
17900 /* for the solving process we need linear rows, containing only active variables; therefore when creating a linear
17922 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, nconsvars, &constant, &requiredsize, TRUE) );
17930 SCIP_CALL( SCIPgetProbvarLinearSum(scip, consvars, consvals, &nconsvars, requiredsize, &constant, &requiredsize, TRUE) );
17951 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
17961 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
17977 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite left hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
17987 SCIPerrorMessage("adding variable <%s> leads to inconsistent constraint <%s>, active variables leads to a infinite constant constradict the infinite right hand side of the constraint\n", SCIPvarGetName(var), SCIPconsGetName(cons));
18037 /** changes coefficient of variable in linear constraint; deletes the variable if coefficient is zero; adds variable if
18040 * @note This method may only be called during problem creation stage for an original constraint and variable.
18042 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18061 {
18066 if( SCIPgetStage(scip) > SCIP_STAGE_PROBLEM || !SCIPconsIsOriginal(cons) || !SCIPvarIsOriginal(var) )
18068 SCIPerrorMessage("method may only be called during problem creation stage for original constraints and variables\n");
18086 /* decrease i by one since otherwise we would skip the coefficient which has been switched to position i */
18108 * @note This method may only be called during problem creation stage for an original constraint and variable.
18110 * @note This method requires linear time to search for occurences of the variable in the constraint data.
18235 /** gets the array of variables in the linear constraint; the user must not modify this array! */
18258 /** gets the array of coefficient values in the linear constraint; the user must not modify this array! */
18283 * @note if the solution contains values at infinity, this method will return SCIP_INVALID in case the activity
18393 /** returns the linear relaxation of the given linear constraint; may return NULL if no LP row was yet created;
18418 /** tries to automatically convert a linear constraint into a more specific and more specialized constraint */
18460 /* we cannot upgrade a modifiable linear constraint, since we don't know what additional coefficients to expect */
18482 /* check, if the constraint was already upgraded and will be deleted anyway after preprocessing */
18491 SCIPerrorMessage("cannot upgrade linear constraint that is already stored as row in the LP\n");
18503 /* normalizeCons() can only detect infeasibility when scaling with the gcd. in that case, the scaling was
18508 * TODO: this needs to be fixed on master by changing the API and passing a pointer to whether the constraint is
18620 SCIPdebugMsg(scip, " +bin=%d -bin=%d +int=%d -int=%d +impl=%d -impl=%d +cont=%d -cont=%d +1=%d -1=%d +I=%d -I=%d +F=%d -F=%d possum=%.15g negsum=%.15g integral=%u\n",
18632 nposbin, nnegbin, nposint, nnegint, nposimpl, nnegimpl, nposimplbin, nnegimplbin, nposcont, nnegcont,
18643 SCIPdebugMsg(scip, " -> upgraded to constraint type <%s>\n", SCIPconshdlrGetName(SCIPconsGetHdlr(*upgdcons)));
void SCIPsortRealInt(SCIP_Real *realarray, int *intarray, int len)
SCIP_VAR ** SCIPgetLinearVarsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14865
void SCIPconshdlrSetData(SCIP_CONSHDLR *conshdlr, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons.c:4221
SCIP_Real SCIPgetActivityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18303
#define SCIPreallocBlockMemoryArray(scip, ptr, oldnum, newnum)
Definition: scip_mem.h:105
SCIP_RETCODE SCIPflattenVarAggregationGraph(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:1696
SCIP_RETCODE SCIPsetConshdlrDelete(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELETE((*consdelete)))
Definition: scip_cons.c:640
Definition: type_result.h:33
Definition: type_result.h:37
Definition: struct_cons.h:280
static SCIP_RETCODE tightenVarBounds(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:6731
static void consdataCalcMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1429
SCIP_RETCODE SCIPincludeNonlinconsUpgrade(SCIP *scip, SCIP_DECL_NONLINCONSUPGD((*nonlinconsupgd)), SCIP_DECL_EXPRGRAPHNODEREFORM((*nodereform)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_nonlinear.c:9244
static SCIP_DECL_CONSDEACTIVE(consDeactiveLinear)
Definition: cons_linear.c:15598
Definition: type_cons.h:72
Definition: struct_var.h:99
SCIP_RETCODE SCIPincludeConshdlrLinear(SCIP *scip)
Definition: cons_linear.c:17337
static SCIP_RETCODE consdataCreate(SCIP *scip, SCIP_CONSDATA **consdata, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:853
static SCIP_RETCODE consCatchEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:719
static SCIP_RETCODE chgCoefPos(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Real newval)
Definition: cons_linear.c:3968
SCIP_RETCODE SCIPtightenVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5120
static SCIP_Real consdataGetFeasibility(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3139
SCIP_Real SCIPgetVarUbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:2130
SCIP_Bool SCIPisFeasEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:851
public methods for SCIP parameter handling
int SCIPvarGetNLocksDownType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3176
SCIP_Real * SCIPvarGetMultaggrScalars(SCIP_VAR *var)
Definition: var.c:17135
SCIP_RETCODE SCIPsetConshdlrTrans(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSTRANS((*constrans)))
Definition: scip_cons.c:663
Definition: type_var.h:40
SCIP_RETCODE SCIPcreateConsBasicLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:17751
SCIP_Bool SCIPisFeasLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:864
Definition: struct_scip.h:58
SCIP_Real SCIPgetVarLbAtIndex(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx, SCIP_Bool after)
Definition: scip_var.c:1994
static void calculateMinvalAndMaxval(SCIP *scip, SCIP_Real side, SCIP_Real val, SCIP_Real minresactivity, SCIP_Real maxresactivity, SCIP_Real *minval, SCIP_Real *maxval)
Definition: cons_linear.c:10501
static void consdataUpdateSignatures(SCIP_CONSDATA *consdata, int pos)
Definition: cons_linear.c:3160
SCIP_RETCODE SCIPhashtableInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2265
static void consdataUpdateActivities(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldbound, SCIP_Real newbound, SCIP_Real val, SCIP_BOUNDTYPE boundtype, SCIP_Bool global, SCIP_Bool checkreliability)
Definition: cons_linear.c:1596
public methods for memory management
Definition: type_conflict.h:50
static void consdataRecomputeMaxActivityDelta(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1534
SCIP_RETCODE SCIPcatchVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int *filterpos)
Definition: scip_event.c:422
SCIP_CONSHDLR * SCIPfindConshdlr(SCIP *scip, const char *name)
Definition: scip_cons.c:954
static SCIP_Bool checkEqualObjective(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real *scale, SCIP_Real *offset)
Definition: cons_linear.c:10104
static SCIP_RETCODE fixVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars)
Definition: cons_linear.c:7744
SCIP_Bool SCIPisUbBetter(SCIP *scip, SCIP_Real newub, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1214
static SCIP_RETCODE convertUnaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *ndelconss)
Definition: cons_linear.c:9393
static SCIP_RETCODE tightenVarLb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5371
SCIP_RETCODE SCIPincludeQuadconsUpgrade(SCIP *scip, SCIP_DECL_QUADCONSUPGD((*quadconsupgd)), int priority, SCIP_Bool active, const char *conshdlrname)
Definition: cons_quadratic.c:14184
SCIP_RETCODE SCIPsetConshdlrGetVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETVARS((*consgetvars)))
Definition: scip_cons.c:893
SCIP_RETCODE SCIPcopyConsLinear(SCIP *scip, SCIP_CONS **cons, SCIP *sourcescip, const char *name, int nvars, SCIP_VAR **sourcevars, SCIP_Real *sourcecoefs, SCIP_Real lhs, SCIP_Real rhs, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode, SCIP_Bool global, SCIP_Bool *valid)
Definition: cons_linear.c:17771
static SCIP_RETCODE findOperators(const char *str, char **firstoperator, char **secondoperator, SCIP_Bool *success)
Definition: cons_linear.c:16669
SCIP_RETCODE SCIPupdateCutoffbound(SCIP *scip, SCIP_Real cutoffbound)
Definition: scip_solvingstats.c:1552
int SCIPvarGetNLocksUpType(SCIP_VAR *var, SCIP_LOCKTYPE locktype)
Definition: var.c:3233
SCIP_Bool SCIPparseReal(SCIP *scip, const char *str, SCIP_Real *value, char **endptr)
Definition: scip_numerics.c:475
public methods for conflict handler plugins and conflict analysis
SCIP_RETCODE SCIPsetConshdlrEnforelax(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSENFORELAX((*consenforelax)))
Definition: scip_cons.c:385
SCIP_RETCODE SCIPresetConsAge(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:1826
static SCIP_RETCODE consDropAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:822
void SCIPlinConsStatsIncTypeCount(SCIP_LINCONSSTATS *linconsstats, SCIP_LINCONSTYPE linconstype, int increment)
Definition: cons.c:7971
Definition: type_result.h:49
SCIP_RETCODE SCIPaddVarToRow(SCIP *scip, SCIP_ROW *row, SCIP_VAR *var, SCIP_Real val)
Definition: scip_lp.c:1602
Definition: type_cons.h:68
SCIP_RETCODE SCIPsetConsPropagated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool propagate)
Definition: scip_cons.c:1385
SCIP_Bool SCIPisSumRelEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1292
static void consdataUpdateActivitiesGlbUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2054
SCIP_Bool SCIPisUpdateUnreliable(SCIP *scip, SCIP_Real newvalue, SCIP_Real oldvalue)
Definition: scip_numerics.c:1399
SCIP_Bool SCIPisGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:568
Definition: type_set.h:37
SCIP_RETCODE SCIPsetConshdlrDeactive(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDEACTIVE((*consdeactive)))
Definition: scip_cons.c:755
SCIP_RETCODE SCIPincludeEventhdlrBasic(SCIP *scip, SCIP_EVENTHDLR **eventhdlrptr, const char *name, const char *desc, SCIP_DECL_EVENTEXEC((*eventexec)), SCIP_EVENTHDLRDATA *eventhdlrdata)
Definition: scip_event.c:172
static SCIP_Real consdataGetMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2283
static SCIP_RETCODE linconsupgradeCreate(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority)
Definition: cons_linear.c:509
void SCIPsortDownRealPtr(SCIP_Real *realarray, void **ptrarray, int len)
Definition: struct_var.h:198
SCIP_RETCODE SCIPgetTransformedVar(SCIP *scip, SCIP_VAR *var, SCIP_VAR **transvar)
Definition: scip_var.c:1442
SCIP_RETCODE SCIPupdateConsFlags(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1)
Definition: scip_cons.c:1538
static void consdataRecomputeMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1297
SCIP_Bool SCIPisFeasNegative(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:940
static SCIP_RETCODE normalizeCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4184
SCIP_RETCODE SCIPconvertCutsToConss(SCIP *scip, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, int *ncutsadded)
Definition: scip_copy.c:1819
SCIP_Bool SCIPisFeasGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:903
static void consdataGetGlbActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *glbminactivity, SCIP_Real *glbmaxactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2857
Definition: type_cons.h:74
Definition: type_message.h:45
static void permSortConsdata(SCIP_CONSDATA *consdata, int *perm, int nvars)
Definition: cons_linear.c:3218
Definition: cons_linear.c:354
SCIP_CONS ** SCIPconshdlrGetConss(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4563
SCIP_Real SCIPadjustedVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real ub)
Definition: scip_var.c:4582
static SCIP_DECL_HASHGETKEY(hashGetKeyLinearcons)
Definition: cons_linear.c:12889
static void consdataInvalidateActivities(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1198
const char * SCIPeventhdlrGetName(SCIP_EVENTHDLR *eventhdlr)
Definition: event.c:314
SCIP_RETCODE SCIPincludeConshdlrBasic(SCIP *scip, SCIP_CONSHDLR **conshdlrptr, const char *name, const char *desc, int enfopriority, int chckpriority, int eagerfreq, SCIP_Bool needscons, SCIP_DECL_CONSENFOLP((*consenfolp)), SCIP_DECL_CONSENFOPS((*consenfops)), SCIP_DECL_CONSCHECK((*conscheck)), SCIP_DECL_CONSLOCK((*conslock)), SCIP_CONSHDLRDATA *conshdlrdata)
Definition: scip_cons.c:243
SCIP_Real * SCIPgetLinearCoefsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9682
static void consdataGetGlbActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2919
static SCIP_Bool conshdlrdataHasUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_DECL_LINCONSUPGD((*linconsupgd)), const char *conshdlrname)
Definition: cons_linear.c:590
SCIP_RETCODE SCIPunmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2056
SCIP_Real SCIPvarGetNegationConstant(SCIP_VAR *var)
Definition: var.c:17180
SCIP_ROW * SCIPgetRowLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18413
SCIP_RETCODE SCIPaddConflictUb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:488
Definition: type_var.h:53
static SCIP_RETCODE separateCons(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_SOL *sol, SCIP_Bool separatecards, SCIP_Bool separateall, int *ncuts, SCIP_Bool *cutoff)
Definition: cons_linear.c:7507
static SCIP_Bool consdataIsResidualIntegral(SCIP *scip, SCIP_CONSDATA *consdata, int pos, SCIP_Real val)
Definition: cons_linear.c:10475
static SCIP_RETCODE preprocessConstraintPairs(SCIP *scip, SCIP_CONS **conss, int firstchange, int chkind, SCIP_Real maxaggrnormscale, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides, int *nchgcoefs)
Definition: cons_linear.c:13272
Definition: cons_linear.c:352
Definition: type_cons.h:66
void SCIPlinConsStatsReset(SCIP_LINCONSSTATS *linconsstats)
Definition: cons.c:7940
SCIP_Real SCIPgetRhsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9757
public methods for problem variables
SCIP_RETCODE SCIPinitConflictAnalysis(SCIP *scip, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_conflict.c:392
SCIP_RETCODE SCIPtightenVarUb(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5236
SCIP_RETCODE SCIPsetConshdlrSepa(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSSEPALP((*conssepalp)), SCIP_DECL_CONSSEPASOL((*conssepasol)), int sepafreq, int sepapriority, SCIP_Bool delaysepa)
Definition: scip_cons.c:297
SCIP_Real SCIPselectSimpleValue(SCIP_Real lb, SCIP_Real ub, SCIP_Longint maxdnom)
Definition: misc.c:9132
Definition: type_result.h:40
#define SCIPduplicateBufferArray(scip, ptr, source, num)
Definition: scip_mem.h:138
void SCIPsortDownRealInt(SCIP_Real *realarray, int *intarray, int len)
SCIP_Bool SCIPisEQ(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:516
static SCIP_RETCODE detectRedundantConstraints(SCIP *scip, BMS_BLKMEM *blkmem, SCIP_CONS **conss, int nconss, int *firstchange, SCIP_Bool *cutoff, int *ndelconss, int *nchgsides)
Definition: cons_linear.c:13078
static SCIP_RETCODE aggregateConstraints(SCIP *scip, SCIP_CONS *cons0, SCIP_CONS *cons1, int *commonidx0, int *commonidx1, int *diffidx0minus1, int *diffidx1minus0, int nvarscommon, int commonidxweight, int diffidx0minus1weight, int diffidx1minus0weight, SCIP_Real maxaggrnormscale, int *nchgcoefs, SCIP_Bool *aggregated, SCIP_Bool *infeasible)
Definition: cons_linear.c:12569
static SCIP_RETCODE rangedRowPropagation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds, int *naddconss)
Definition: cons_linear.c:5758
SCIP_Real SCIPadjustedVarLb(SCIP *scip, SCIP_VAR *var, SCIP_Real lb)
Definition: scip_var.c:4550
SCIP_RETCODE SCIPdelCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var)
Definition: cons_linear.c:18129
static SCIP_RETCODE consDropEvent(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr, int pos)
Definition: cons_linear.c:756
public methods for SCIP variables
SCIP_RETCODE SCIPsetConshdlrDelvars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSDELVARS((*consdelvars)))
Definition: scip_cons.c:824
SCIP_RETCODE SCIPsetConshdlrInitlp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINITLP((*consinitlp)))
Definition: scip_cons.c:686
void SCIPwarningMessage(SCIP *scip, const char *formatstr,...)
Definition: scip_message.c:203
SCIP_RETCODE SCIPaddIntParam(SCIP *scip, const char *name, const char *desc, int *valueptr, SCIP_Bool isadvanced, int defaultvalue, int minvalue, int maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:155
static SCIP_Real consdataGetMinAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2299
SCIP_RETCODE SCIPgetTransformedVars(SCIP *scip, int nvars, SCIP_VAR **vars, SCIP_VAR **transvars)
Definition: scip_var.c:1483
SCIP_Real SCIPgetRhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18168
SCIP_RETCODE SCIPsetConshdlrParse(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPARSE((*consparse)))
Definition: scip_cons.c:870
SCIP_Real SCIPgetLhsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14979
static SCIP_RETCODE tightenSides(SCIP *scip, SCIP_CONS *cons, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:8845
SCIP_RETCODE SCIPaddCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:17900
void SCIPinfoMessage(SCIP *scip, FILE *file, const char *formatstr,...)
Definition: scip_message.c:279
Definition: type_cons.h:71
static SCIP_RETCODE addConflictFixedVars(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos)
Definition: cons_linear.c:5040
SCIP_RETCODE SCIPcreateCons(SCIP *scip, SCIP_CONS **cons, const char *name, SCIP_CONSHDLR *conshdlr, SCIP_CONSDATA *consdata, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: scip_cons.c:1011
SCIP_RETCODE SCIPparseVarsLinearsum(SCIP *scip, const char *str, SCIP_VAR **vars, SCIP_Real *vals, int *nvars, int varssize, int *requiredsize, char **endptr, SCIP_Bool *success)
Definition: scip_var.c:699
SCIP_RETCODE SCIPaddConflictLb(SCIP *scip, SCIP_VAR *var, SCIP_BDCHGIDX *bdchgidx)
Definition: scip_conflict.c:421
public methods for numerical tolerances
Definition: struct_conflict.h:40
static SCIP_RETCODE rangedRowSimplify(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:11234
SCIP_RETCODE SCIPhashtableCreate(SCIP_HASHTABLE **hashtable, BMS_BLKMEM *blkmem, int tablesize, SCIP_DECL_HASHGETKEY((*hashgetkey)), SCIP_DECL_HASHKEYEQ((*hashkeyeq)), SCIP_DECL_HASHKEYVAL((*hashkeyval)), void *userptr)
Definition: misc.c:2014
int SCIPgetNQuadVarTermsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14892
public methods for querying solving statistics
Definition: struct_sol.h:63
SCIP_RETCODE SCIPaddVarLocksType(SCIP *scip, SCIP_VAR *var, SCIP_LOCKTYPE locktype, int nlocksdown, int nlocksup)
Definition: scip_var.c:4199
Definition: type_cons.h:59
SCIP_Bool SCIPisConflictAnalysisApplicable(SCIP *scip)
Definition: scip_conflict.c:370
public methods for the branch-and-bound tree
Definition: type_cons.h:61
SCIP_Bool SCIPrealToRational(SCIP_Real val, SCIP_Real mindelta, SCIP_Real maxdelta, SCIP_Longint maxdnom, SCIP_Longint *nominator, SCIP_Longint *denominator)
Definition: misc.c:8727
SCIP_Bool SCIPisLbBetter(SCIP *scip, SCIP_Real newlb, SCIP_Real oldlb, SCIP_Real oldub)
Definition: scip_numerics.c:1199
static void linconsupgradeFree(SCIP *scip, SCIP_LINCONSUPGRADE **linconsupgrade)
Definition: cons_linear.c:530
SCIP_RETCODE SCIPsetConsSeparated(SCIP *scip, SCIP_CONS *cons, SCIP_Bool separate)
Definition: scip_cons.c:1310
SCIP_RETCODE SCIPchgVarType(SCIP *scip, SCIP_VAR *var, SCIP_VARTYPE vartype, SCIP_Bool *infeasible)
Definition: scip_var.c:8072
static SCIP_RETCODE analyzeConflict(SCIP *scip, SCIP_CONS *cons, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:5249
static SCIP_RETCODE checkCons(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, SCIP_Bool checklprows, SCIP_Bool checkrelmaxabs, SCIP_Bool *violated)
Definition: cons_linear.c:7170
SCIP_RETCODE SCIPaddClique(SCIP *scip, SCIP_VAR **vars, SCIP_Bool *values, int nvars, SCIP_Bool isequation, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6819
static SCIP_RETCODE checkParallelObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10295
#define SCIPduplicateBlockMemoryArray(scip, ptr, source, num)
Definition: scip_mem.h:111
SCIP_RETCODE SCIPmultiaggregateVar(SCIP *scip, SCIP_VAR *var, int naggvars, SCIP_VAR **aggvars, SCIP_Real *scalars, SCIP_Real constant, SCIP_Bool *infeasible, SCIP_Bool *aggregated)
Definition: scip_var.c:8411
Definition: struct_misc.h:121
public methods for managing constraints
Constraint handler for knapsack constraints of the form , x binary and .
static SCIP_RETCODE updateCutoffbound(SCIP *scip, SCIP_CONS *cons, SCIP_Real primalbound)
Definition: cons_linear.c:10249
SCIP_RETCODE SCIPsetConshdlrCopy(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSHDLRCOPY((*conshdlrcopy)), SCIP_DECL_CONSCOPY((*conscopy)))
Definition: scip_cons.c:409
static SCIP_RETCODE simplifyInequalities(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides, SCIP_Bool *infeasible)
Definition: cons_linear.c:11346
static SCIP_RETCODE tightenVarUb(SCIP *scip, SCIP_CONS *cons, int pos, PROPRULE proprule, SCIP_Real newub, SCIP_Real oldub, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5302
static void getMaxActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *maxactivity, SCIP_Bool *isrelax, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2480
Definition: type_retcode.h:36
SCIP_Bool SCIPisSumRelLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1318
Definition: type_result.h:35
Definition: struct_cons.h:37
SCIP_Real SCIPgetDualsolLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18357
static SCIP_DECL_QUADCONSUPGD(upgradeConsQuadratic)
Definition: cons_linear.c:17236
SCIP_Bool SCIPisLT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:529
SCIP_RETCODE SCIPaddConsLocal(SCIP *scip, SCIP_CONS *cons, SCIP_NODE *validnode)
Definition: scip_prob.c:3446
SCIP_Bool SCIPdoNotMultaggrVar(SCIP *scip, SCIP_VAR *var)
Definition: scip_var.c:8461
Definition: struct_cons.h:117
SCIP_RETCODE SCIPdelConsLocal(SCIP *scip, SCIP_CONS *cons)
Definition: scip_prob.c:3527
public methods for event handler plugins and event handlers
static void consdataGetActivityBounds(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Real *maxactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax)
Definition: cons_linear.c:2579
SCIP_RETCODE SCIPinferVarFixCons(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5347
SCIP_RETCODE SCIPupgradeConsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_CONS **upgdcons)
Definition: cons_linear.c:18436
Definition: type_lp.h:47
SCIP_RETCODE SCIPgetProbvarSum(SCIP *scip, SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: scip_var.c:1796
Definition: type_cons.h:67
SCIP_Real * SCIPgetCoefsLinearVarsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14879
static void consdataCalcMaxAbsval(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1405
SCIP_RETCODE SCIPaddVarImplication(SCIP *scip, SCIP_VAR *var, SCIP_Bool varfixing, SCIP_VAR *implvar, SCIP_BOUNDTYPE impltype, SCIP_Real implbound, SCIP_Bool *infeasible, int *nbdchgs)
Definition: scip_var.c:6691
static SCIP_RETCODE chgRhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:3565
Definition: type_result.h:36
static SCIP_RETCODE conshdlrdataEnsureLinconsupgradesSize(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, int num)
Definition: cons_linear.c:449
static void consdataUpdateDelCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2127
static SCIP_RETCODE consdataSort(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3291
SCIP_RETCODE SCIPunlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4375
static void consdataUpdateAddCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2077
static int inferInfoGetProprule(INFERINFO inferinfo)
Definition: cons_linear.c:397
static SCIP_RETCODE consdataTightenCoefs(SCIP *scip, SCIP_CONS *cons, int *nchgcoefs, int *nchgsides)
Definition: cons_linear.c:8966
SCIP_RETCODE SCIPsetConshdlrFree(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSFREE((*consfree)))
Definition: scip_cons.c:434
constraint handler for quadratic constraints
Definition: type_var.h:42
SCIP_CONSHDLRDATA * SCIPconshdlrGetData(SCIP_CONSHDLR *conshdlr)
Definition: cons.c:4211
Definition: type_var.h:44
static SCIP_RETCODE addConflictReasonVars(SCIP *scip, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5105
SCIP_RETCODE SCIPmarkConsPropagate(SCIP *scip, SCIP_CONS *cons)
Definition: scip_cons.c:2028
static SCIP_RETCODE delCoefPos(SCIP *scip, SCIP_CONS *cons, int pos)
Definition: cons_linear.c:3847
static SCIP_RETCODE resolvePropagation(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, INFERINFO inferinfo, SCIP_BOUNDTYPE boundtype, SCIP_BDCHGIDX *bdchgidx, SCIP_RESULT *result)
Definition: cons_linear.c:5156
SCIP_RETCODE SCIPgetIntParam(SCIP *scip, const char *name, int *value)
Definition: scip_param.c:341
static SCIP_RETCODE checkPartialObjective(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata)
Definition: cons_linear.c:10182
static SCIP_RETCODE conshdlrdataIncludeUpgrade(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_LINCONSUPGRADE *linconsupgrade)
Definition: cons_linear.c:620
Definition: type_set.h:43
Definition: type_retcode.h:33
public methods for problem copies
static SCIP_Bool canTightenBounds(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:5273
SCIP_Bool SCIPisFeasGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:890
static SCIP_RETCODE tightenVarBoundsEasy(SCIP *scip, SCIP_CONS *cons, int pos, SCIP_Bool *cutoff, int *nchgbds, SCIP_Bool force)
Definition: cons_linear.c:5440
SCIP_RETCODE SCIPgetProbvarLinearSum(SCIP *scip, SCIP_VAR **vars, SCIP_Real *scalars, int *nvars, int varssize, SCIP_Real *constant, int *requiredsize, SCIP_Bool mergemultiples)
Definition: scip_var.c:1740
SCIP_Real SCIPvarGetMultaggrConstant(SCIP_VAR *var)
Definition: var.c:17147
SCIP_RETCODE SCIPhashtableRemove(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2395
void SCIPupdateSolLPConsViolation(SCIP *scip, SCIP_SOL *sol, SCIP_Real absviol, SCIP_Real relviol)
Definition: scip_sol.c:334
SCIP_Bool SCIPisFeasLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:877
static void getMinActivity(SCIP *scip, SCIP_CONSDATA *consdata, int posinf, int neginf, int poshuge, int neghuge, SCIP_Real delta, SCIP_Bool global, SCIP_Bool goodrelax, SCIP_Real *minactivity, SCIP_Bool *isrelax, SCIP_Bool *issettoinfinity)
Definition: cons_linear.c:2379
Definition: type_result.h:42
SCIP_RETCODE SCIPanalyzeConflictCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *success)
Definition: scip_conflict.c:772
Definition: type_cons.h:58
void SCIPverbMessage(SCIP *scip, SCIP_VERBLEVEL msgverblevel, FILE *file, const char *formatstr,...)
Definition: scip_message.c:296
static SCIP_Bool isFiniteNonnegativeIntegral(SCIP *scip, SCIP_Real x)
Definition: cons_linear.c:15115
Definition: grphload.c:88
static SCIP_RETCODE scaleCons(SCIP *scip, SCIP_CONS *cons, SCIP_Real scalar)
Definition: cons_linear.c:4041
SCIP_RETCODE SCIPaddRow(SCIP *scip, SCIP_ROW *row, SCIP_Bool forcecut, SCIP_Bool *infeasible)
Definition: scip_cut.c:294
SCIP_RETCODE SCIPsetConshdlrResprop(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSRESPROP((*consresprop)))
Definition: scip_cons.c:709
static SCIP_DECL_HASHKEYVAL(hashKeyValLinearcons)
Definition: cons_linear.c:12960
public methods for constraint handler plugins and constraints
static SCIP_RETCODE propagateCons(SCIP *scip, SCIP_CONS *cons, SCIP_Bool tightenbounds, SCIP_Bool rangedrowpropagation, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7597
SCIP_Real SCIPgetDualfarkasLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18384
static void consdataUpdateChgCoef(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldval, SCIP_Real newval, SCIP_Bool checkreliability)
Definition: cons_linear.c:2184
SCIP_RETCODE SCIPchgVarObj(SCIP *scip, SCIP_VAR *var, SCIP_Real newobj)
Definition: scip_var.c:4450
SCIP_Real SCIPgetRhsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14991
static SCIP_RETCODE consdataPrint(SCIP *scip, SCIP_CONSDATA *consdata, FILE *file)
Definition: cons_linear.c:1087
void SCIPhashtablePrintStatistics(SCIP_HASHTABLE *hashtable, SCIP_MESSAGEHDLR *messagehdlr)
Definition: misc.c:2522
static SCIP_RETCODE retrieveParallelConstraints(SCIP_HASHTABLE *hashtable, SCIP_CONS **querycons, SCIP_CONS **parallelconss, int *nparallelconss)
Definition: cons_linear.c:13017
public data structures and miscellaneous methods
static SCIP_RETCODE chgLhs(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:3439
SCIP_Bool SCIPisSumGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:789
SCIP_RETCODE SCIPchgRowRhs(SCIP *scip, SCIP_ROW *row, SCIP_Real rhs)
Definition: scip_lp.c:1519
Definition: type_var.h:55
static SCIP_RETCODE performVarDeletions(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss)
Definition: cons_linear.c:4125
static void consdataRecomputeGlbMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1378
SCIP_RETCODE SCIPcreateEmptyRowCons(SCIP *scip, SCIP_ROW **row, SCIP_CONSHDLR *conshdlr, const char *name, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool removable)
Definition: scip_lp.c:1336
SCIP_Real SCIPgetLhsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9745
static SCIP_Real consdataGetActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_SOL *sol)
Definition: cons_linear.c:3071
constraint handler for nonlinear constraints
static void conshdlrdataFree(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata)
Definition: cons_linear.c:568
Definition: type_var.h:54
Definition: type_var.h:46
SCIP_RETCODE SCIPprintCons(SCIP *scip, SCIP_CONS *cons, FILE *file)
Definition: scip_cons.c:2550
static SCIP_RETCODE mergeMultiples(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:4547
Definition: struct_lp.h:192
static SCIP_RETCODE addRelaxation(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff)
Definition: cons_linear.c:7454
methods for debugging
public methods for LP management
SCIP_RETCODE SCIPhashtableSafeInsert(SCIP_HASHTABLE *hashtable, void *element)
Definition: misc.c:2297
static SCIP_RETCODE presolStuffing(SCIP *scip, SCIP_CONS *cons, SCIP_Bool singletonstuffing, SCIP_Bool singlevarstuffing, SCIP_Bool *cutoff, int *nfixedvars, int *nchgbds)
Definition: cons_linear.c:13876
SCIP_RETCODE SCIPchgRowLhs(SCIP *scip, SCIP_ROW *row, SCIP_Real lhs)
Definition: scip_lp.c:1495
public methods for cuts and aggregation rows
static void consdataUpdateActivitiesGlbLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2031
Definition: type_cons.h:63
Definition: type_set.h:41
static SCIP_Real consdataComputePseudoActivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1244
SCIP_RETCODE SCIPdropVarEvent(SCIP *scip, SCIP_VAR *var, SCIP_EVENTTYPE eventtype, SCIP_EVENTHDLR *eventhdlr, SCIP_EVENTDATA *eventdata, int filterpos)
Definition: scip_event.c:468
SCIP_Real SCIPbdchginfoGetNewbound(SCIP_BDCHGINFO *bdchginfo)
Definition: var.c:17935
Definition: type_cons.h:73
static void consdataCalcActivities(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:2317
SCIP_RETCODE SCIPcreateVar(SCIP *scip, SCIP_VAR **var, const char *name, SCIP_Real lb, SCIP_Real ub, SCIP_Real obj, SCIP_VARTYPE vartype, SCIP_Bool initial, SCIP_Bool removable, SCIP_DECL_VARDELORIG((*vardelorig)), SCIP_DECL_VARTRANS((*vartrans)), SCIP_DECL_VARDELTRANS((*vardeltrans)), SCIP_DECL_VARCOPY((*varcopy)), SCIP_VARDATA *vardata)
Definition: scip_var.c:104
Definition: type_var.h:41
Definition: type_var.h:45
SCIP_RETCODE SCIPfixVar(SCIP *scip, SCIP_VAR *var, SCIP_Real fixedval, SCIP_Bool *infeasible, SCIP_Bool *fixed)
Definition: scip_var.c:8168
SCIP_RETCODE SCIPlockVarCons(SCIP *scip, SCIP_VAR *var, SCIP_CONS *cons, SCIP_Bool lockdown, SCIP_Bool lockup)
Definition: scip_var.c:4290
SCIP_RETCODE SCIPsetConshdlrPrint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRINT((*consprint)))
Definition: scip_cons.c:847
Constraint handler for linear constraints in their most general form, .
SCIP_Longint SCIPgetNConflictConssApplied(SCIP *scip)
Definition: scip_solvingstats.c:1124
void * SCIPhashtableRetrieve(SCIP_HASHTABLE *hashtable, void *key)
Definition: misc.c:2326
SCIP_RETCODE SCIPchgRhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real rhs)
Definition: cons_linear.c:18212
SCIP_Bool SCIPisSumRelGE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:1344
SCIP_Real SCIPgetRowSolActivity(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2045
SCIP_RETCODE SCIPvarGetOrigvarSum(SCIP_VAR **var, SCIP_Real *scalar, SCIP_Real *constant)
Definition: var.c:12253
SCIP_Real SCIPgetFeasibilityLinear(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol)
Definition: cons_linear.c:18330
SCIP_RETCODE SCIPinferVarLbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5416
SCIP_RETCODE SCIPclassifyConstraintTypesLinear(SCIP *scip, SCIP_LINCONSSTATS *linconsstats)
Definition: cons_linear.c:15133
static SCIP_RETCODE aggregateVariables(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:11021
public methods for the LP relaxation, rows and columns
SCIP_RETCODE SCIPincludeLinconsUpgrade(SCIP *scip, SCIP_DECL_LINCONSUPGD((*linconsupgd)), int priority, const char *conshdlrname)
Definition: cons_linear.c:17520
static void consdataGetReliableResidualActivity(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *cancelvar, SCIP_Real *resactivity, SCIP_Bool isminresact, SCIP_Bool useglobalbounds)
Definition: cons_linear.c:2625
static void consdataRecomputeMaxactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1324
SCIP_RETCODE SCIPwriteVarsLinearsum(SCIP *scip, FILE *file, SCIP_VAR **vars, SCIP_Real *vals, int nvars, SCIP_Bool type)
Definition: scip_var.c:333
SCIP_RETCODE SCIPupdateLocalLowerbound(SCIP *scip, SCIP_Real newbound)
Definition: scip_prob.c:3749
static SCIP_DECL_CONSENFORELAX(consEnforelaxLinear)
Definition: cons_linear.c:15855
Definition: type_set.h:36
methods for sorting joint arrays of various types
SCIP_Bool SCIPconsIsLockedType(SCIP_CONS *cons, SCIP_LOCKTYPE locktype)
Definition: cons.c:8469
SCIP_RETCODE SCIPcreateConsLinear(SCIP *scip, SCIP_CONS **cons, const char *name, int nvars, SCIP_VAR **vars, SCIP_Real *vals, SCIP_Real lhs, SCIP_Real rhs, SCIP_Bool initial, SCIP_Bool separate, SCIP_Bool enforce, SCIP_Bool check, SCIP_Bool propagate, SCIP_Bool local, SCIP_Bool modifiable, SCIP_Bool dynamic, SCIP_Bool removable, SCIP_Bool stickingatnode)
Definition: cons_linear.c:17572
SCIP_RETCODE SCIPsetConshdlrExitpre(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITPRE((*consexitpre)))
Definition: scip_cons.c:578
static SCIP_RETCODE conshdlrdataCreate(SCIP *scip, SCIP_CONSHDLRDATA **conshdlrdata, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:544
public methods for branching rule plugins and branching
static void consdataCalcSignatures(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:3185
Definition: type_cons.h:62
Definition: struct_misc.h:74
int SCIPgetNLinearVarsQuadratic(SCIP *scip, SCIP_CONS *cons)
Definition: cons_quadratic.c:14851
public methods for managing events
static SCIP_RETCODE analyzeConflictRangedRow(SCIP *scip, SCIP_CONS *cons, SCIP_VAR **vars, int nvars, SCIP_VAR *var, SCIP_Real bound)
Definition: cons_linear.c:5700
static SCIP_RETCODE lockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:652
general public methods
Definition: type_cons.h:69
void SCIPsort(int *perm, SCIP_DECL_SORTINDCOMP((*indcomp)), void *dataptr, int len)
Definition: misc.c:5081
SCIP_Bool SCIPisGT(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:555
Definition: type_cons.h:70
static void consdataGetActivityResiduals(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real val, SCIP_Bool goodrelax, SCIP_Real *minresactivity, SCIP_Real *maxresactivity, SCIP_Bool *minisrelax, SCIP_Bool *maxisrelax, SCIP_Bool *isminsettoinfinity, SCIP_Bool *ismaxsettoinfinity)
Definition: cons_linear.c:2706
static SCIP_RETCODE fullDualPresolve(SCIP *scip, SCIP_CONS **conss, int nconss, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:14466
int SCIPgetNLinearVarsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9658
public methods for solutions
SCIP_RETCODE SCIPgetVarCopy(SCIP *sourcescip, SCIP *targetscip, SCIP_VAR *sourcevar, SCIP_VAR **targetvar, SCIP_HASHMAP *varmap, SCIP_HASHMAP *consmap, SCIP_Bool global, SCIP_Bool *success)
Definition: scip_copy.c:737
SCIP_VAR ** SCIPgetVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18253
SCIP_RETCODE SCIPinferVarUbCons(SCIP *scip, SCIP_VAR *var, SCIP_Real newbound, SCIP_CONS *infercons, int inferinfo, SCIP_Bool force, SCIP_Bool *infeasible, SCIP_Bool *tightened)
Definition: scip_var.c:5529
SCIP_RETCODE SCIPsetConshdlrInit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSINIT((*consinit)))
Definition: scip_cons.c:458
SCIP_RETCODE SCIPsetConsEnforced(SCIP *scip, SCIP_CONS *cons, SCIP_Bool enforce)
Definition: scip_cons.c:1335
static void consdataCheckNonbinvar(SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1458
static SCIP_RETCODE consCatchAllEvents(SCIP *scip, SCIP_CONS *cons, SCIP_EVENTHDLR *eventhdlr)
Definition: cons_linear.c:790
SCIP_RETCODE SCIPsetConshdlrExit(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXIT((*consexit)))
Definition: scip_cons.c:482
Definition: type_lp.h:48
public methods for conflict analysis handlers
static SCIP_RETCODE extractCliques(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, int *nfixedvars, int *nchgbds, SCIP_Bool *cutoff)
Definition: cons_linear.c:7879
SCIP_Bool SCIPisConsCompressionEnabled(SCIP *scip)
Definition: scip_copy.c:687
public methods for the probing mode
SCIP_RETCODE SCIPreleaseCons(SCIP *scip, SCIP_CONS **cons)
Definition: scip_cons.c:1187
Definition: type_cons.h:64
static SCIP_DECL_CONSHDLRCOPY(conshdlrCopyLinear)
Definition: cons_linear.c:15005
SCIP_RETCODE SCIPincludeConflicthdlrBasic(SCIP *scip, SCIP_CONFLICTHDLR **conflicthdlrptr, const char *name, const char *desc, int priority, SCIP_DECL_CONFLICTEXEC((*conflictexec)), SCIP_CONFLICTHDLRDATA *conflicthdlrdata)
Definition: scip_conflict.c:177
const char * SCIPconflicthdlrGetName(SCIP_CONFLICTHDLR *conflicthdlr)
Definition: conflict.c:761
SCIP_RETCODE SCIPsetConshdlrPresol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPRESOL((*conspresol)), int maxprerounds, SCIP_PRESOLTIMING presoltiming)
Definition: scip_cons.c:602
public methods for message output
Definition: type_result.h:43
Definition: type_var.h:84
SCIP_Bool SCIPisFeasPositive(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:928
void SCIPmessageFPrintInfo(SCIP_MESSAGEHDLR *messagehdlr, FILE *file, const char *formatstr,...)
Definition: message.c:608
static SCIP_RETCODE convertBinaryEquality(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9449
SCIP_RETCODE SCIPaggregateVars(SCIP *scip, SCIP_VAR *varx, SCIP_VAR *vary, SCIP_Real scalarx, SCIP_Real scalary, SCIP_Real rhs, SCIP_Bool *infeasible, SCIP_Bool *redundant, SCIP_Bool *aggregated)
Definition: scip_var.c:8277
static SCIP_RETCODE tightenBounds(SCIP *scip, SCIP_CONS *cons, SCIP_Real maxeasyactivitydelta, SCIP_Bool sortvars, SCIP_Bool *cutoff, int *nchgbds)
Definition: cons_linear.c:7003
SCIP_RETCODE SCIPaddVarsToRow(SCIP *scip, SCIP_ROW *row, int nvars, SCIP_VAR **vars, SCIP_Real *vals)
Definition: scip_lp.c:1628
SCIP_VAR ** SCIPgetLinearVarsNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9670
static void getNewSidesAfterAggregation(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *slackvar, SCIP_Real slackcoef, SCIP_Real *newlhs, SCIP_Real *newrhs)
Definition: cons_linear.c:9507
SCIP_RETCODE SCIPsetConshdlrGetNVars(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSGETNVARS((*consgetnvars)))
Definition: scip_cons.c:916
SCIP_Bool SCIPisScalingIntegral(SCIP *scip, SCIP_Real val, SCIP_Real scalar)
Definition: scip_numerics.c:677
static SCIP_RETCODE convertEquality(SCIP *scip, SCIP_CONS *cons, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10420
static SCIP_RETCODE applyFixings(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *infeasible)
Definition: cons_linear.c:4618
public methods for message handling
static SCIP_RETCODE consPrintConsSol(SCIP *scip, SCIP_CONS *cons, SCIP_SOL *sol, FILE *file)
Definition: cons_linear.c:1126
static unsigned int getParallelConsKey(SCIP_CONS *cons)
Definition: cons_linear.c:12998
SCIP_RETCODE SCIPprintRow(SCIP *scip, SCIP_ROW *row, FILE *file)
Definition: scip_lp.c:2094
static SCIP_RETCODE addCoef(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:3693
static SCIP_DECL_CONFLICTEXEC(conflictExecLinear)
Definition: cons_linear.c:17148
Definition: type_retcode.h:45
SCIP_Real SCIPgetRowSolFeasibility(SCIP *scip, SCIP_ROW *row, SCIP_SOL *sol)
Definition: scip_lp.c:2068
static SCIP_RETCODE consdataEnsureVarsSize(SCIP *scip, SCIP_CONSDATA *consdata, int num)
Definition: cons_linear.c:474
Definition: type_set.h:44
Definition: cons_linear.c:334
static SCIP_DECL_NONLINCONSUPGD(upgradeConsNonlinear)
Definition: cons_linear.c:17287
Definition: cons_linear.c:348
static void consdataRecomputeGlbMinactivity(SCIP *scip, SCIP_CONSDATA *consdata)
Definition: cons_linear.c:1351
SCIP_Real * SCIPgetValsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18276
SCIP_Bool SCIPisLE(SCIP *scip, SCIP_Real val1, SCIP_Real val2)
Definition: scip_numerics.c:542
static SCIP_RETCODE convertLongEquality(SCIP *scip, SCIP_CONSHDLRDATA *conshdlrdata, SCIP_CONS *cons, SCIP_Bool *cutoff, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:9563
SCIP_RETCODE SCIPchgLhsLinear(SCIP *scip, SCIP_CONS *cons, SCIP_Real lhs)
Definition: cons_linear.c:18191
#define SCIPfreeBlockMemoryArrayNull(scip, ptr, num)
Definition: scip_mem.h:117
SCIP_Bool SCIPisFeasIntegral(SCIP *scip, SCIP_Real val)
Definition: scip_numerics.c:952
SCIP_Bool SCIPconsIsMarkedPropagate(SCIP_CONS *cons)
Definition: cons.c:8285
Definition: type_cons.h:60
static SCIP_Bool isRangedRow(SCIP *scip, SCIP_Real lhs, SCIP_Real rhs)
Definition: cons_linear.c:15102
static SCIP_RETCODE unlockRounding(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:685
SCIP_EXPRGRAPHNODE * SCIPgetExprgraphNodeNonlinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_nonlinear.c:9733
SCIP_RETCODE SCIPaddConflict(SCIP *scip, SCIP_NODE *node, SCIP_CONS *cons, SCIP_NODE *validnode, SCIP_CONFTYPE conftype, SCIP_Bool iscutoffinvolved)
Definition: scip_prob.c:3280
static SCIP_RETCODE enforceConstraint(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_CONS **conss, int nconss, int nusefulconss, SCIP_SOL *sol, SCIP_RESULT *result)
Definition: cons_linear.c:14929
Definition: type_retcode.h:43
static SCIP_DECL_CONSGETNVARS(consGetNVarsLinear)
Definition: cons_linear.c:16952
Definition: objbenders.h:33
SCIP_RETCODE SCIPsetConshdlrExitsol(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSEXITSOL((*consexitsol)))
Definition: scip_cons.c:530
SCIP_RETCODE SCIPwriteVarName(SCIP *scip, FILE *file, SCIP_VAR *var, SCIP_Bool type)
Definition: scip_var.c:220
public methods for global and local (sub)problems
Definition: type_var.h:43
SCIP_Longint SCIPcalcGreComDiv(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:8454
SCIP_Real SCIPgetSolVal(SCIP *scip, SCIP_SOL *sol, SCIP_VAR *var)
Definition: scip_sol.c:1410
SCIP_RETCODE SCIPaddObjoffset(SCIP *scip, SCIP_Real addval)
Definition: scip_prob.c:1324
int SCIPgetNVarsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18230
SCIP_Real SCIPgetLhsLinear(SCIP *scip, SCIP_CONS *cons)
Definition: cons_linear.c:18145
SCIP_RETCODE SCIPaddRealParam(SCIP *scip, const char *name, const char *desc, SCIP_Real *valueptr, SCIP_Bool isadvanced, SCIP_Real defaultvalue, SCIP_Real minvalue, SCIP_Real maxvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:211
static SCIP_RETCODE addConflictBounds(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *infervar, SCIP_BDCHGIDX *bdchgidx, int inferpos, SCIP_Bool reasonisrhs)
Definition: cons_linear.c:4858
SCIP_Longint SCIPcalcSmaComMul(SCIP_Longint val1, SCIP_Longint val2)
Definition: misc.c:8706
Definition: cons_linear.c:350
Definition: type_result.h:39
Definition: struct_event.h:186
static void consdataUpdateActivitiesLb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldlb, SCIP_Real newlb, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:1981
SCIP_RETCODE SCIPseparateRelaxedKnapsack(SCIP *scip, SCIP_CONS *cons, SCIP_SEPA *sepa, int nknapvars, SCIP_VAR **knapvars, SCIP_Real *knapvals, SCIP_Real valscale, SCIP_Real rhs, SCIP_SOL *sol, SCIP_Bool *cutoff, int *ncuts)
Definition: cons_knapsack.c:5770
SCIP_RETCODE SCIPaddBoolParam(SCIP *scip, const char *name, const char *desc, SCIP_Bool *valueptr, SCIP_Bool isadvanced, SCIP_Bool defaultvalue, SCIP_DECL_PARAMCHGD((*paramchgd)), SCIP_PARAMDATA *paramdata)
Definition: scip_param.c:129
SCIP_RETCODE SCIPchgCoefLinear(SCIP *scip, SCIP_CONS *cons, SCIP_VAR *var, SCIP_Real val)
Definition: cons_linear.c:18061
static void consdataUpdateActivitiesUb(SCIP *scip, SCIP_CONSDATA *consdata, SCIP_VAR *var, SCIP_Real oldub, SCIP_Real newub, SCIP_Real val, SCIP_Bool checkreliability)
Definition: cons_linear.c:2006
static SCIP_RETCODE consdataFree(SCIP *scip, SCIP_CONSDATA **consdata)
Definition: cons_linear.c:1052
Definition: type_cons.h:65
SCIP_RETCODE SCIPsetConshdlrProp(SCIP *scip, SCIP_CONSHDLR *conshdlr, SCIP_DECL_CONSPROP((*consprop)), int propfreq, SCIP_Bool delayprop, SCIP_PROPTIMING proptiming)
Definition: scip_cons.c:343
SCIP_RETCODE SCIPsetConsInitial(SCIP *scip, SCIP_CONS *cons, SCIP_Bool initial)
Definition: scip_cons.c:1285
memory allocation routines
Definition: type_var.h:58
static SCIP_RETCODE dualPresolve(SCIP *scip, SCIP_CONS *cons, SCIP_Bool *cutoff, int *nfixedvars, int *naggrvars, int *ndelconss)
Definition: cons_linear.c:10546